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Abstract—To address the challenges of poor noise immu-
nity and limited generalization performance in Li-ion battery
modeling and state estimation (SE), a novel robust frame-
work for parameter identification (Pl) and joint estimation
of state of charge (SOC) and surface temperature is pro-
posed in this study by leveraging physical information and
nonlinear extension techniques. Initially, a robust forgetting
factor recursive maximum total correntropy algorithm is
developed for PI, providing a solid foundation for SE under
noisy conditions. Subsequently, a robust SOC estimation
method is formulated by embedding the maximum corren-
tropy criterion (MCC) with an adaptive kernel width into the
square-root cubature Kalman filter, effectively replacing the
conventional mean square error with MCC to enhance noise
resilience. Next, a multidimensional feature input set is
constructed using the Pl results, including total internal re-
sistance as auxiliary physical information, along with SOC
estimates and raw measurements. A subinput structure is
further designed using partial correlation analysis, and then
the extreme learning machines are utilized to project the
subinputs into a high-dimensional (HD) feature space to
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extract latent correlation features. Finally, by integrating
nonlinear extended features with raw data in parallel, the
input to the bidirectional gated recurrent unit model is
generated, enabling simultaneous extraction of global rep-
resentations from both HD and low-dimensional spaces. Ex-
perimental results demonstrate that the proposed method
outperforms existing advanced approaches in SE under
strong noise interference and complex operational condi-
tions.

Index Terms—Bidirectional gated recurrent unit (GRU),
joint state estimation, Li-ion battery (LIB), nonlinear exten-
sion, parameter identification, physical information.

|. INTRODUCTION

I-ION batteries (LIBs) have emerged as the preferred
L power source for energy storage systems (ESSs) and elec-
tric vehicles (EVs) due to their high power density, high energy
density, and cost-effectiveness [1], [2]. The safe and stable
operation of LIBs relies on the performance and reliability of
the battery management system. Among the key parameters
it monitors, state of charge (SOC) and state of temperature
are critical for maintaining operational stability and preventing
hazardous conditions. Accurate estimation of these parameters
ensures reliable driving range predictions, slows LIB degrada-
tion, and reduces the risk of thermal runaway [3], [4]. Theo-
retically, temperature sensors can directly measure the surface
temperature (ST) and core temperature of LIBs. In practice,
ESSs and EVs contain hundreds or thousands of cells, making
direct measurement impractical [5], and temperature is often
correlated with the SOC. Additionally, LIBs may encounter
electromagnetic interference, sensor failures, and other dis-
turbances during operation, leading to data contamination by
Gaussian (GN) or non-Gaussian noise (NGN) [6], [7]. Thus,
developing an adaptive joint estimation framework for SOC and
ST is crucial considering noisy measurement.

Contemporary ST estimation methodologies for LIB
ST are systematically categorized into three types: 1)
electrochemical impedance spectroscopy (EIS) [8]; 2) model-
based [9]; and 3) data-driven [10] approaches. The EIS
method quantifies temperature-impedance correlations by
analyzing voltage responses to controlled alternating current
excitation at defined frequencies. However, this process
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needs specialized instrumentation and strictly controlled
steady-state operating conditions to mitigate polarization
interference [9], [10], substantially limiting its applicability.
The model-based method employs an electrothermal coupling
model that integrates electrical and thermal models. When
combined with Kalman filter (KF) algorithms [11], these
methods exhibit enhanced capability in capturing the intrinsic
heat generation mechanisms of LIBs while maintaining
strong interpretability. However, their estimation accuracy is
fundamentally constrained by the battery’s heat generation
rate, thermal properties, and boundary conditions.

Unlike EIS and model-based approaches, the neural network
(NN) is an outstanding data-driven approach, which can es-
tablish a canonical state estimation (SE) model to effectively
capture the complex nonlinear dynamics of LIBs. NNs primar-
ily encompass two categories: 1) feedforward NNs (FNNs);
and 2) recurrent NNs (RNNs) [12], [13], [14]. Among these,
the extreme learning machine (ELM), as a type of FNN, has
been applied for the SE of LIBs [13]. It is renowned for its
rapid training capability and the nonlinear mapping charac-
teristics of its hidden layer. Specifically, it can directly map
input data into a high-dimensional (HD) feature space through
random initialization of hidden layer parameters, thereby effec-
tively addressing complex nonlinear problems [14]. However,
existing research has overlooked this characteristic of ELM,
and FNNs perform poorly at processing temporal information
and dynamic data, limiting their application in SE of LIB. In
contrast, RNNs are capable of effectively handling sequential
data and demonstrate significant advantages in dynamic data
modeling, particularly with their improved models such as long
short-term memory (LSTM) and gated recurrent units (GRU).
These models successfully resolve the issues of vanishing and
exploding gradients in traditional RNNs during long sequence
data processing, significantly enhancing the model’s ability to
model long-term dependencies [14], [15]. Yao et al. [10] devel-
oped a high-precision ST estimation method based on a GRU-
RNN framework, incorporating distribution analysis and adap-
tive data normalization across varying temperatures. Although
it demonstrated strong intradataset consistency, validation was
limited to identical dynamic conditions, leaving its dynamic
generalization, particularly under significant temperature fluc-
tuations, unverified. Zheng et al. [5] proposed an improved
convolutional NN (CNN) LSTM (ICNN-LSTM) framework
that integrates convolutional feature extraction with electro-
thermal model inputs, resulting in enhanced estimation accu-
racy. However, this method imposes prohibitive computational
costs for parameter identification (PI) in centralized electro-
thermal models, while fixed-parameter assumptions fail to cap-
ture the transient behaviors of LIBs under dynamic conditions.
Moreover, the approaches discussed above typically depend on
high-precision battery testers to obtain SOC via ampere-hour
integration, which is then used as input for neural networks.
In practice, however, SOC cannot be directly measured, ne-
cessitating further verification of estimation reliability [4], [9].
Additionally, LSTM and GRU architectures process informa-
tion only in the forward direction, limiting their ability to fully
capture contextual dependencies in battery thermal sequences.

To overcome this critical limitation, bidirectional GRU (Bi-
GRU) introduces parallel backward temporal analysis, en-
abling systematic capture of latent electrochemical-thermal in-
teractions through simultaneous forward-backward sequence
processing, particularly improving SE accuracy under rapid
thermal transients [16], [17], [18]. Although the Bi-GRU net-
work demonstrates enhanced temporal modeling through dual-
sequence analysis, its feature information extraction capability
is restrained under data scarcity. In practice, most data-driven
methods must rely on very limited measurement data for model
training, often overlooking the physical characteristics of LIBs
and the impact of HD data features on SE [5], [14]. However,
physical characteristics are essential for capturing the thermal
and degradation behaviors of LIBs, while HD features are crit-
ical for modeling their multidimensional dynamics. Neglecting
these factors compromises the model’s generalization and ro-
bustness. Thus, effectively integrating physical characteristics
with HD nonlinear feature extraction to enhance ST estimation
accuracy remains a critical challenge.

An effective solution to the above problem is to capture
the physical characteristics of LIBs through electrical models
(EMs), which form the foundation for model-based SOC esti-
mation methods. This physical information is integrated with
SOC estimates, serving as supplementary input for ST esti-
mation. Recent studies on SOC estimation often use voltage,
current, and ST as primary inputs. However, directly obtain-
ing ST in practical applications is challenging, which signif-
icantly complicates data-driven SOC estimation methods [6],
[19]. In contrast, model-based SOC estimation methods are
more mature, enabling high-precision battery modeling through
the construction of concise EMs. Moreover, PI algorithms are
straightforward to implement, and incorporating KF algorithms
or observer techniques can significantly enhance the accuracy
of SOC estimation [6], [19], [20]. Nonetheless, existing studies
often overlook the impacts of electromagnetic interference and
data transmission errors, which can introduce GN or NGN into
measurement data [6], [7], [21]. To enhance the robustness of
SOC estimation under noisy conditions, recent studies have
incorporated the maximum correntropy criterion (MCC) [22],
[23] to improve the performance of KF methods in complex
noise environments. However, research on the selection and
optimization of the kernel width (Kw) parameter remains lim-
ited, constraining the performance of enhanced KF methods in
practical applications [21], [24]. In addition, robust PI design
under noise interference has yet to be effectively addressed,
and the influence of SOC estimation on ST accuracy under
dynamic conditions remains insufficiently explored. Further
theoretical refinement and experimental validation are needed
in these areas. To address the aforementioned challenges, a
robust framework for PI and joint SE is proposed. The primary
contributions of this work are summarized as follows.

1) A robust method for PI and SOC estimation, integrating
correntropy theory with a Kw adaptation (KwA) mecha-
nism, is proposed, markedly improving estimation accu-
racy under complex noise conditions.

2) Partial correlation analysis (PCA) is employed to uncover
nonlinear couplings among multidimensional inputs and
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the ST, thereby informing the design of subinput struc-
tures that retain intervariable dependencies. These subin-
puts are then projected into a HD feature space via the
ELM hidden layer, whereby key nonlinear features are
efficiently extracted.

3) An enhanced Bi-GRU model, termed PINE-Bi-GRU, is
proposed, integrating physical information and nonlinear
expansion. By concurrently fusing nonlinear features with
raw data as inputs, the model enables effective capture
of global features across both HD and low-dimensional
(LD) spaces.

The remainder of this article is organized as follows.
Section II reviews the fundamentals of battery modeling,
PI, and SOC estimation. Section III details the design and
implementation of the PINE-Bi-GRU framework. Section [V
discusses the experimental results and comprehensive
evaluations. Finally, Section V concludes the study and
outlines future research directions.

Il. METHODS FOR Pl AND SOC ESTIMATION
A. Electrical Model of the LIB

In LIB systems, the SOC and ST are generally challenging to
measure directly. Consequently, indirect estimation is pursued
through in-depth analysis and feature extraction, utilizing lim-
ited data from voltage, current, and ambient temperature (AT).
This study focuses on the extraction of additional feature signals
from constrained datasets and the achievement of accurate SE,
which are identified as the central research challenges. To ad-
dress this challenge, a first-order RC equivalent circuit model
(RC-ECM) is employed as the foundational framework. This
model is characterized by its structural simplicity and ability
to effectively capture the essential dynamic characteristics of
battery systems. Precise estimation of ECM parameters and
SOC is achieved by integrating robust PI methods with the KF.
As illustrated in Fig. |, the first-order RC-ECM consists of the
open-circuit voltage (OCV) V,., which is correlated with the
SOC, the ohmic resistance I?,, polarization resistance 1), and
polarization capacitance C',. Based on Kirchhoff’s laws, the
electrical behavior of the first-order RC-ECM is described as

V,/R, + CydV, Jdt = I 0
‘/t = Voc - an - ROI

where I represents the load current, with discharging defined
as positive and charging as negative. The polarization voltage

and terminal voltage of the battery are denoted as V), and V,
respectively. Based on (1), a transfer function can be derived

d(s)/1(s) = —[Ro + Ry/(1 + R,Cps)] 2)

where d = V; — V,,.. Next, applying the bilinear transformation
s=2(q—1)/At/(qg+ 1) to (2) yields

dq™")/1(q™") = (a0 +aig™)/(1+aq™") 3

Fig. 1. Structure of the first-order RC-ECM.

where At is the sampling time and ¢ represents the discrete
operator. Therefore, the coefficients in (3) can be expressed as

a]  [~(AtR, + AtR, +2R,C,R,)/ (At + 2R, C,)
ar| = |—(AtR, + AtR, — 2R,CyR,)/(At + 2R, C,)
a (At —2R,C,)/(At + 2R,C,)

“)

Based on the derived discrete-time system (3), a regression
model can be established to facilitate numerical analysis

dt = W;T Xt (5)

T T

where x; = [~di—1 I L] . wy=[axs aor aiy] .

and 7" denotes the transpose operation. The model parameters

are derived through backward inference by using (4) once the
regression model (5) is solved

_ (1—ay)? aar—a a;—a
[Cp Rp RO] - {4(aoaz—a|)At 2 Ol—2a§ : 11—a20:| - (6)
The total internal resistance of LIB serves as a critical phys-
ical indicator for characterizing dynamic battery behavior and

enabling temperature estimation, which is defined as

The Rr is inherently sensitive to electrochemical-thermal
coupling mechanisms. First, Rpr demonstrates a well-
established monotonic relationship with temperature, governed
by Arrhenius-type kinetics that influence ionic conductivity in
the electrolyte and charge transfer reactions at the electrodes.
Specifically, R, decreases exponentially with increasing
temperature due to enhanced ion mobility, while 2, reflects
kinetic limitations that scale inversely with thermal activation
energy. The dual dependence of Ry allows it to capture
real-time thermal state information. Second, as a lumped
parameter in ECMs, Ry captures transient voltage-current
responses during operational load changes, such as charge
and discharge pulses. These dynamics are influenced by
temperature-dependent diffusion coefficients and interfacial
reaction rates, positioning Ry as a comprehensive descriptor
of electrochemical-thermal interactions.

Remark 1: Aging effects gradually alter internal resistance
through reduced electrode activity, solid electrolyte interphase
growth, and electrolyte side reactions, which introduce bias
into PI and degrade SE accuracy. However, such resistance
drift evolves slowly over many cycles compared with the rapid
perturbations induced by temperature and load [5].
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B. SOC Estimation Based on Improved MCC
Square-Root Cubature KF

Given the harsh operating conditions of batteries, which are
susceptible to external factors such as electromagnetic inter-
ference and communication failures, two primary design chal-
lenges are encountered by existing KF methods [21], [24]. First,
conventional KF methods based on the mean squared error cri-
terion are effective under GN conditions but inadequate for ac-
curate estimation under complex real-world noise disturbances
[21]. Second, robust KF methods utilizing the MCC or mixture
MCC provide precise SOC estimation under complex noise
scenarios. However, they introduce high structural complexity,
leading to an increased number of free parameters and height-
ened challenges in parameter optimiz-ation [24]. Therefore, the
development of a robust filtering algorithm, characterized by
structural simplicity and strong noise immunity, is essential. In
this study, the square-root cubature KF (SRCKF) with MCC
(called MCC-SRCKF) is introduced to perform noise-immune
SOC estimation. Furthermore, an adjustment mechanism is
incorporated to dynamically optimize the key parameter Kw
in MCC, improving the convergence speed and robustness of
MCC. For brevity, only the derivation of the MCC framework
with the KwA mechanism is presented in this section.

Correntropy is defined as the expected value of the kernel
function between two random variables, B; and B, [23], [25]

V(Bl, Bz) = E[FL(,(Bl - Bz)] (8)

where E[ - ] denotes the expectation operator, and k(+) refers
to the Gaussian kernel function with a Kw ¢ > 0, which are
specifically defined as

K'/O-(B]—Bz) =

Gy(B1—B)) = exp(—|B1—B,|?*/20?)

€))
where o is the Kw. In practical applications, the applicability
of (8) is limited by uncertainties in error distribution and the
limited availability of sample data. To address these limitations,
we redefine (8) as
(0

t=1

1
V2o

V(B1. By) = exp(-lonc - bz,t|2/202))

(10)

where b; ; and b, ; are the rth components of B and B,, respec-
tively, and n denotes the sample size. In practical applications,
B and B, are associated with the true and the estimated values
of the measured information, respectively, with discrepancies
between them typically attributed to interference from unknown
noise [25]. In the domain of information-theoretic learning, the
MCC is widely recognized as a standard optimization metric
and is formally defined as

JMCC :maxV(Bl,Bz). (11)

Evidently, only a single free parameter o is used in the MCC
model. Building on this simplicity, an efficient KwA mecha-
nism (12) is developed to track the dynamic variation of error

information, enabling real-time optimization of Kw during the
algorithm’s iterative process

o = max {200 — (20, — 1)exP(=lecf/2), ao} (12)
where e; = by — by and 0,(0, > 1) is defined as the initial
value of Kw. According to (12), the exponential term is con-
strained within the interval [0, 1], and the range of ¢ can be
derived as

o, <0 <20,— 1. (13)

During the SOC estimation process, significant errors are
often introduced due to challenges in accurately determining the
initial SOC. Moreover, noise in battery data inevitably degrades
the convergence rate of the MCC-SRCKF algorithm. These
problems are addressed by the proposed KwA mechanism,
which dynamically adjusts the parameter Kw to enhance algo-
rithmic performance. In the initial iterations, the KwA mecha-
nism typically selects a larger parameter value (e.g., 20, — 1)
to expedite convergence. As iterations proceed and estimation
errors decrease, Kw is adaptively tuned based on the error’s
dynamic behavior, with smaller o gradually adopted, thereby
significantly improving the algorithm’s robustness. Ultimately,
the KwA mechanism effectively captures variations in estima-
tion error and optimizes parameter settings in real-time, leading
to enhanced accuracy and robustness of SOC estimation when
the improved MCC-SRCKF (IMCC-SRCKF) algorithm is em-
ployed.

C. Parameter Identification Based on Improved
Forgetting Factor Recursive Maximum Total Correntropy
(IFRMTC)

In dynamic environments with varying temperatures, long-
term battery operation is susceptible to electromagnetic inter-
ference and communication errors, which introduce both GN
and NGN into the collected data [6], [7], [21]. To address
these challenges, we propose a robust recursive maximum total
correntropy (RMTC) algorithm for PI. The algorithm incor-
porates both input and output noise-induced errors into the
cost function, capturing higher-order error statistics to enhance
PI accuracy. A forgetting factor is introduced to develop the
FRMTC algorithm, which prioritizes recent data to mitigate
estimation lag and more accurately reflect the battery’s dynamic
behavior. Additionally, integrating a KwA mechanism results in
the IFRMTC, which updates Kw dynamically by synthesizing
total error information with the weight vector from previous
iterations. This allows for real-time tracking of noise charac-
teristics, accelerating convergence and improving robustness
in complex noise environments. The detailed methodology is
outlined as follows.

To mitigate the interference induced by input and output
noises, the classical errors-in-variables model is employed in
this study to characterize this issue

{fil,tle,t‘i‘ut (14)

G?t :dt + v¢.
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In this context, x; ; and d; are defined as the input and output
vectors of the system, respectively, while u, represents the input
noise with a covariance of ¢; 21,., and v; denotes the output noise
with a covariance of ¢2Ij. The identity matrix is indicated by
I, and k represents the filter order. In addition, X, + and dt are
the input and output vectors of the system that are influenced
by noise. Furthermore, it is assumed that the input noise and
output noise are statistically independent and follow the same
type of distribution.

Inspired by the MCC [22], [23], the optimal weight w can
be determined by maximizing the cost functionJyrc

{JMTC = 5 S AP (e /(V2ma1))
U(e) = exp(—lec?/ (207 ,[[%]3))-

The parameter A (0.95 < A < 1) represents the forgetting
factor, which i 1s set to 0.997 in this study. The error is denoted
ase; = dt wlx 1,6, where w represents the filter weight. The
total error e; /v WT W is caused by the combined effects of input
noise and output noise, with w = [\/B —WT] ,B=¢2/s%.
Furthermore, o represents the Kw associated with the Jyrc.
By combining (5) and (14), it can be concluded that the total
error is primarily influenced by input and output noises [25].
The fixed-point solution of the filtering weights is obtained by
solving the gradient of the objective function 9 Jyrc/Ow; =0,
where

5)

{ZA” [ e0) (1.0 %T, W 2

-1 n
—|et|21k>}} S e ][ wlB (16)
t=1

Here, w is dynamically adjusted in real time based on a
limited sample set, and it follows:

wi = (R;) ™' Def W13 (17)
where R} = Ry 4||W; 13 + Ra
Ry = ZN er(en) R XY (18)
Ry, = ZM e (er)leIT 2 0 Ii (19)
i = ZM ey (en)di% 1] (20)

where (;(e;) = exp(—|e;|*/(207 |Wi—1[[3)). Then, the update
equations of the Rl,t,f{;t and P, are obtained as

Riy = Rt + 0 (e) k%], @1
Ry = Ry 1 — lier)led/ Ty 2oy 1T — 3L (22)
Pr =ADe—1 + i(er)diXi 4 (23)

where €1(¢;) = exp(—lec /(203 [ W11 [3)).
Remark 2: Since Jyrc is not a strictly convex function, the
weight w is updated using (24) during iterations before t = ¢,

to ensure the positive definiteness of R}. The value of ¢, is
determined through iterative experimental optimization

wi = (Ri¢|[Wei]3) 7!

Each iteration of (17) requires matrix inversion, which sub-
stantially increases computational complexity and time over-
head. To mitigate this, the matrix inversion lemma (MIL) and
associated computational techniques are employed [25]. As a
result, matrix (R})~! is reformulated as

/e IB = (R I ) (R

PelWi—i |3 (24)

(R))"'=R ne/ 1113

+ Ry ) TR Wi B - (25)
Combining (17) and (25) produces
we =Ry B — [(Ry/IWet D) R/ [ Wi 3
+Ry)) TR D = w) — Pyw; (26)
where P = (R 7 /W1 13) Ry /[1We—i]|3 + R;,) ™" and

wy = R1 , P+ Equation (25) can be transformed into the fol-
lowing form using the MIL method:

Ry, =A"Ri_, - b Ry, ' (27)
by = A" th 1R (Al (er) ™! 11&171321,071-
(28)

Equation (28) can be simplified by multiplying both sides by
At O (e) %Ry, _ %y e,

by = A" |4 (e) (A -
= A" (e) Ry %

—bx{ R, )%,
(29)
Based on (23), (27), and (29), a recursive expression for
updating w; is derived as
wi =R {pea~dib+ (AR — bk Ry AP
= dtbt+R1 = 1Pt 1_)‘th1 tRl = 1Pt—1=w,_| + biey
(30)

e; =dy — \k|,wj_. (31)

It should be noted that matrix inversion is required to calcu-
late P;. To reduce computational load, a transformation based
on the MIL is applied to approximate P,. Here, an auxiliary
variable T is introduced to facilitate this process

Ty =Ry /[ W[5+ Ry
Using (22) and (27), (32) can be reformulated as
T, = Aflﬁit]fl/\lﬁ’t—l ||% - XthRl ;71/“‘;"75—1 ||§
+ /o1 1 — 1oy 11 + 1y,
~ AT —biR| tRl_t 1/ Ve i3
+ 3¢/ [(w—1 — 7)o 1] 1. (33)

Then, let Z;={\"'"Ty_y +v/[(ar—1 — ve)ou—1|Lp} "
Applying the MIL theory yields an alternative form of Z; and
T, ! as

Ze =T, = AT [(((em1 = v)eve—1) /7)) Lk

(32)
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Algorithm 1: The PI Algorithm Utilizing the IFRMTC Frame-
work.

d, Xy,
Output: w,.
Parameter settings: o,,0,1,.

Input:

1. Initializations: set w, =W} =q, :g,lﬂl]ﬂ =¢l,,. (where & denotes the
regularization parameter.)
2.For t=1to M

3. Compute: et:c;’,fw,f_,ﬁ,. o(k)
4. Compute: ¢ =d, (W) %, o(k)
5. Compute: HWHHi: T Wit + 3. o(k)
6. Compute: o, using Eq. (12). o(k)
7. Compute: b, using Eq. (28). o(k*)
8. Compute: w;=w; +be. o(k)
9. Compute: ;/,:Ae,*‘e,‘z. o(l)
10. Compute: o, =, —V;. o(l)
1. Ift<t,

12. Compute: W, =Wy ;.

13. Else if t=t¢,

14. Compute: Z,:{A—ITH+yt/[(a,,177,)a,,1]lk}_l o(k*)
15. Else

16. Compute Z, using Eq. (34). o(k*)
17. End if

18. Compute: T;! using Eq. (35). o(k*)
19. Compute: w, using Eq. (36). o(k*)
20. End if

21. Update Rp!=R;!,-b&/Rl, o(k*)
22. End for

23. Return w,,T! ,ﬁf,} .

—1
+ T ] AT,
AT = NTC (v (et — ) ew—1) T (34)
T, ' =Zi+ (ZbiX{ (R, /Wi [5)Z0) /1

- ﬁft(f{;tl_l/nwt—l||%)tht- (35)
The final form of w; is obtained as
we=w; — (R /[t [T, 'wi (36)

The parameter 7, gradually converges to zero through suc-
cessive iterations. Accordingly, (34) can be simplified, resulting
in a PI method with improved computational efficiency and
enhanced noise robustness. However, under noisy conditions,
the Kw must be carefully selected, as an inappropriate value
may cause filter divergence and amplify PI errors. To address
this issue, a KwA mechanism is introduced to mitigate errors
arising from parameter mismatch. As shown in (14), total error
information is produced when noise affects the input and output
signals. This information is used both as a criterion for optimiz-
ing Kw and as the error term in (12) for dynamic adjustment,
achieving an optimization effect analogous to that described
in Section II-B. Algorithm | summarizes the principal com-
putational steps of the PI and provides a detailed evaluation of
the computational complexity at each stage, where o(+) denotes
terms of the same infinitesimal order.

Remark 3: According to Algorithm 1, a matrix inversion is
required only at time ¢,, yielding a computational complexity

Output
layer

Backward
layer

Forward

5 x
Xy Xy, X,,, Inputlayer
(®)

Fig. 2. Structures of (a) GRU model and (b) Bi-GRU model.

of o(k*). In all subsequent iterations, the computational cost per
step remains at or below o(k?).

I1l. ST ESTIMATION BASED ON PINE-BI-GRU MODEL
A. Overview of ELM Model

The ELM, a single-hidden-layer FNN, is characterized by
a distinctive training mechanism. The input-to-hidden layer
weights and biases are randomly initialized and remain fixed,
while the hidden-to-output weights are analytically determined
via the least squares method [13]. This randomization enables
efficient mapping of inputs into a HD feature space, facilitat-
ing the modeling of complex nonlinear relationships [14]. Its
mathematical formulation is given by

H=6(w-x+b)
Y =3 H.

The input, output, and hidden layer output of the ELM are
denoted by x,Y, and H, respectively. The connection weights
and biases between the input and hidden layers are represented
by w and b, while §(-) denotes the sigmoid activation function,
and /3 denotes the connection weights between the hidden and
output layers. In ELM, the hidden layer weights are randomly
initialized and subjected to a nonlinear transformation that maps
the input features into a HD space, thereby significantly enhanc-
ing data representation. This process eliminates the need for
iterative training and substantially improves computational ef-
ficiency. Additionally, due to its inherent nonlinearity, ELM ef-
fectively captures complex dynamic input/output relationships,
enabling robust extraction of nonlinear, HD dynamic features
from the input variables.

(37)

B. Overview of the Bi-GRU Model

The GRU, an enhanced RNN architecture, improves the pro-
cessing of time-series data by incorporating update and reset
gates, which effectively address gradient vanishing and ex-
plosion during training [10], [15]. The update gate adaptively
controls the influence of past information on the current state,
while the reset gate filters out irrelevant historical data, thereby
enhancing the model’s ability to capture sequential dependen-
cies. The structure of the GRU is shown in Fig. 2(a), and its
mathematical formulation is given as

Zy = 6(wzx2,t +e;hy 1+ bz) (38)
ry — 6(wrx2,t + Erhtfl + bT) (39)
flt = tanh(wy,xz; +ep(r, © hy—y) + by,) (40)
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ht:(l —Zt)thfl +Zt®flt. (41)

At time ¢, the current input data is denoted by x; ;, and the
current candidate layer state is represented by hy. The hidden
states at the current and previous time steps are designated as h;
and h;_;, respectively. Within the model, the input connection
weights for the update gate, reset gate, and candidate layer
are defined as w,, w,, and wy, respectively. Similarly, the
recurrent weights and biases for the update gate, reset gate, and
candidate layer are specified as €., b,, €,, b,, €;, and by,
respectively. The sigmoid activation function and hyperbolic
tangent function are denoted by () and tanh(-), respectively,
while the element-wise multiplication operator is represented
by ®. The GRU is well-regarded for effectively addressing
long-term dependency issues [10], [13], and offers advantages
over LSTM networks, including reduced parameter complex-
ity and improved computational efficiency. However, a stan-
dard GRU processes sequences in a single temporal direction,
limiting its ability to incorporate contextual information from
both past and future, which may hinder prediction accuracy.
To address this limitation, the Bi-GRU employs a bidirectional
architecture consisting of forward and backward GRUs [17],
[18]. The forward GRU captures temporal features from past
to future, while the backward GRU extracts information in
the reverse direction. By concatenating their outputs, a more
comprehensive representation of sequential dependencies is ob-
tained. The structure of the Bi-GRU is shown in Fig. 2(b), and
its mathematical formulation is expressed as

h, =h{ & h} (42)
where h/ and h? are the forward and backward output vectors,
respectively, and & represents the vector concatenation opera-
tion. The Bi-GRU network is adopted as the core architecture
for SE of LIBs due to its inherent ability to extract temporal
features and model dynamic systems. By incorporating bidirec-
tional cascaded layers, the proposed framework captures both
forward and backward temporal dependencies in multivariate
time-series data (e.g., voltage, current, temperature), thereby
improving the reconstruction of the nonlinear electrochemical
dynamics underlying LIB degradation. The effectiveness of Bi-
GRU in SE tasks stems from its parameterized gating mecha-
nisms, which adaptively regulate information flow across time
steps, enabling the modeling of both short-term variations and
long-term degradation trends in battery behavior.

C. Proposed Method

LIBs, as nonlinear systems, exhibit complex and diverse non-
linear characteristics, with varying correlations between differ-
ent battery data and ST. Directly using all data for ST estimation
enlarges the nonlinear feature space, reducing model identifia-
bility and performance [5], [14]. To mitigate the degradation in
identifiability caused by the expanded nonlinear feature space,
we propose an enhanced Bi-GRU framework, called PINE-Bi-
GRU, integrating physical information and nonlinear extension
for high-precision ST estimation. Physical variables, including
Ry and SOC, are combined with voltage, current, and AT(7,)

as input features. PCA segments the input into subsequences
with significant positive or negative correlations, which are
mapped into a HD nonlinear feature space via the hidden layer
of an ELM, producing two extended feature arrays. These HD
features are fused in parallel with the original LD data to form
the Bi-GRU inputs, enabling effective capture of global input—
output associations. Collaborative modeling across HD and LD
spaces significantly improves ST estimation accuracy. Detailed
descriptions of the design and implementation of the proposed
framework are provided in the following sections.

1) Step 1: Construction of Positive and Negative Subinput
Variables Based on Partial Correlation Analysis: The
PCA theory is adopted to distinguish input variables into
positive and negative subinputs. The sample set ((x3,,¥),
x3=1[I,T,,V,Rp,SOC],i=1,2,...,m), composed of
m-dimensional input variables, includes x3; = (:z:3,7;1,;1:377;2,
...3,pn), which corresponds to n samples of the ith input
dimension, and y represents the associated output variable.
The correlation between the input and output variables is
precisely quantified by

_ 26—y —9)
V(x5 — T3)2(y — 7)?
The mean values of the input subsequence and the output

variable are defined as T3 and ¥, respectively. Based on the re-

lationship between the input and output variables, a correlation
coefficient matrix of dimension (m + 1) is defined

(43)

Tzy

11 e T1im T1y

T = (i) (m+1)x (m+1) = (44)
Tm1 "mm  Tmy
Tyl . Tym Tyy

where 1y, is the correlation coefficient between variables x3
and X3 ,, satisfying 71, = 7. The partial correlation coeffi-
cients (PCC) between the input and output variables are ob-
tained from the inverse of (44)

a1 Aim Ay
r = (Qij) (mt 1) x (mt 1) =
A1 oo Omm O‘my
Qy1 Qym Oy
(45)
Do) = e = — W (i=1,2,...,m) . (46)

\/aiiayy \/aiiayy

Through an in-depth analysis of the PCC results, the input
data will be categorized into two subsets based on differences
in correlation. The positively correlated subset x3 p = (x3,1,
X372,...,%X3m1) is defined by m1 variables, whereas the negat-
evely correlated subset X3 N = (X3 141, X3,m142, - - - s X3.m)
consists of m —m1 variables. Notably, all variables within
a given subset exhibit identical partial correlations with the
output. As a result, the impact of variables within each subset
on the output is considered equivalent.

2) Step 2: The Nonlinear Feature Expansion of Subinput Data
is Achieved Through the Use of the ELM Framework: Based on
the preceding analysis, the input variables are categorized into
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two subsets, which are processed through their respective ELM
network architectures to extract nonlinear extended features.
The ELM for the positive subset incorporates j; hidden layer
nodes, while the ELM for the negative subset is configured with
j» hidden layer nodes. Consequently, weight and bias vectors
of dimensions j; x ml and j,x (m — ml) are generated for
the positive and negative subsets, respectively. Therefore, the
outputs of the hidden layers for these subsets within the ELM
framework can be formulated as

HP:(S(QJP ~X37p+bp) 47
{HN = §(wN x5y +bV) (47
where H” and H” denote the hidden layer outputs of the
positive and negative sub-networks, respectively, while w’,
b”, w, and b" represent the connection weights and biases
from the input layer to the hidden layer for the positive and
negative subnetworks, respectively.

3) Step 3: An Enhanced ST Estimation Model via Bi-GRU
Incorporating Physical Information and Nonlinear Extensions:
By integrating the outputs of the positive and negative ELM
hidden layers with the original input data in parallel as the
input to the Bi-GRU, regression prediction is achieved. The
calculation process is given as

Xy = [HP7 HN7 X3]T
T
hﬁ h{gkl h{\{ h{\lfgz I T1im
hfjl hﬁkl han - hﬁ[kz Tl Tom
T
= [x2,1 X2,5m (48)
h, = f(h{,x;) & f(h},x)) (49)
N WO . ht + bo. (50)

In the PINE-Bi-GRU model, x, and h; are defined as the
input vector and the output vector, respectively. The computa-
tional process of the GRU unit is represented by f(-), where
‘W? and b° denote the weight and bias of the fully connected
layer, respectively, and y, indicates the ST estimate.

The computational steps of the PINE-Bi-GRU framework
are summarized as follows. First, a diverse battery dataset
is constructed by integrating multidimensional data, including
equivalent internal resistance derived from physics-based mod-
eling, estimated SOC, and original measurements of voltage,
current, and AT. The resulting dataset is employed as input to
the Bi-GRU model. In particular, Rp, serving as a physics-
guided feature, is incorporated into NN architectures that model
temperature-sensitive parameters and dynamic system identi-
fiers reflecting state-dependent over-potentials. Incorporation
of this feature improves estimation accuracy across a wide
range of thermal conditions while preserving interpretability.
Second, partial correlations between input and output variables
are analyzed, and the input data are partitioned into positive
and negative subinputs. Each subinput is subsequently projected
into an HD nonlinear feature space through the hidden layer of
an ELM, enabling the extraction of enriched HD representa-
tions. Finally, nonlinear extended features from both categories
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Fig. 8. PINE-Bi-GRU-based robust joint SE framework for LIBs.

of subinputs are fused in parallel with the original input vari-
ables and integrated into the Bi-GRU framework for training
and testing. The fusion mechanism captures global features
spanning HD and LD spaces, considerably strengthening the
robustness and generalization capability of the framework and
yielding accurate ST estimation. A detailed illustration of the
implementation procedure is provided in Fig. 3.

IV. EXPERIMENT AND DISCUSSION

The proposed estimation methods for PI, SOC, and ST were
validated using two publicly available datasets provided by
Dr. Phillip Kollmeyer [26], [27], [28]. These datasets were
obtained from a Panasonic 18650PF cell (2.9 Ah nominal ca-
pacity) and a Samsung INR21700 30T cell (3 Ah nominal
capacity). Experiments were performed using a programmable
battery tester integrated with a temperature-controlled chamber
and a computer-based data acquisition system. Detailed exper-
imental procedures are provided in [26], [27], [28]. According
to the dataset documentation, when the ambient temperature
fell below 10 °C, the regenerative current was deliberately re-
stricted to prevent premature cell degradation. Consequently,
under low-temperature conditions, the current profiles mainly
exhibited negative values (discharge direction), while positive
current components (charging) were effectively suppressed, a
procedure also reported in [9]. Fig. 4 shows a schematic of
the experimental platform and its integrated data acquisition
system. During testing, voltage, current, and AT were recorded
in real time, while ST was continuously monitored using ther-
mocouples. The experiments covered several dynamic driv-
ing cycles, including Los Angeles 92 (LA92), highway fuel
economy test (HWFET), urban dynamometer driving schedule
(UDDS), supplemental federal test procedure driving sched-
ule (US06), and hybrid cycles (Cycle and NN). The dynamic
temperature tests spanned ambient conditions from —20°C to
25°C for the Panasonic 18650PF cell and from —-20°C to
40°C for the Samsung INR21700 30T cell. For both cells,
OCV-SOC relationships were established from pulse discharge
tests conducted at a constant temperature of 25 °C. To enhance
data processing efficiency, the raw data were resampled to 1-s
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Fig. 4. Schematic representation of the experimental platform and its
corresponding data acquisition system.

intervals and normalized to the [0, 1] range for both training
and testing datasets. According to findings in [20], [24], under
NGN conditions, extended KF, unscented KF, and CKF-based
methods exhibit significantly degraded SOC estimation perfor-
mance, with CKF performing comparatively better. Therefore,
the proposed IMCC-SRCKF method is adopted for focused
simulation analysis to rigorously evaluate its robustness and
accuracy.

Due to the absence of AT data for the Samsung INR21700
30T battery, Mixed 1, Mixed 3 and Mixed 5 at 0 °C and Mixed
2, Mixed 4 and Mixed 6 at 25 °C were used for model training.
The input variables included voltage, current, estimated SOC,
and R7, with ST as the output. For the Panasonic 18650PF
battery, Cycle 1 and the LA92 driving profile at —20 °C, to-
gether with Cycle 3 and the HWFET profile at 0°C, were
employed as training data. Inputs consisted of voltage, current,
estimated SOC, Rr, and AT (T, ), while ST served as the output
variable. Since the initial SOC and battery model parameters
were unknown at the beginning of the experiments, the initial
SOC was set to 80%, and the battery parameters were initialized
to zero to comprehensively evaluate the overall performance of
the proposed PI and SOC estimation methods. The reference
SOC in the experiments was calculated using the ampere-hour
integration method. To further quantify the performance of the
method, a comprehensive analysis was conducted using three
metrics: mean absolute error (MAE), root mean square error
(RMSE), and maximum error (MAX). All simulation exper-
iments were performed on a computer equipped with an i7-
13620H CPU (2.40 GHz) using MATLAB R2022b software

M «
MAE = ﬁ t=1 |¢t - ¢t|

MAX = max |¢; — ¢7 |

RMSE = \/‘M YL (¢ — ¢7)?

where ¢, and ¢f represent the true and the estimated values of
the battery state at time ¢, respectively, with M denoting the
number of test samples.

(51

A. Model Validation and SOC Estimation

In this section, an experimental setup distinct from those
used in previous studies is established to assess the robustness
of the proposed method. To emulate a realistic noisy environ-
ment, noise is injected into the original voltage and current
signals. Following the methodologies presented in [23], [24],
[25], the noise distribution is formulated using expression vy =
(1 — ay)bf + ayc,, wherein the parameter b; is modeled as a
uniformly distributed random variable within the interval [-3
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Fig. 5. Pl results and model validation under an AT of —10°C. (a) NN
test results. (b) UDDS test results.

3] mV? / mA?, and is introduced to represent the background
noise component. ¢; is specified as GN with a zero mean and a
variance of 50 mV? / mAZ, employed to represent outliers. a;
is designated as an independently and identically distributed
binary signal, utilized to control the occurrence probability of
outliers, as governed by equation Pr(a; =0)=1—-p(0<p<
1), Pr(a; = 1) = p. In this experimental setup, the probability
p=0.001.

This section draws on the Panasonic 18650PF battery dataset,
and the proposed method is rigorously evaluated under noisy
interference conditions. Specifically, model parameters were
identified using the IFRMTC algorithm under simultaneous
voltage and current noise, upon which a first-order RC-ECM
was constructed. The accuracy of PI was validated by com-
paring the simulated voltage, generated by inputting the raw
current signal into the model, with the corresponding measured
voltage. Subsequently, the validated parameters were incor-
porated into a dynamic SOC estimation framework based on
the IMCC-SRCKEF algorithm. Simulation tests were conducted
under both isothermal (10 °C) and dynamic temperature con-
ditions (—10°C and -20 °C), covering typical driving profiles
such as UDDS and NN, with the corresponding results pre-
sented in Fig. 5. A significant negative correlation between the
Rz and ST parameters was observed, providing theoretical sup-
port for the estimation of ST. However, early-stage fluctuations
in Ry identification, induced by initial parameter uncertainties,
adversely affected the accuracy of voltage prediction and SOC
estimation. To address this issue, MCC was employed as the
unified cost function for both IFRMTC and IMCC-SRCKEF, and
a KwA mechanism was introduced. By adopting this approach,
initialization errors and noise-induced biases were effectively
suppressed, enabling highly accurate dynamic estimation of
both PI and SOC. The estimation performance under different
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TABLE |
PERFORMANCE EVALUATION OF Pl AND SOC ESTIMATION RESULTS

10°C —10°C —20°C Nele
MAE RMSE MAE RMSE MAE RMSE 1(%/53
Voltage
UDDS (mv) 4.87 8.11 7.62 13.79 9.65 22.63 559
SOC(%)  0.75 0.76 0.97 0.99 1.02 1.04
Voltage
NN (mV) 1237 2397 1642 35.09 21.38  45.04 562
SOC(%)  0.77 0.80 1.08 1.12 1.22 1.30

conditions is summarized in Table I. As the temperature de-
creased, battery degradation intensified, leading to increased
PI deviations and estimation errors. Despite this, even under
complex dynamics and extreme environmental conditions, the
proposed method exhibited exceptional modeling and SOC es-
timation capabilities, with voltage prediction MAE and RMSE
maintained within 21 and 45 mV, respectively, and SOC estima-
tion within 1.22% and 1.30%, respectively. The average com-
putation time (ACT) per estimation cycle for SOC was 5.6 mi-
croseconds (us), satisfying real-time application requirements.

B. Estimation of ST Under Varying ATs

To evaluate the accuracy of the proposed ST estimation
method under pronounced and continuous temperature varia-
tions, two representative experimental scenarios were designed
using the Panasonic 18650PF battery dataset. In these scenarios,
the ST was incrementally varied from —20°C to 20°C and
from 10°C to 25 °C under controlled temperature conditions.
Five input variables, voltage, current, Ry, SOC estimates, and
AT (T,) were systematically evaluated, and their correlations
with the target output were analyzed. Through PCC analysis,
negative partial correlations of voltage, R, and SOC with ST
were identified, and these variables were subsequently desig-
nated as inputs for the subtractive ELM network. Conversely,
a positive partial correlation of current and AT with ST was
confirmed, leading to its incorporation into the additive ELM
network. To balance computational complexity and prediction
accuracy, hyper-parameter settings were optimized via iterative
experiments: the number of hidden layer nodes in both subtrac-
tive and additive ELM networks was set to 10 for the Bi-GRU
main model, single-layer forward and backward GRU hidden
layers were configured, each comprising 64 nodes; the Adam
optimizer was adopted, with a batch size of 128, a learning rate
of 0.001, a gradient threshold of 2, and a maximum of 150
iterations. The efficacy of the proposed ST estimation method
was evaluated through a comparative experiment utilizing an
improved CNN-LSTM approach [5]. As shown in [5], the ac-
curacy of ICNN-LSTM was significantly enhanced compared
with conventional CNN-LSTM and thermal-model-based meth-
ods, with negligible variations in computational time, thereby
establishing its suitability as a baseline. Additionally, voltage
and current data perturbed with Section [V-A noise were in-
troduced to simulate realistic noise conditions. Unlike previous
studies, unfiltered ST data were directly employed to evaluate
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Fig. 6. Test results for the UDDS under varying ATs: current, SOC
estimates, ST estimates, and errors. (a) 10°C-UDDS. (b) —20°C-UDDS.

the robustness and generalization capability of the proposed
method under noise contaminated scenarios.

Fig. 6 presents the UDDS test results under continuously
varying temperature conditions. Despite the presence of com-
plex noise in the voltage and current signals, the SOC estimates
were observed to converge rapidly toward the true values and
to accurately track the declining SOC trend. Local fluctuations
in the ST estimates at specific nodes were identified, attributed
to the weakened correlation between temperature and volt-
age/current signals after prolonged operation, further exacer-
bated by the highly nonlinear relationship between temperature
and internal resistance under environmental influences. To eval-
uate the generalization capability of the PINE-Bi-GRU model,
a comparative analysis with the method reported in [S] was
conducted across various driving cycles, and the correspond-
ing numerical results were recorded in Table II. The results
indicated that the MAE and RMSE of ST estimation were
effectively constrained within 0.5°C, while the MAX remained
below 1.5°C. Even under complex operating conditions, both
MAE and RMSE consistently remained within 0.75°C. Com-
pared with ICNN-LSTM, the proposed method, by integrating
detailed LIB physical information and exploiting nonlinear HD
extended features extracted through the ELM hidden layers,
effectively captured the global correlations between input and
output variables, thereby significantly improving the accuracy
of ST estimation. To comprehensively evaluate the differences
in computational efficiency and generalization performance be-
tween the proposed method and the ICNN-LSTM, comparative
experiments were conducted under five distinct operating and
temperature conditions. The computation time and the MAE
of ST estimation for both methods were recorded, and the
corresponding results are shown in Fig. 7. The findings reveal
that although the proposed method incurs a slight increase in
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TABLE I TABLE Il
PERFORMANCE EVALUATION OF ST ESTIMATION RESULTS UNDER PERFORMANCE EVALUATION OF Pl UNDER VARYING TEMPERATURE AND
VARYING ATS DYNAMIC OPERATING CONDITIONS
- PINE-Bi-GRU ICNN-LSTM [5] LA92 UDDS US06 PI
E:}g;f RMSE MAE MAX RMSE MAE MAX MAE RMSE MAE RMSE MAE RMSE ACT
(°C) °O)  (°O) (°C) °0)  (°O) mvV) (@mV) (mV) (mV) (mV) @mV) (us)
Cycle2 033 0.31 1.27 0.51 0.35 1.32 FRLS —20°C 2540 5141 2052 40.73 22.15 4995 0.16
Cycle4 033 0.27 1.31 0.58 0.45 1.63 40°C 2186 36.04 18.13 3430 1986 4285
=20 °C NN 0.58 048  2.07 0.92 082 221 —20°C 722 1894 7.3 1742 9.02 2236
UDDS 028 023 LI3 048 041  LI2 IFRMTC jpoc 654 1222 615 1018 467 1310 %
USo06 0.75 0.54 2.48 1.96 1.82 3.04
Cycle2  0.23 0.21 0.45 0.25 0.19 0.72
_10 °C Cycle 4 0.18 0.13 0.75 0.25 0.18 0.72
NN 0.68 0.58 1.47 / / / TABLE IV
UDDS 0.18 0.16 0.49 0.42 0.36 0.98 PERFORMANCE EVALUATION OF SOC ESTIMATION UNDER VARYING
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Fig. 7. Comparison of the two estimation methods under varying dy-
namic and temperature conditions. (a) MAE. (b) Computation time.

computation time under dynamic conditions, its estimation ac-
curacy remains markedly superior to that of the ICNN-LSTM,
demonstrating strong generalization capability.

C. Performance Comparison of Different Methods

To evaluate the joint estimation accuracy of PI, SOC, and
ST under local temperature transients, the Samsung INR21700
30T battery was selected as the research subject. Validation
was carried out under four dynamic operating conditions at two
extreme temperatures (40 °C and —20 °C). Dedicated simulation
experiments were designed for different estimation objectives.
The forgetting factor recursive least squares (FRLS) [3] algo-
rithm was employed as the benchmark for PI estimation, while
the multiinnovation SRCKF (MI-SRCKEF) [29] was adopted as
the reference for SOC estimation. The PI and SOC estimation
results derived from the combined FRLS and SRCKF methods
were subsequently used as extended inputs to the ST estimation
framework to assess the influence of PI and SOC estimation
errors on the proposed ST estimation approach, referred to here
as Method 1. To further verify the robustness of the proposed
approach, an additional set of simulation experiments was con-
ducted. In this case, the raw ST signal was left unfiltered;
instead, Gaussian noise with a mean of zero and a variance
of 0.2°C? was added, and the proposed method was applied
for joint SE. This configuration is referred to as Method 2.
Meanwhile, voltage and current data corrupted by the noise
described in Section ['V-A were incorporated to emulate realistic
measurement disturbances. Due to the unavailability of AT data,
this section focuses solely on examining the latent relationships
between ST and the input variables (voltage, current, Rr, and
estimated SOC). The PCC analysis revealed that voltage, R,

TEMPERATURE AND DYNAMIC OPERATING CONDITIONS

MI-SRCKF-FRLS ~ MI-SRCKF-IFRMTC  IMCC-CKF-IFRMTC

—20°C 40°C -20°C 40°C -20°C 40°C

LA92 MAE (%) 3.55 3.61 2.58 2.52 1.07 0.64
RMSE (%) 5.06 3.88 4.14 2.93 1.27 0.83

Uso6 MAE (%) 2.47 1.98 1.55 1.16 1.09 0.76
RMSE (%) 4.24 2.92 2.75 227 1.33 0.93

PI and SOCACT (us) 4.37 4.34 4.69 4.75 6.19 6.13

and SOC exhibited negative correlations with ST and were
therefore assigned as inputs to the negative ELM network.
Conversely, current showed a positive correlation with ST and
was used as an input to the positive ELM network. Compared
with the hyperparameter configuration in Section [V-B, only
the learning rate of the Bi-GRU model was adjusted to 0.002,
while all other parameters remained unchanged. The results
confirmed that, across different temperatures and dynamic oper-
ating conditions, the polarity of correlations between the input
variables and ST remained stable.

Fig. 8(a) and (b) shows the model validation and the SOC
and ST estimation results under the LA92 driving cycle at
40°C and -20 °C, respectively. The corresponding evaluation
metrics are summarized in Tables I1I-V. The results reveal that
when both current and voltage are simultaneously influenced
by NGN noise, the PI estimation accuracy of the FRLS-based
algorithm degrades substantially, leading to significant voltage
fluctuations. Under these conditions, the MAE and RMSE of
voltage estimation exceed those obtained using the proposed
IFRMTC algorithm by factors of 2.4 and 2.2, respectively.
When the same SOC estimation algorithm is employed, higher
PI accuracy corresponds to smaller SOC estimation errors,
in agreement with theoretical expectations. Therefore, precise
PI estimation is essential for achieving high-accuracy SE es-
timation. As illustrated in Fig. 8, the MI-SRCKF algorithm
demonstrates limited robustness to NGN interference, prevent-
ing rapid convergence to the SOC reference value during the
initial stage, even with high-precision PI inputs. In contrast,
the proposed method limits the SOC estimation errors to within
1.33% (MAE) and 0.93% (RMSE), while maintaining a PI and
SOC average computation time of only 6.19 us per estimation
cycle, thereby meeting real-time performance requirements. For
the ST estimation, slight increases in error are observed un-
der local temperature transients and Gaussian noise introduced
in Method 2. Nevertheless, the proposed method maintains
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TABLE V
PERFORMANCE EVALUATION OF ST ESTIMATION UNDER VARYING
TEMPERATURE AND DYNAMIC OPERATING CONDITIONS

Drivi Method 2 Method 1 PINE-Bi-GRU
Proflee MAE RMSE MAE RMSE MAE RMSE
(°0) (°C) (°O) (°O) (°O) (°O)
HWFET 031 0.40 0.20 0.24 0.09 0.11
20 °C LA92 0.27 0.35 0.22 0.24 0.04 0.05
UDDS 0.29 0.34 0.11 0.12 0.08 0.09
USs06 0.27 0.33 0.14 0.19 0.07 0.09
HWFET  0.09 0.11 0.10 0.12 0.02 0.03
40 °C LA92 0.10 0.13 0.05 0.08 0.04 0.05
UDDS 0.08 0.11 0.09 0.11 0.07 0.07
US06 0.16 0.21 0.09 0.12 0.04 0.05
45 100 — Reference
_ ——FRLS B —— MI-SRCKF-FRLS
z 4 —IFRMTC 2 MI-SRCKF-IFRMTC
P Actual < — IMCC-CKF-IFRMTC
Fis . o 50
E 3 T z \\"_\
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0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (s) Time (s)
42 = Method 2 Proposed
| O 05 | Method 1
S <
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g !
38 s
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Time (5) (a) Time (5)
v 100 — Reference
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27y 5 A \
s
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Fig. 8. LA92 Test results at 40 °C and —20 °C: model validation, SOC
and ST estimation, and associated errors. (a) —40 °C-LA92. (b) —20
°C-LA92.

stable estimation performance under such challenging condi-
tions, with ST estimation MAE and RMSE remaining below
0.31°C and 0.4°C across all four test scenarios. Although
Method 1 produces marginally smaller errors, abrupt deviations
persist due to localized inaccuracies in PI and SOC estimation.
When both PI and SOC estimations achieve maximum precision
and no additional noise interference is present, the proposed
method attains superior performance. The ST estimation pro-
cess exhibits minimal fluctuation, with MAE and RMSE re-
stricted to 0.09 °C and 0.11 °C, respectively.

V. CONCLUSION

A robust PI method based on the IFRMTC algorithm was
initially proposed. Subsequently, the MCC was employed as
the cost function within the SRCKF algorithm, thereby sig-
nificantly enhancing the accuracy of SOC estimation under
noisy conditions. Concurrently, a dynamic KwA adjustment
strategy was introduced to enable the online self-adaptation

of the Kw parameter, effectively overcoming the challenges
associated with its optimization in noise-contaminated envi-
ronments. Thereafter, physical information was integrated with
measurement data to construct a multidimensional feature input
set. Subinput structures were derived through PCC, and HD
nonlinear features were extracted using the ELM framework,
thus substantially augmenting the model’s capacity for feature
representation. Finally, collaborative modeling of contextual
information across HD and LD spaces was realized by simul-
taneously feeding both the nonlinear extended features and the
raw measurement data into the Bi-GRU model. Experimental
results demonstrated that, under complex operating conditions,
the MAE and RMSE of SOC estimation errors were consis-
tently maintained within 1.33%. Compared with advanced ST
estimation methods, the proposed approach achieved average
reductions of approximately 50% and 47% in RMSE and MAE,
respectively, under scenarios characterized by abrupt tempera-
ture fluctuations and complex operational conditions.

In the future, periodic updates of the PINE-Bi-GRU frame-
work will be conducted through capacity and OCV-SOC recal-
ibration, systematic performance evaluations, and comparisons
between estimated and measured temperatures so that long-
term stability and accuracy can be maintained.
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