
•
•
•
•

Journal of Power Sources 661 (2026) 238591 

A
0

 

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour  

A fast fixed-point solution framework for the P2D model of lithium-ion 

batteries
Yang Li ∗, Torsten Wik , Qingbo Zhu , Yicun Huang , Yao Cai , Changfu Zou ∗

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden

H I G H L I G H T S

Reformulates the P2D model into a quasilinear PIDE system without algebraic states.
Proposes a fixed-point operator with closed-form IMEX single-step updates.
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Well-suited for battery systems under advanced control and dynamic loads.
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 A B S T R A C T

This paper presents a novel algorithmic framework for efficiently solving the pseudo-two-dimensional (P2D) 
model of lithium-ion batteries. The proposed approach reformulates the original P2D model, typically expressed 
as a system of coupled nonlinear partial differential–algebraic equations, into a system of quasilinear partial 
integro-differential equations (PIDEs). Through this reformulation, intermittent algebraic states, such as local 
potential and current terms, are effectively eliminated, thereby reducing the model complexity. This enables 
the identification of a generic fixed-point iterated function for solving the P2D model’s nonlinear algebraic 
equations. To implement this iterated function, the finite volume method is employed to spatially discretize 
the PIDE system into a system of ordinary differential equations. An implicit–explicit (IMEX) time integration 
scheme is adopted, and the resulting quasilinear structure facilitates the development of a single-step numerical 
integration scheme that admits a closed-form update, providing stable, accurate, and computationally efficient 
solutions. Unlike traditional gradient-based approaches, the proposed framework does not require the Jacobian 
matrix and is insensitive to the initial guess error of the solution, making it easier to implement and more 
robust in practice. Due to its significantly reduced computational cost, the proposed framework is particularly 
well-suited for simulating large-scale battery systems operated under advanced closed-loop control strategies.
1. Introduction

Lithium-ion (Li-ion) batteries have demonstrated outstanding per-
formance as power sources for electric vehicles (EVs) and energy 
storage systems in modern electric power grids [1,2]. These batter-
ies offer the typical advantages of electrochemical devices, such as 
modularity and scalability, while also providing higher energy density 
compared to other battery chemistries [3]. However, their health and 
safety issues require careful consideration during both the design and 
operational stages. It is vital to predict both the measurable character-
istics and internal, unmeasurable states to ensure the safety, reliability, 
and longevity of Li-ion batteries.

Mathematical models are valuable and often essential tools for 
quantifying the physical mechanisms that govern performance and 
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for understanding their evolution over a battery’s lifetime [4]. Today, 
due to their mathematical simplicity, ease of implementation, and low 
computational cost, equivalent circuit models (ECMs) are most widely 
used in the development of the algorithms for battery management 
systems [5]. In an ECM, the dynamic electrochemical behavior of 
batteries is emulated using electrical circuits composed of basic com-
ponents such as capacitors, resistors, inductors, and voltage/current 
sources. Low-order, empirically derived ECMs are computationally effi-
cient and well-suited for applications operating within narrow current 
and temperature ranges. However, ECM parameters must be identi-
fied from available experimental data, and extrapolation beyond the 
observed range poses challenges for emerging applications such as 
ultra-fast charging [6] and low-temperature operation of electrified
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Nomenclature

Latin Letters
 Faraday’s constant [C mol−1]
 Universal gas constant [J mol−1 K−1]
𝑎𝑠 Particle surface area to volume [m−1]
𝑐ss Li-ion concentration at the particle surface 

[mol m−3]
𝑐𝑒 Li-ion concentration in the electrolyte 

[mol m−3]
𝑐0𝑒 Average Li-ion concentration in the elec-

trolyte [mol m−3]
𝑐𝑝 Specific heat capacity [J kg−1 K−1]
𝑐𝑠 Li-ion concentration in the solid phase 

[mol m−3]
𝑐𝑠,max Theoretical maximum Li-ion concentration 

in the solid phase [mol m−3]
𝑐𝑠0 Initial solid-phase concentration [mol m−3]
𝐷𝑒,eff Effective electrolyte diffusion coefficient 

[m2 s−1]
𝐷𝑠,eff Effective solid-phase diffusion coefficient 

[m2 s−1]
𝑓+∕− Activity coefficient [–]
ℎ Heat transfer coefficient [W m−2 K−1]
𝑖0 Exchange current density [A m−2]
𝑖𝑒 Electrolyte current density [A m−2]
𝑖𝑠 Solid-phase current density [A m−2]
𝑖app Applied charging current density [A m−2]
𝑗𝑛 Intercalation molar flux [mol m−2 s−1]
𝑘eff Effective electrode rate constant 

[A m2.5 mol−1.5]
𝐿 Width of a domain
𝑙 Width of a control volume (m)
𝑁 Number of control volumes in a domain
𝑝 Order of convergence
𝑞 Error contraction ratio
𝑞col Heat flux of current collectors [W m−2]
𝑞ohm Heat flux due to ohmic effects [W m−2]
𝑞rev Reversible heat flux [W m−2]
𝑞rxn Heat flux due to intercalation [W m−2]
𝑞sei Heat flux of SEI [W m−2]
𝑞tot Total heat generation rate [W m−2]
𝑟 Microscopic spatial coordinate [m]
𝑟𝛴 Sum of 𝑟ct and 𝑟𝑓,eff [Ω m2]
𝑅𝑝 Radius of assumed spherical particle [m]
𝑟col Areal resistance of current collectors [Ωm2]
𝑟ct Areal charge-transfer resistance [Ω m2]
𝑟𝑓,eff Effective areal SEI film resistance [Ω m2]
𝑇 Battery temperature [K]
𝑡 Temporal coordinate [s]
𝑇𝑠 Time step size [s]
𝑡+ Transference number [–]
𝑇amb Ambient temperature [K]
𝑇ref Reference temperature [K]
𝑈 Equilibrium potential of a reaction [V]
𝑈ss Open-circuit potential of an electrode [V]
𝑈𝑒 An overpotential term of electrolyte [V]
𝑉bat Battery terminal voltage [V]
2 
𝑥 Macroscopic spatial coordinate [m]
Greek Letters
𝛼 Symmetric coefficient [–]
𝛽 = 2(1 − 𝑡+) [–]
𝛿 Electrode/separator boundary [m]
𝜂ct Charge-transfer overpotential [V]
𝜅eff Effective electrolyte conductivity [S m−1]
𝛷𝑒 Electrolyte potential [V]
𝛷𝑠 Solid-phase potential [V]
𝜌 Mass density [kg m−3]
𝜎eff Effective solid-phase conductivity [S m−1]
𝜀𝑒 Volume fraction of the electrolyte [–]
𝜀𝑠 Volume fraction of the solid phase [–]
𝜚 Combined resistivity of solid-phase and 

electrolyte [Ω m]

Superscript

+ Positive electrode
− Negative electrode
−1 Inverse
± Positive or negative electrode domain
⊤ Transpose
𝑗 Electrode or separator domain
sep Separator

Subscript

𝑖 Control volume index
𝑖 + 1

2 Interface between of the 𝑖th and (𝑖 + 1)th 
control volumes

𝑘 Iteration index

vehicles [7]. There is a growing need to design battery cells for higher 
current rates, more dynamic load profiles, and increasingly harsh en-
vironments. Meeting these demands with ECMs typically requires in-
creased model order, more complex parameter-fitting functions, and 
greater experimental effort to identify the parameters accurately [8]. 
Furthermore, since ECM components do not necessarily have direct 
mechanistic relationships with underlying electrochemical processes, 
these models tend to provide limited insight into physically meaningful, 
time-varying parameters, degradation mechanisms, and internal safety 
constraints. As a result, the predictive accuracy of ECMs can degrade 
significantly if the evolving battery dynamics due to aging are not 
properly taken into account.

In contrast to ECMs, physics-based models are derived from funda-
mental principles of batteries, and they can overcome many limitations 
of ECMs and better exploit the full potential of Li-ion batteries [9,10]. A 
foundational framework in this category is the pseudo-two-dimensional 
(P2D) model, commonly referred as the ‘‘DFN model’’, introduced by 
Doyle, Fuller, and Newman [11–13]. The P2D model is a system of par-
tial differential–algebraic equations (PDAEs) that consists of a number 
of coupled nonlinear partial differential equations (PDEs) and algebraic 
equations (AEs). A major advantages of the P2D model is its exten-
sibility: it can be readily modified to incorporate additional physical 
phenomena such as thermal effects, mechanical stress, and degradation 
mechanisms. However, the inherent complexity of the model makes 
it computationally demanding to solve using conventional numerical 
methods, particularly for large-scale, long-duration simulations and 
real-time battery management applications [14].

In recent years, various attempts have been made to reduce the 
computational burden of physics-based models by employing model 
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Table 1
Comparison of nonlinear algebraic equation solvers.
 Method Gradient- Jacobian- Robust to Convergence Memory Large-scale Parameter  
 free free initial guess rate usage suitable tuning free 
 Newton × × Very Poor Quadratic Medium × ×  
 QN-Broyden × ✓ Poor Superlinear Medium ✓ ×  
 Gauss–Newton × × Poor Linear Medium × ×  
 Trust-region × × Medium Superlinear High × ×  
 LM × × Medium Superlinear Medium × ×  
 Proposed ✓ ✓ Good Approx. Linear Low ✓ ✓  
order reduction (MOR) techniques [15]. One widely used approach is 
the single particle model (SPM), which simplifies each electrode of the 
battery cell as a lumped domain, ignoring electrolyte dynamics and 
temperature effects [16]. The SPM has been used extensively in the 
design of state-of-charge (SOC) estimators [17,18]. To improve the pre-
dictive accuracy, the model was subsequently extended to incorporate 
electrolyte dynamics and capture thermal behavior [19,20]. However, 
the underlying assumption of a ‘‘lumped particle’’ representation is 
generally valid only at low to moderate current rates and can be signif-
icantly violated under more demanding conditions. This limitation is 
particularly pronounced in the batteries with thick electrodes, a grow-
ing trend in modern battery design. The shortcomings of the SPM and 
its variants have driven the development of simplified P2D models that 
retain spatially distributed behaviors within the electrodes. Examples 
include spatially discretized P2D models [21–23] and polynomially 
approximated formulations [24]. Nevertheless, the accuracy of these re-
duced order models often depends on specific operating conditions and 
model assumptions, which limit their generalizability. Consequently, 
such models are generally unsuitable for predicting battery behavior 
under extreme operating scenarios, such as ultra-high current rates 
or high/low temperature environments, where batteries may approach 
their internal physical limits.

As a result, significant efforts have been directed towards develop-
ing more efficient algorithms for solving the full-order battery mod-
els [25–28], with the goal of enabling both online battery management 
and offline applications such as machine learning, parameter identifica-
tion, and optimal design, where large numbers of simulations are often 
required. A commonly adopted strategy involves applying the method 
of lines (MOL), which converts the system of PDAEs into a set of highly 
stiff differential–algebraic equations (DAEs) via spatial discretization 
techniques, such as the finite volume method (FVM), or spectral meth-
ods like Galerkin [29] and orthogonal collocation [30] approaches. 
The resulting stiff DAEs are typically solved using well-established 
time integration schemes, such as the backward differentiation formula 
(BDF), Rosenbrock methods, implicit Runge–Kutta methods, and direct 
collocation approaches [31]. Many existing P2D simulation studies em-
ploy general-purpose solvers such as IDA from the SUNDIALS suite [32] 
or MATLAB’s ode15s, both of which are based on BDF. However, 
these solvers are designed for continuous-time systems and are not 
well aligned with the discrete-time and single-step structures preferred 
in the control systems, where real-time implementation and computa-
tional efficiency are crucial. Moreover, because these solvers are not 
specifically tailored to the structure of the P2D model, they often suffer 
from computational inefficiencies when applied to its highly nonlinear 
and stiff dynamics.

In practice, the computational efficiency of full-order model solvers 
is often limited by the techniques used to iteratively solve the nonlinear 
AEs. To explain this, consider a generic form of the iterated update used 
in many existing algorithms: 
𝐯𝑘+1(𝑡) = 𝐯𝑘(𝑡) + 𝐡(𝐱(𝑡), 𝑢(𝑡), 𝐯𝑘(𝑡), 𝜆), (1)

where 𝑡 denotes the time index, 𝐯𝑘 and 𝐯𝑘+1 represent the present 
and the next iterates of the algebraic state vectors, respectively, 𝐱
denotes the system state vectors, 𝑢 is the control input, 𝐡(⋅) is a vector-
valued function defining the update rules, and 𝜆 represents a set of 
3 
tuning parameters. The iterative process continues until convergence is 
achieved at 𝐯∗(𝑡), the solution of the algebraic subproblem. These class 
of algorithms typically suffers from the following limitations.

(1) Many widely used algorithms, including Newton’s methods, 
quasi-Newton (QN) methods, Gauss–Newton (GN) methods, and var-
ious optimization-based approaches, such as trust-region (TR) and 
Levenberg–Marquardt (LM) methods, aim to directly reduce the update 
increment 𝐯𝑘+1 − 𝐯𝑘. These methods are fundamentally gradient-based 
and require either the computation or approximation of Jacobian 
matrices within the update function 𝐡(⋅). For large-scale systems, this 
process is computationally intensive and may introduce numerical 
stability issues.

(2) The convergence speed and reliability of nonlinear AE solvers 
are highly sensitive to the quality of initial guess 𝐯0(𝑡). For smooth cur-
rent profiles, such as during constant-current charging and discharging, 
the solution from the previous time step 𝐯∗(𝑡 − 𝑇𝑠) (where 𝑇𝑠 denotes 
the time step size) can be reused as an effective initial guess. This 
is justified by the fact that under the condition 𝑢(𝑡) ≈ 𝑢(𝑡 − 𝑇𝑠) and 
𝐱(𝑡) ≈ 𝐱(𝑡 − 𝑇𝑠), the algebraic solution 𝐯∗ is also expected to change 
gradually. However, during highly dynamic conditions, such as fast-
changing load currents encountered in realistic driving cycles, this 
assumption no longer holds, leading to increased iteration counts and 
reduced computational efficiency.

(3) The performance of these iterative solvers often depends on 
appropriate selection of tuning parameters 𝜆, which govern the trade-
off between numerical stability and convergence speed. Identifying 
suitable values typically involves extensive trial-and-error and can 
complicate the design of robust, general-purpose solution schemes.

Is it possible to develop a nonlinear AE solver tailored specifically 
for the P2D model that can overcome the above-mentioned challenges? 
To answer this question we need a deeper investigation into the struc-
ture and inherent properties of the P2D model, an area that has received 
limited attention in the research community. One early attempt to 
improve the efficiency of solving the DAEs, without relying on the 
iterative form given in (1), involves reformulating the model into an 
equivalent circuit network [33]. In this approach, circuit theory was 
applied to transform the AEs obtained from the FVM into a system of 
linear equations. This allows the algebraic states to be calculated in 
closed form without the need for iteration. The solution takes the form: 

𝐯∗(𝑡) = [𝐑(𝐱(𝑡), 𝐯̃(𝑡))]−1𝐛(𝐱(𝑡), 𝑢(𝑡)), (2)

where the matrix 𝐑 depends on the state vector 𝐱 and an intermediate 
approximation 𝐯̃(𝑡), while the vector 𝐛 is parameterized by the state 
and the input 𝑢(𝑡). Since the algebraic variables 𝐯(𝑡) are calculated 
analytically, the resulting system is converted into an ODE system, 
which is much easier to solve than a DAE system. However, this 
method relies on several simplifying assumptions, such as a linearized 
expression for the activation overpotential (see detailed discussions 
in Section 3.1.1), and it is derived based on a specific discretization 
approach. In addition, the resulting stiff ODE system was solved using 
a variable time-step algorithm (ode23ts in MATLAB), which is not 
convenient for real-time implementation or for the development of 
advanced control and management algorithms. Due to the stiffness 
of the system, fixed-step simulation requires very small time steps, 
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typically less than 1 s, making the method computationally expensive, 
particularly for long-term simulations (e.g., aging studies) or large-scale 
batch simulations involving many battery cells.

To address the aforementioned drawbacks, this paper proposes a 
computationally-efficiently, single-step numerical scheme to solve the 
P2D model with the following innovative ideas.

We first show that the original PDAE system of the P2D model can 
be reformulated as a system of partial integro-differential equations 
(PIDEs). We emphasize that the term reformulation in this work is used 
differently from its usage in the literature [34]. Here, it is not primarily 
intended for model reduction, but rather facilitates the identification 
of a general fixed-point iterated operator  to address the challenging 
algebraic constraints in the P2D model, i.e., 
𝑣𝑘+1(𝑥, 𝑡) = (𝜒(𝑥, 𝑡), 𝑢(𝑡), 𝑣𝑘(𝑥, 𝑡)), (3)

where 𝑥 is the spatial index, and 𝜒(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the spa-
tiotemporal variables corresponding to the state vector 𝐱(𝑡) and the 
algebraic variables 𝐯(𝑡), respectively. Once the operator  is established, 
spatial discretization is applied to convert the PIDE system into an 
DAE system. Within this framework, the algebraic variables can be 
computed through a fixed-point iteration using the following update 
rule: 
𝐯𝑘+1(𝑡) = 𝐠(𝐱(𝑡), 𝑢(𝑡), 𝐯𝑘(𝑡)), (4)

where 𝐠(⋅) is a vector-valued iterated function corresponding to the it-
erated operator . A single-step time-integration scheme with a closed-
form update is developed to enable fast and accurate numerical inte-
gration in the time domain.

The main advantages of the proposed method are summarized as 
follows, among which the benefits of the PIDE-based nonlinear AE 
solver compared with some well known solvers in Table  1. We will 
demonstrate these advantages in later sections.

(1) The proposed method solves for the algebraic states using an 
analytical fixed-point iterated function 𝐠(⋅). As a gradient-free algo-
rithm, it does not require computation or approximate of the Jacobian, 
simplifying the implementation and reducing computational cost.

(2) The iteration exhibits approximately linear asymptotic conver-
gence and demonstrate minimized sensitivity to initial guess of the 
algebraic variables. These characteristics ensure that only up to 2 it-
erations are required for practical applications with very dynamic load 
conditions, ensuring very lower computational burden and suitable for 
large-scale system simulation.

(3) The use of a single-step implicit–explicit method enables signifi-
cantly larger time step sizes compared to traditional solvers. Numerical 
experiments confirm that stability can be maintained with time steps up 
to 30 s.

(4) The reformulation does not rely on simplifying model assump-
tions and is compatible with various spatial discretization schemes and 
time integration methods, enhancing its adaptability across applica-
tions.

The proposed algorithm can be readily used for testing battery 
performance and proficient in control algorithm design. The algorithm 
is superior to many existing methods especially when simulating the 
behaviors of the battery under dynamic current profiles.

2. Overview of the P2D model

2.1. Overview of electrochemical P2D model

The P2D model of Li-ion batteries was established based on the 
porous electrode theory and the concentrated solution theory [11–13]. 
It is a physics-based model which reflect the sandwich-like structure 
of the battery cell with three domains, namely the positive electrode 
(i.e. the cathode, denoted by ‘‘+ ’’), the negative electrode (i.e. the an-
ode, denoted by ‘‘−’’), and the separator (sep) in between, as illustrated 
4 
in Fig.  1, and 𝐿+, 𝐿−, and 𝐿sep represent the width of correspond-
ing domain. The lithium species are stored in a number of assumed 
spherical particles in the solid phase of the electrode, and transport 
of lithium species during charge/discharge cause the variation of the 
lithium concentrations in the particles as well as in the electrolyte. 
On the one hand, the P2D model describes the cell behaviors in the 
horizontal axis (𝑥-direction) on the macro scale. As indicated in Fig.  1, 
we denote 0+ = 0, 𝛿+ = 𝐿+, 𝛿− = 𝐿+ +𝐿sep, and 0− = 𝐿+ +𝐿sep +𝐿− as 
the positions of four boundaries on the macro scale, and 𝛺+ = [0+, 𝛿+], 
𝛺sep = [𝛿+, 𝛿−], and 𝛺− = [𝛿−, 0−] as the three domains. On the 
other hand, the P2D model also describe the particle-level behavior 
along the pseudo radial axis (𝑟-direction) on the micro scale, with 
𝑟 ∈ [0, 𝑅+

𝑝 ] in the positive electrode and 𝑟 ∈ [0, 𝑅−
𝑝 ] in the negative 

electrode, where 𝑅+
𝑝  and 𝑅−

𝑝  correspond to the surfaces of the assumed 
spherical particles. The model consists of the following tightly coupled 
and nonlinear PDAEs:
𝜕𝑐𝑗𝑒
𝜕𝑡

= 1
𝜀𝑗𝑒

𝜕
𝜕𝑥

(

𝐷𝑗
𝑒,eff

𝜕𝑐𝑗𝑒
𝜕𝑥

)

+
1 − 𝑡+
𝜀𝑗𝑒

𝜕𝑖𝑗𝑒
𝜕𝑥

, (5)

𝜕𝑐±𝑠
𝜕𝑡

= 1
𝑟2

𝜕
𝜕𝑟

(

𝐷±
𝑠,eff𝑟

2 𝜕𝑐
±
𝑠

𝜕𝑟

)

, (6)

𝜕𝛷𝑗
𝑒

𝜕𝑥
= −

𝑖𝑗𝑒
𝜅𝑗
eff

+ 𝛽𝑇


⎛

⎜

⎜

⎝

1 +
𝑑 ln 𝑓 𝑗

+∕−

𝑑 ln 𝑐𝑗𝑒

⎞

⎟

⎟

⎠

𝜕 ln 𝑐𝑗𝑒
𝜕𝑥

, (7)

𝜕𝑖±𝑒
𝜕𝑥

= 𝑎±𝑠 𝑗
±
𝑛 ,

𝜕𝑖sep𝑒
𝜕𝑥

= 0, (8)

𝜕𝛷±
𝑠

𝜕𝑥
= −

𝑖±𝑠
𝜎±eff

, (9)

𝜕𝑖±𝑠
𝜕𝑥

= −𝑎±𝑠 𝑗
±
𝑛 , (10)

𝑗±𝑛 =
𝑖±0


[

exp

(

𝛼𝜂±ct
𝑇

)

− exp

(

−
(1 − 𝛼)𝜂±ct

𝑇

)]

, (11)

𝜂±ct = 𝛷±
𝑠 −𝛷±

𝑒 − 𝑈±
ss − 𝑟±𝑓,eff𝑗

±
𝑛 , (12)

subject to boundary conditions
𝜕𝑐±𝑒
𝜕𝑥

|

|

|

|

|𝑥=0±
= 0, 𝐷±

𝑒,eff
𝜕𝑐±𝑒
𝜕𝑥

|

|

|

|

|𝑥=𝛿±
= 𝐷sep

𝑒,eff
𝜕𝑐sep𝑒
𝜕𝑥

|

|

|

|

|𝑥=𝛿±
, (13)

𝜕𝑐±𝑠
𝜕𝑟

|

|

|

|

|𝑟=0
= 0, 𝐷±

𝑠,eff
𝜕𝑐±𝑠
𝜕𝑟

|

|

|

|

|𝑟=𝑅±
𝑝

= −𝑗±𝑛 , (14)

𝜕𝛷±
𝑒

𝜕𝑥

|

|

|

|

|𝑥=0±
= 0, 𝜅±

eff
𝜕𝛷±

𝑒
𝜕𝑥

|

|

|

|

|𝑥=𝛿±
= 𝜅sepeff

𝜕𝛷sep
𝑒

𝜕𝑥

|

|

|

|

|𝑥=𝛿±
, (15)

𝜎±eff
𝜕𝛷±

𝑠
𝜕𝑥

|

|

|

|

|𝑥=0±
= −𝑖app,

𝜕𝛷±
𝑠

𝜕𝑥

|

|

|

|

|𝑥=𝛿±
= 0, (16)

and initial conditions 
𝑐±𝑠 |𝑡=0 = 𝑐±𝑠0, 𝑐±𝑒 |𝑡=0 = 𝑐0𝑒 , (17)

where superscripts 𝑗 ∈ {+,−, sep} and ± ∈ {+,−} denote the domain 
in which the equation applies to. Electrolyte concentrations 𝑐𝑗𝑒 (𝑥, 𝑡)
and solid-phase concentrations 𝑐±𝑠 (𝑥, 𝑟, 𝑡) are spatio-temporal state vari-
ables. The surface solid-phase concentration is defined as 𝑐±ss(𝑥, 𝑡) ∶=
𝑐±𝑠 (𝑥,𝑅

±
𝑝 , 𝑡). 𝛷𝑗

𝑒(𝑥, 𝑡), 𝛷±
𝑠 (𝑥, 𝑡), 𝑖𝑗𝑒(𝑥, 𝑡), 𝑖±𝑠 (𝑥, 𝑡), 𝑗±𝑛 (𝑥, 𝑡), and 𝜂±ct (𝑥, 𝑡) are 

spatio-temporal algebraic states. The applied current density 𝑖app(𝑡) is 
defined as positive when charging and negative when discharging. 
Model parameters are functions of concentrations and/or battery tem-
perature, i.e., 𝑈±

ss = 𝑓±
1 (𝑐

±
ss, 𝑇 ), 𝑖±0 = 𝑓±

2 (𝑐
±
ss, 𝑐

±
𝑒 , 𝑇 ), 𝐷𝑗

𝑒,eff = 𝑓 𝑗
3 (𝑐

𝑗
𝑒 , 𝑇 ), 

𝜅𝑗
eff = 𝑓 𝑗

4 (𝑐
𝑗
𝑒 , 𝑇 ), 𝐷±

𝑠,eff = 𝑓±
5 (𝑇 ), 𝜎±eff = 𝑓±

6 (𝑇 ), 𝑟±𝑓,eff = 𝑓±
7 (𝑇 ), and 

𝑘±eff = 𝑓±
8 (𝑇 ). 𝛽 = 2(1 − 𝑡+) is assumed to be a constant. Detailed 

expressions of these functions are provided in Appendix  A.
By solving the presented PDAEs, other variables, such as the battery 

terminal voltage and SOC, can be calculated as model outputs. For 
example, the terminal voltage of the cell is calculated by 
𝑉 (𝑡) = 𝛷+

| −𝛷−
| + 𝑟 𝑖 . (18)
bat 𝑠 𝑥=0+ 𝑠 𝑥=0− col app
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Fig. 1. Schematic of the P2D model structure of Li-ion batteries.

The physical meanings and the units of all symbols used in the P2D 
model are given in Nomenclature. More details about the P2D model 
can be found in various literature, such as [32,33,35].

2.2. Thermal model

In an isothermal P2D model, the temperature 𝑇  is considered as a 
constant parameter. A thermal model can be added to describe how 𝑇
changes over time during battery operation. Since thermal modeling 
is not the focus of this paper, we use a simple lumped thermal model 
for demonstrating how the proposed reformulation of P2D model can 
affect the thermal model in latter sections. This lumped thermal model 
is given by 
∑

∀𝑗
(𝐿𝑗𝜌𝑗𝑐𝑗𝑝)

𝑑𝑇
𝑑𝑡

= ℎ(𝑇amb − 𝑇 ) + 𝑞tot, (19)

where 𝑇amb is the ambient temperature, 𝜌 is the mass density, 𝑐𝑝 is the 
specific heat capacity, ℎ is the heat transfer coefficient, and ‘‘∀𝑗’’ means 
‘‘𝑗 ∈ {+,−, sep}’’. The total heat flux 𝑞tot generated by the battery is 
expressed as 
𝑞tot = 𝑞rxn + 𝑞rev + 𝑞ohm + 𝑞sei + 𝑞col, (20)

where 𝑞rxn, 𝑞rev, 𝑞ohm, 𝑞sei, and 𝑞col, are heat flux due to reaction, 
reversible entropy change, ohmic effects, solid–electrolyte interface 
(SEI) film, and the current collectors, given by

𝑞rxn =
∑

∀±
∫𝛺±

𝑎±𝑠 𝑗
±
𝑛 𝜂

±
ct𝑑𝑥, (21)

𝑞rev =
∑

∀±
∫𝛺±

𝑎±𝑠 𝑗
±
𝑛 𝑇

𝜕𝑈±
ss

𝜕𝑇
𝑑𝑥, (22)

𝑞ohm =
∑

∀±
∫𝛺±

−𝑖±𝑠
𝜕𝛷±

𝑠
𝜕𝑥

𝑑𝑥 +
∑

∀𝑗
∫𝛺𝑗

−𝑖𝑗𝑒
𝜕𝛷𝑗

𝑒
𝜕𝑥

𝑑𝑥, (23)

𝑞sei =
∑

∀±
∫𝛺±

𝑎±𝑠 (𝑗±𝑛 )
2𝑟±𝑓,eff𝑑𝑥, (24)

𝑞col = 𝑖2app𝑟col, (25)

where ‘‘∀±’’ means ‘‘± ∈ {+,−}’’.

3. Methodology

As mentioned in the introduction, the MOL first converts the PDAE 
into a DAE system using spatial discretization. The PDEs (5) and (6) are 
reduced to ordinary differential equations (ODEs), whereas the spatial 
constraints (7)–(12) are converted to a set of AEs. A DAE solver is 
then required to solve the system in the time domain. Usually, DAE 
solvers use generic iterative methods which involves calculating the 
Jacobian of the DAE model and/or careful selection of initial guess of 
the solution. This can significantly reduce the computational speed and 
compromise numerical stability, being particularly problematic when 
the Jacobian differs greatly between successive time steps. This issue is 
pronounced during dynamic charging or discharging conditions with 
frequent current variations, where stored Jacobian matrices become 
less useful, as they do not closely resemble the new values needed for 
the next step.
5 
3.1. A PIDE representation of P2D model

A problem-specific fixed-point iteration, though, is simple to im-
plement and can be computationally very efficient. However, finding 
an iterated function is usually not straightforward for such a complex 
system. In this section, we show that for the P2D model, a form of 
iterated function (3) can be expressed as 
𝑗±𝑛 ← (𝑐±𝑠 , 𝑐

±
𝑒 , 𝑇 , 𝑖app, 𝑗

±
𝑛 ), (26)

where 𝑐±𝑠 , 𝑐±𝑒 , and 𝑇  belong to the state variable 𝜒 , 𝑖app is the input 
variable 𝑢, and 𝑗±𝑛  is the algebraic variable 𝑣. Note that 𝛷±

𝑠 , 𝛷±
𝑒 , 𝑖±𝑒 , 𝑖±𝑠 , 

and 𝜂±ct in the original P2D model are intermittent states that shall be 
eliminated in our reformulated model.

3.1.1. Reformulated kinetic reaction equation
According to the Butler–Volmer (BV) Eq. (11), the charge-transfer 

overpotential can be expressed as: 

𝜂±ct =
2𝑇


sinh−1𝛼 (𝜙) , (27)

where 𝜙 = 𝑗±𝑛
2𝑖±0

 denotes the normalized molar flux, and sinh𝛼(⋅) is a 
deformed hyperbolic sine function, defined by 

sinh𝛼(𝜙) ∶=
exp (2𝛼𝜙) − exp (−2(1 − 𝛼)𝜙)

2
. (28)

We can then introduce the charge-transfer resistance 𝑟ct as 

𝑟±ct =
𝜂±ct
𝑗±𝑛

= 𝑇
 𝑖±0

sinh−1𝛼 (𝜙)
𝜙

= 𝑟±ct0
𝜙

sinh𝛼(𝜙)
, (29)

where 𝑟±ct0 = 𝑇
 𝑖±0

 denotes the steady-state charge-transfer resistance. 
Note that (29) is only defined at 𝑗±𝑛 ≠ 0 and 𝜙 ≠ 0. Considering that 
there is a removable discontinuity point lim𝜙→0(𝜙∕ sinh𝛼(𝜙)) = 1, we 
define the charge-transfer resistance as 
𝑟±ct(𝑗

±
𝑛 ) = 𝑟±ct0isinhc𝛼(𝜙(𝑗

±
𝑛 )), (30)

where the function isinhc𝛼(𝜙) is defined as

isinhc𝛼(𝜙) =
{

1, 𝜙 = 0
𝜙

sinh𝛼 (𝜙)
, 𝜙 ≠ 0.

Here, isinhc𝛼(𝜙) describes the relationship between the normalized 
charge-transfer resistance, 𝑟±ct∕𝑟±ct0, and the normalized molar flux at 
different 𝛼,

Note that in most existing literature, 𝑟±ct is obtained by linearizing 
the BV equation [33] and/or assuming 𝛼 = 0.5 [25–28], which results 
in 𝑟±ct ≡ 𝑟±ct0, while this approximation is seen inaccurate under high 
current conditions especially when 𝛼 deviates significantly from 0.5 
(see Fig.  2).

Furthermore, we define the sum of 𝑟±ct and 𝑟±𝑓,eff as a new resistance, 
𝑟𝛴 , which is a function of the molar flux, denoted by 
𝑟±𝛴 (𝑗

±
𝑛 ) ∶= 𝑟±ct(𝑗

±
𝑛 ) + 𝑟±𝑓,eff. (31)

With (29) and (31), (12) can be written as 
𝛷±

𝑠 −𝛷±
𝑒 − 𝑈±

ss − 𝑟±𝛴𝑗
±
𝑛 = 0. (32)

3.1.2. Reformulated electrolyte potential equation
Next, we define two potential terms, 𝑈 𝑗

𝑒 (𝑥, 𝑡) and 𝛹 𝑗
𝑒 (𝑥, 𝑡), as follows 

𝑈 𝑗
𝑒 ∶= 𝛽𝑇


ln
⎛

⎜

⎜

⎝

𝑓 𝑗
+∕−𝑐

𝑗
𝑒

𝑓 0
+∕−𝑐

0
𝑒

⎞

⎟

⎟

⎠

, (33)

𝛹 𝑗
𝑒 ∶= 𝛷𝑗

𝑒 − 𝑈 𝑗
𝑒 , (34)

where 𝑓 0
+∕− is the nominal value of the activity coefficient 𝑓

𝑗
+∕− when 

𝑐𝑗 (𝑥, 𝑡) = 𝑐0 (i.e., the steady-state value).
𝑒 𝑒
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Fig. 2. Relationship between the normalized areal charge-transfer resistance 
and the normalized molar flux at different 𝛼.

Eq.  (33) shows 𝑈 𝑗
𝑒  is a function of the local electrolyte concentration 

𝑐𝑗𝑒 and temperature 𝑇 . The gradient of (33) is

𝜕𝑈 𝑗
𝑒

𝜕𝑥
= 𝛽𝑇


𝜕
𝜕𝑥

⎡

⎢

⎢

⎣

ln
⎛

⎜

⎜

⎝

𝑓 𝑗
+∕−𝑐

𝑗
𝑒 (𝑥, 𝑡)

𝑓 0
+∕−𝑐

0
𝑒

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

= 𝛽𝑇


𝜕 ln
(

𝑓 𝑗
+∕−𝑐

𝑗
𝑒

)

𝜕𝑥

= 𝛽𝑇


⎛

⎜

⎜

⎝

1 +
𝑑 ln 𝑓 𝑗

+∕−

𝑑 ln 𝑐𝑗𝑒

⎞

⎟

⎟

⎠

𝜕 ln 𝑐𝑗𝑒
𝜕𝑥

. (35)

Substituting (34) and (35) into (7) yields 
𝜕𝛹 𝑗

𝑒
𝜕𝑥

= −
𝑖𝑗𝑒
𝜅𝑗
eff

. (36)

Note that (36) is in agreement with that derived in [33], although 
in [33], the term 𝑑 ln 𝑓 𝑗

+∕−
𝑑 ln 𝑐𝑒

 in (35) was omitted by assuming 𝑓 𝑗
+∕− ≡ 𝑓 0

+∕−.

3.1.3. Integro-differential equations for charge conservation
Substituting (34) into (32), we have 

𝛷±
𝑠 − 𝛹±

𝑒 − 𝑈±
se − 𝑟±𝛴𝑗

±
𝑛 = 0, (37)

where

𝑈±
se = 𝑈±

ss + 𝑈±
𝑒 .

With (9) and (36), the gradient of (37) can be derived as:
𝜕𝑈±

se
𝜕𝑥

=
𝜕𝛷±

𝑠
𝜕𝑥

−
𝜕𝛹±

𝑒
𝜕𝑥

−
𝜕(𝑟±𝛴𝑗

±
𝑛 )

𝜕𝑥

= −
𝑖±𝑠
𝜎±eff

+
𝑖±𝑒
𝜅±
eff

−
𝜕(𝑟±𝛴𝑗

±
𝑛 )

𝜕𝑥
. (38)

Using (8) and boundary conditions, one can derive

𝑖±𝑒 = 𝑎±𝑠 ∫

𝑥

0±
𝑗±𝑛 (𝑥

′, 𝑡)𝑑𝑥′, (39)

𝑖sep𝑒 = 𝑖app. (40)

Using (10) and boundary conditions, we have 

𝑖±𝑠 = 𝑖app − 𝑎±𝑠 ∫

𝑥

0±
𝑗±𝑛 (𝑥

′, 𝑡)𝑑𝑥′. (41)

Substituting (39) and (41) into (38) yields an integro-differential 
equation (IDE): 

𝑎±𝑠 𝜚
±
∫

𝑥
𝑗+𝑛 𝑑𝑥

′ −
𝜕(𝑟±𝛴𝑗

+
𝑛 ) = 1

(

𝑖app
± +

𝜕𝑈±
se
)

, (42)

0± 𝜕𝑥  𝜎eff 𝜕𝑥

6 
where 𝜚± = 1
𝜎±eff

+ 1
𝜅±eff

 denotes the combined resistivity of solid phase 
and electrolyte.

Each of the IDEs is subject to an integral boundary condition (IBC), 
which can be obtained by evaluating (39) at the electrode/separator 
boundary, i.e., 

𝑎±𝑠 ∫

𝛿±

0±
𝑗±𝑛 𝑑𝑥

′ = 𝑖±𝑒 |𝑥=𝛿± = 𝑖sep𝑒 = 𝑖app. (43)

To this end, the spatial constraints (7)–(12) and their BCs (15) and 
(16) are reformulated to the PIDE (42) and its IBC (43). Along with two 
PDEs modified from (5), (6), and (8), the reformulated P2D model as a 
PIDE system is summarized in Tables  2 and 3 for completeness. It can be 
seen that the algebraic states 𝛷±

𝑒 , 𝛷±
𝑠 , 𝑖±𝑒 , 𝑖±𝑠 , and 𝜂±ct in the original P2D 

model are eliminated in this PIDE system, which significantly simplifies 
the model complexity.

3.2. A fixed-point iterative method for solving the IDEs

The structure of the reformulated P2D model as a PIDE system is 
illustrated in Fig.  3. It shows that the PDEs (5) and (6) update the 
solid-phase concentration 𝑐±ss and the electrolyte concentration 𝑐𝑗𝑒 solely 
based on the molar flux 𝑗±𝑛 . Since there are various existing techniques 
for solving the diffusion PDEs (5) and (6), they are not the focus of the 
present study. In contrast, solving the IDEs is not straightforward and 
has not been discussed in the literature for the P2D model. Specifically, 
it can be seen that it needs 𝑈±

ss , 𝑈±
𝑒 , 𝑖app, and 𝑟±𝛴 to solve for 𝑗±𝑛 . Here, 𝑈±

ss
and 𝑈±

𝑒  can be calculated as nonlinear functions of states 𝑐±ss, 𝑐±𝑒 , and 
𝑇 , while 𝑟±𝛴 depends on the algebraic variable 𝑗±𝑛 . As a consequence, 
there is no closed-form solution for 𝑗±𝑛 . Hence, we focus our discussion 
on how to solve for the unknown 𝑗±𝑛  iteratively.

We now propose a generic fixed-point iterative method for solv-
ing the IDEs (42) and (43). First, for ease of notation, the follow-
ing linear operation  is defined on a spatiotemporal variable 𝑣(𝑥, 𝑡), 
parameterized by 𝛽1(𝑥, 𝑡) and 𝛽2(𝑥, 𝑡): 

(𝑣; 𝛽1, 𝛽2) ∶= 𝛽1 ∫

𝑥

0±
𝑣(𝑥′, 𝑡)𝑑𝑥′ + 𝛽2

𝜕𝑣
𝜕𝑥

. (44)

Assuming 𝑟±𝛴 is known, the IDE (42) can be expressed as 

(𝑣; 𝛽1, 𝛽2) = 𝛽0, (45)

where

𝑣 = 𝑗±𝑛 , (46)

𝛽0 =
1


(

𝑖app
𝜎±eff

+
𝜕𝑈±

se
𝜕𝑥

)

, (47)

𝛽1 = 𝑎±𝑠 𝜚
±, (48)

𝛽2 = −𝑟±𝛴 . (49)

Note that (47)–(49) are only applicable for 𝑥 ∈ [0±, 𝛿±). For 𝑥 = 𝛿±, 
we need to use the IBC (43) to obtain
𝛽0 = 𝑖app, (50)

𝛽1 = 𝑎±𝑠 , (51)

𝛽2 = 0. (52)

In (45), if  has a unique inverse operation with respect to 𝑗±𝑛 , and 
if all parameters are known, we can solve the equation by its inverse 
operation −1, denoted by 
𝑗±𝑛 (𝑥, 𝑡) = −1(𝛽0(𝑥, 𝑡); 𝛽1(𝑥, 𝑡), 𝛽2(𝑥, 𝑡)). (53)

One can view (53) as the iterated operation in (3), i.e.,  = −1. This 
is because, according to (29)–(31), 𝑟±𝛴 in (49) is parameterized by 𝑗±𝑛 , 
and thus 𝑗±𝑛  is a fixed point. Therefore, given an initial guess 𝑗±𝑛,0(𝑥, 𝑡), 
we can solve 𝑗±𝑛 (𝑥, 𝑡) iteratively:

𝑟± = 𝑟± isinhc
(

𝑗± ∕(2𝑖±)
)

, (54)
𝛴,𝑘 ct0 𝛼 𝑛,𝑘 0
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Table 2
Reformulated P2D model as a PIDE systems.
 PDE BC  
 𝜕𝑐±𝑒

𝜕𝑡
= 1

𝜀±𝑒
𝜕
𝜕𝑥

(

𝐷±
𝑒,eff

𝜕𝑐±𝑒
𝜕𝑥

)

+ 1−𝑡+
𝜀±𝑒

𝑎±𝑠 𝑗
±
𝑛 ,

𝜕𝑐±𝑒
𝜕𝑥

|

|

|𝑥=0±
= 0, 𝐷±

𝑒,eff
𝜕𝑐±𝑒
𝜕𝑥

|

|

|𝑥=𝛿±
= 𝐷sep

𝑒,eff
𝜕𝑐sep𝑒

𝜕𝑥
|

|

|𝑥=𝛿±
 

 𝜕𝑐sep𝑒

𝜕𝑡
= 1

𝜀sep𝑒

𝜕
𝜕𝑥

(

𝐷sep
𝑒,eff

𝜕𝑐sep𝑒

𝜕𝑥

)

, 𝐷sep
𝑒,eff

𝜕𝑐sep𝑒

𝜕𝑥
|

|

|𝑥=𝛿±
= 𝐷±

𝑒,eff
𝜕𝑐±𝑒
𝜕𝑥

|

|

|𝑥=𝛿±
 

 𝜕𝑐±𝑠
𝜕𝑡

= 1
𝑟2

𝜕
𝜕𝑟

(

𝐷±
𝑠,eff𝑟

2 𝜕𝑐±𝑠
𝜕𝑟

)

, 𝜕𝑐±𝑠
𝜕𝑟

|

|

|𝑟=0
= 0, 𝐷±

𝑠,eff
𝜕𝑐±𝑠
𝜕𝑟

|

|

|𝑟=𝑅±
𝑝
= −𝑗±𝑛  

 IDE IBC  
 𝑎±𝑠 𝜚± ∫ 𝑥

0± 𝑗
±
𝑛 𝑑𝑥

′ − 𝜕(𝑟±𝛴 𝑗
±
𝑛 )

𝜕𝑥
= 1



(

𝑖app
𝜎±
eff

+ 𝜕𝑈±
se

𝜕𝑥

)

, 𝑎±𝑠 ∫ 𝛿±

0± 𝑗±𝑛 𝑑𝑥
′ = 𝑖app  

 Additional Equations  
 𝑈±

se = 𝑈±
ss + 𝑈±

𝑒 = 𝑓±
1 (𝑐

±
ss , 𝑇 ) + 𝛽 𝑇


ln
(

𝑓+∕− ⋅𝑐±𝑒
𝑓 0
+∕− ⋅𝑐

0
𝑒

)

, 𝜚± = 1
𝜎±
eff

+ 1
𝜅±
eff
, 𝑟±𝛴 = 𝑟±ct0isinhc𝛼

(

𝑗±𝑛
2𝑖±0

)

+ 𝑟±𝑓,eff 
Table 3
Output equations of the reformulated P2D model.
 𝑖±𝑒 = 𝑎±𝑠 ∫ 𝑥

0± 𝑗
±
𝑛 (𝑥

′ , 𝑡)𝑑𝑥′, 𝑖sep𝑒 = 𝑖app, 𝑖±𝑠 = 𝑖app − 𝑎±𝑠 ∫ 𝑥
0± 𝑗

±
𝑛 (𝑥

′ , 𝑡)𝑑𝑥′  
 𝑉bat = (

𝑈±
se + 𝑟+𝛴 𝑗

+
𝑛

)

|

|

|𝑥=0+
−

(

𝑈−
se + 𝑟−𝛴 𝑗

−
𝑛

)

|

|

|𝑥=0−
+
∑

∀± 𝑎±𝑠 ∫𝛺± ∫
𝑥
0+

𝑗±𝑛
𝜅±
eff
𝑑𝑥′𝑑𝑥 +

(

∫𝛺sep
1

𝜅sepeff
𝑑𝑥 + 𝑟col

)

𝑖app . 
Fig. 3. Block diagram of the proposed reformulated P2D model as a system of 
PIDEs. The red lines indicate the algebraic loop that can be used for iteratively 
calculating 𝑗±𝑛 . The 𝑧−1 block indicates the memory for iterative calculating the 
algebraic states in one time step (rather than time delay), and it involves an 
initial guess, 𝑗±𝑛,0.

𝑗±𝑛,𝑘+1 = −1(𝛽0; 𝛽1, 𝛽2(𝑟
±
𝛴,𝑘)). (55)

Here, the subscript 𝑘 represents the 𝑘th iteration. The iterations 
terminate when a stopping criteria is met, for example, by evaluating 
the norm 
‖

‖

‖

‖

‖

‖

1 −
𝑗±𝑛,𝑘(𝑥, 𝑡)

𝑗±𝑛,𝑘−1(𝑥, 𝑡)

‖

‖

‖

‖

‖

‖2

≤ 𝜖, (56)

where 0 < 𝜖 ≪ 1 is the termination tolerance and we denote the 
corresponding iteration number as 𝑁iter. Therefore, the solution 𝑗±∗𝑛 =
𝑗±𝑛,𝑘=𝑁iter

.
The loop highlighted in red in Fig.  3 indicates the path where the 

molar flux is iteratively solved. Since this method does not require 
to calculate the local potentials, current densities, and charge-transfer 
overpotentials, the computational burden is significantly reduced than 
the original P2D model.

3.3. Reformulated voltage equation

Since the PIDE in Table  2 does not involve potential terms, the 
battery voltage Eq. (18) needs to be modified.

Using (34), the voltage Eq. (18) can be rewritten as
𝑉bat =

(

𝑈+
se + 𝑟+𝛴𝑗

+
𝑛
)

|

|

|𝑥=0+
−

(

𝑈−
se + 𝑟−𝛴𝑗

−
𝑛
)

|

|

|𝑥=0−

+ (𝛹+
𝑒
|

|𝑥=0+ − 𝛹−
𝑒
|

|𝑥=0− ) + 𝑟col𝑖app. (57)
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Integrating (36) gives 

𝛹+
𝑒
|

|𝑥=0− − 𝛹−
𝑒
|

|𝑥=0+ =
∑

∀𝑗
∫𝛺𝑗

𝑖𝑗𝑒
𝜅𝑗
eff

𝑑𝑥. (58)

Substituting (58) into (57) and considering the expressions 𝑖𝑗𝑒 in 
(39)–(40), the battery voltage Eq. (18) can be expressed as

𝑉bat =
(

𝑈±
se + 𝑟+𝛴𝑗

+
𝑛
)

|

|

|𝑥=0+
−

(

𝑈−
se + 𝑟−𝛴𝑗

−
𝑛
)

|

|

|𝑥=0−

+ 𝑎+𝑠 ∫𝛺+ ∫

𝑥

0+

𝑗+𝑛
𝜅+
eff

𝑑𝑥′𝑑𝑥 + 𝑎−𝑠 ∫𝛺− ∫

𝑥

0−

𝑗−𝑛
𝜅−
eff

𝑑𝑥′𝑑𝑥

+

(

∫𝛺sep
1

𝜅sepeff
𝑑𝑥 + 𝑟col

)

𝑖app. (59)

3.4. Reformulated thermal model

Considering (7), (9), and (33), the ohmic heat flux Eq. (23) can be 
simplified to 

𝑞ohm =
∑

∀±
∫𝛺±

(

𝑖±𝑠
)2

𝜎±eff
𝑑𝑥 +

∑

∀𝑗
∫𝛺𝑗

⎡

⎢

⎢

⎢

⎣

(

𝑖𝑗𝑒
)2

𝜅𝑗
eff

−
𝜕𝑈 𝑗

𝑒
𝜕𝑥

𝑖𝑗𝑒

⎤

⎥

⎥

⎥

⎦

𝑑𝑥, (60)

and 𝑖±𝑠  and 𝑖𝑗𝑒 can be further obtained using 𝑗±𝑛  and 𝑖app according to 
(39)–(41).

Considering (21), (24), (29), and (31), the sum of the reaction heat 
flux and SEI heat flux can be simplified to 

𝑞rxn + 𝑞sei =
∑

∀±
∫𝛺±

2𝑎±𝑠 𝑟
±
𝛴 (𝑗

±
𝑛 )

2𝑑𝑥. (61)

Therefore, the total heat generation is a function of 𝑗±𝑛 , 𝑖app, 𝑈 𝑗
𝑒 , and 

𝜕𝑈±
ss∕𝜕𝑇 . The relationship between the reformulated thermal model and 

the isothermal P2D model is shown in Fig.  4.

4. Numerical solution method

4.1. Solving IDEs

The IDEs derived in Section 3 can be solved using various techniques 
of numerical integration and differentiation. We use (42) to demon-
strate the method to solve the IDEs. We divide the positive electrode 
domain into 𝑁+ control volumes, denoted by {1, 2,… , 𝑁+}, along the 
electrode thickness, and 𝑥𝑖+ 1

2
 denotes the boundary between element 

𝑖 and 𝑖 + 1. The width of the 𝑖th control volume is denoted as 𝑙 . The 
𝑖
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Fig. 4. Block diagram for the reformulated P2D model coupled with a thermal 
model and its output voltage.

following discretization rules are applied to (42) at the interface of its 
𝑖th and (𝑖 + 1)th control volumes, 𝑖 = {1, 2,… , 𝑁+ − 1}:

∫

𝑥
𝑖+ 1

2

0
𝑋(𝑥, 𝑡)𝑑𝑥 =

𝑖
∑

𝑛=1
𝑋𝑛(𝑡)𝑙𝑛, (62)

𝜕𝑋
𝜕𝑥

|

|

|

|𝑥=𝑥
𝑖+ 1

2

=
𝑋𝑖+1 −𝑋𝑖
0.5(𝑙𝑖 + 𝑙𝑖+1)

, (63)

𝑋|𝑥=𝑥
𝑖+ 1

2

=
𝑙𝑖 + 𝑙𝑖+1
𝑙𝑖
𝑋𝑖

+ 𝑙𝑖+1
𝑋𝑖+1

, (64)

which yields 𝑁+ − 1 linear equations (an underdetermined system) as 
given in the matrix form (65). 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟+𝛴,1 + 𝑎+𝑠 𝑙
+
1

(

𝜚+1 𝑙
+
1 +𝜚

+
2 𝑙

+
2

)

2
−𝑟+𝛴,2 0

𝑎+𝑠 𝑙
+
1

(

𝜚+2 𝑙
+
2 +𝜚

+
3 𝑙

+
3

)

2
𝑟+𝛴,2 + 𝑎+𝑠 𝑙

+
2

(

𝜚+2 𝑙2+𝜚
+
3 𝑙

+
3

)

2
−𝑟+𝛴,3

𝑎+𝑠 𝑙
+
1

(

𝜚+3 𝑙
+
3 +𝜚

+
4 𝑙

+
4

)

2
𝑎+𝑠 𝑙

+
2

(

𝜚+3 𝑙
+
3 +𝜚

+
4 𝑙

+
4

)

2
𝑟+𝛴,3 + 𝑎+𝑠 𝑙

+
3

(

𝜚+3 𝑙
+
3 +𝜚

+
4 𝑙

+
4

)

2

⋮ ⋮ ⋮

𝑎+𝑠 𝑙
+
1

(

𝜚+
𝑁+−1

𝑙+
𝑁+−1

+𝜚+
𝑁+ 𝑙

+
𝑁+

)

2
𝑎+𝑠 𝑙

+
2

(

𝜚+
𝑁+−1

𝑙+
𝑁+−1

+𝜚+
𝑁+ 𝑙

+
𝑁+

)

2
𝑎+𝑠 𝑙

+
3

(

𝜚+
𝑁+−1

𝑙+
𝑁+−1

+𝜚+
𝑁+ 𝑙

+
𝑁+

)

2

⋯ 0 0

⋯ 0 0

⋯ 0 0

⋱ ⋮ ⋮

⋯ 𝑟+𝛴,𝑁+−1 + 𝑎+𝑠 𝑙
+
𝑁+−1

(

𝜚+
𝑁+−1

𝑙+
𝑁+−1

+𝜚+
𝑁+ 𝑙

+
𝑁+

)

2
−𝑟+𝛴,𝑁+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐋+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑗+𝑛,1
𝑗+𝑛,2
𝑗+𝑛,3
⋮

𝑗+𝑛,𝑁+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐣+

= 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑙+1
𝜎+
eff,1

+ 𝑙+2
𝜎+
eff,2

𝑙+2
𝜎+
eff,2

+ 𝑙+3
𝜎+
eff,3

⋮
𝑙+
𝑁+−1

𝜎+
eff,𝑁+−1

+
𝑙+
𝑁+

𝜎+
eff,𝑁+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐛+

𝑖app +
1


⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 ⋯ 0 0

0 −1 1 ⋯ 0 0

0 0 −1 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐂+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈+
se,1

𝑈+
se,2

𝑈+
se,3

⋮

𝑈+
se,𝑁+

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝐮+

(65)

In (65), 𝐣+ = [𝑗+𝑛,1, 𝑗
+
𝑛,2,… , 𝑗+𝑛,𝑁+ ]

⊤ is a vector containing all local 
volume-averaged molar fluxes, 𝐮+ = [𝑈+

se,1, 𝑈
+
se,2, ⋯ , 𝑈±

se,𝑁+ ]
⊤ is a vector 

containing all local volume-averaged potentials, and 𝐋+, 𝐛+, and 𝐂+

are matrices or vector of appropriate dimensions associated with local 
resistive components.

The IBC gives the 𝑁th equation: 

(𝑎+𝑠 )𝟏
⊤
𝑁+ 𝐣+ = 𝑖app, (66)

where 𝟏 ∈ R𝑁+  is a unit vector.
𝑁+
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Table 4
Comparison of the components in the general form and the FVM implementa-
tion in the iterated function for the positive electrode.
 Symbol General FVM  
  (48), (49), (51), (52)

[

𝐋+

(𝑎+𝑠 )𝟏
⊤
𝑁+

]

 
 𝑣(𝑥, 𝑡) 𝑗𝑛(𝑥, 𝑡) 𝐣+  
 𝛽0(𝑥, 𝑡) (47), (50)

[

𝐛+
1

]

𝑖app +
[

𝐂+

𝟎⊤𝑁+

]

𝐮+ 

Due to the quasilinear nature, (65) and (66) can be solved simulta-
neously by matrix inversion, i.e., 

𝐣+ =
[

𝐋+

𝑎+𝑠 𝟏
⊤
𝑁+

]−1 ([𝐛+
1

]

𝑖app +
[

𝐂+

𝟎⊤𝑁+

]

𝐮+
)

, (67)

where 𝟎𝑁+ ∈ R𝑁+  is a zero vector. This represents the FVM implemen-
tation of the iterated function (53). The correspondence between the 
general form and its FVM implementation for the positive electrode is 
summarized in Table  4. A similar procedure can be applied to calculate 
𝐣− = [𝑗−𝑛,1, 𝑗

−
𝑛,2,… , 𝑗−𝑛,𝑁− ]⊤ for the negative electrode, but the details are 

omitted here for brevity.

4.2. Solving PDEs

As can be seen from Fig.  3, the IDEs are discretized into AEs and 
solved iteratively together with the nonlinear functions. The inputs of 
this process, i.e., the solid-phase and electrolyte concentrations, are 
obtained by solving the PDEs, while the outputs of the AEs (molar 
fluxes) serve as inputs of the PDEs. Consequently, the numerical scheme 
used to solve the PDEs must provide the information required by the 
AE solver.

4.2.1. Solving the electrolyte diffusion equation
A generic state-space representation for solving the diffusion equa-

tions is given by
𝐱̇𝑒(𝑡) = 𝐀𝑒𝐱𝑒(𝑡) + 𝐁𝑒 𝐣(𝑡), (68)

𝐜𝑒(𝑡) = 𝐂𝑒𝐱𝑒(𝑡), (69)

where 𝐱𝑒 denotes the state vector of the electrolyte diffusion equation, 
𝐜𝑒 is the vector of local electrolyte concentrations, and 𝐣 = [𝐣+, 𝐣−]⊤
collects all local molar fluxes. The matrices 𝐀𝑒, 𝐁𝑒, and 𝐂𝑒 are pa-
rameterized by system state variables, such as 𝐱𝑒 and the battery 
temperature. It should be noted that this representation omits the 
feedthrough term in order to avoid algebraic loops between the input 
and output of the diffusion equation, which would otherwise restrict 
the choice of numerical algorithms. In the present study, for the FVM 
scheme adopted in the previous section, a compatible scheme for 
solving the electrolyte concentration Eq. (5) is also using the FVM 
method. The corresponding expressions of the matrices 𝐀𝑒, 𝐁𝑒, and 𝐂𝑒
are omitted for brevity.

Note that the ODE system derived from the FVM method is typically 
highly stiff. To enhance numerical stability, we discretize the ODE at 
time 𝑡 using an implicit–explicit (IMEX) scheme, as described in [9]: 
𝐱𝑒(𝑡 + 𝑇𝑠) − 𝐱𝑒(𝑡)

𝑇𝑠
= 𝐀𝑒𝐱𝑒(𝑡 + 𝑇𝑠) + 𝐁𝑒 𝐣(𝑡), (70)

where 𝑇𝑠 denotes the sampling period. Note that this formulation does 
not correspond to the standard backward Euler scheme but rather an 
IMEX method, since 𝐣(𝑡) depends on 𝐱𝑒(𝑡). Owing to the linear structure 
of the system, the solution of (70) can be expressed in closed form using 
matrix inversion: 
𝐱𝑒(𝑡 + 𝑇𝑠) = (𝐈 − 𝑇𝑠 𝐀𝑒)−1

[

𝐱𝑒(𝑡) + 𝑇𝑠 𝐁𝑒 𝐣(𝑡)
]

, (71)

where 𝐈 is the identity matrix of appropriate dimension.
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In contrast, the Crank–Nicholson (CN) method, which is based on 
the trapezoidal rule, can also be expressed into closed form due to the 
linear structure of the equation:

𝐱𝑒(𝑡 + 𝑇𝑠) =
(

𝐈 −
𝑇𝑠
2
𝐀𝑒

)−1

(

𝐱𝑒(𝑡)
(

𝐈 +
𝑇𝑠
2
𝐀𝑒

)

+ 𝑇𝑠 𝐁𝑒 𝐣(𝑡)
)

. (72)

4.2.2. Solving the solid-phase diffusion equation
Solving the solid-phase diffusion equation is more flexible. At each 

macro-scale location (𝑥 = 𝑥𝑖), a PDE is formulated that only involves 
the micro-scale coordinate, yielding 𝑐±𝑠 (𝑥𝑖, 𝑟, 𝑡) = 𝑐±𝑠,𝑖(𝑟, 𝑡) and 𝑐±ss(𝑥𝑖, 𝑡) =
𝑐±ss,𝑖(𝑡). Various methods exist for solving this PDE, including polynomial 
profile approximation, Padé approximation, FVM, and finite difference 
method [15]. However, the choice of method must be made carefully, 
since as mentioned above, we aim to avoid introducing the feedthrough 
terms in the present algorithm. Under this requirement, the discretized 
model takes the following form
𝐱̇±𝑠,𝑖(𝑡) = 𝐀±

𝑠,𝑖𝐱
±
𝑠,𝑖(𝑡) + 𝐁±

𝑠,𝑖 𝑗
±
𝑛,𝑖(𝑡), (73)

𝑐±ss,𝑖(𝑡) = 𝐂±
𝑠,𝑖𝐱

±
𝑠,𝑖(𝑡), (74)

where the matrices 𝐀±
𝑠,𝑖, 𝐁±

𝑠,𝑖, and 𝐂±
𝑠,𝑖 are parameterized by the battery 

temperature and can also depend on the state vector 𝐱±𝑠,𝑖.
Although the FVM can be applied in a manner similar to that 

used for the electrolyte diffusion equation, it typically leads to a high-
order system to might significant increase the computational burden. 
To address this, we adopt the moment matching method [10]. For 
simplicity, we assume the order of moment matching, denoted by 
𝑀 , is the same for both electrode. The resulting system matrices are 
expressed as

𝐀±
𝑠,𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0
0 −𝑎1∕𝜏

±
𝑠,𝑖 0 ⋯ 0

0 0 −𝑎2∕𝜏
±
𝑠,𝑖 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −𝑎𝑀∕𝜏±𝑠,𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐁±
𝑠,𝑖 =

[

3 −𝑏1∕𝑅±
𝑝 −𝑏2∕𝑅±

𝑝 ⋯ −𝑏𝑀∕𝑅±
𝑝

]⊤
,

𝐂±
𝑠,𝑖 = 𝟏1×(𝑀+1),

where 𝜏±𝑠,𝑖 = (𝑅±
𝑝 )

2∕𝐷±
𝑠,eff,𝑖 and 𝟏1×(𝑀+1) is an (𝑀 + 1)-dimensional row 

vector of ones. The parameters 𝑎1, 𝑎2,… , 𝑎𝑀  and 𝑏1, 𝑏2,… , 𝑏𝑀  depend 
on the selection of 𝑀 .

5. Results and discussion

5.1. System configuration

In this section, the effectiveness of the proposed solution method 
is evaluated through numerical simulations. All algorithms are imple-
mented in MATLAB R2019b and executed on a system equipped with 
an Intel Core i7 processor and 16 GHz of RAM.

The benchmark model used for comparison is a spatially discretized 
P2D model formulated as a system of DAE based on the model param-
eters given in Appendix  B. This model is obtained using the same FVM 
rules as applied in the proposed framework. The number of the control 
volumes in the positive electrode, separator, and negative electrode 
domains are set to 𝑁+ = 10, 𝑁 sep = 5, and 𝑁− = 10, respectively. 
The order of moment matching is set to 𝑀 = 2, leading to 𝑎1 =
20.57, 𝑎2 = 168.42, 𝑏1 = 2.18, and 𝑏2 = 15.82. The resulting DAE 
system consists of ODEs derived from (5) and (6), and AEs resulting 
from (7)–(12). The proposed method employs the single-step explicit 
technique described in (71) (whereas we still use IMEX to indicate this 
method) to solve the ODEs with sampling time 𝑇𝑠 = 1 s. The benchmark 
model uses MATLAB’s fsolve function to solve the AEs, specifically 
for computing the molar flux 𝑗± with high accuracy.
𝑛
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5.2. Initialization methods

As mentioned in Section 3.2, at time 𝑡, the iterative method for 
solving the nonlinear AEs needs to be initialized by providing an initial 
guess 𝑗±𝑛,0 of the solution. Several initialization schemes are investigated 
here.

(1) Initialization with zero values:
𝑗±𝑛,0(𝑥, 𝑡) = 0, ∀𝑥 ∈ 𝛺±.

(2) Initialization with the solution in the previous time step 𝑡 − 𝑇𝑠:

𝑗±𝑛,0(𝑥, 𝑡) = 𝑗±𝑛 (𝑥, 𝑡 − 𝑇𝑠), ∀𝑥 ∈ 𝛺±.

(3) Initialization with physically consistent uniform profile satisfy-
ing

𝑗±𝑛,0(𝑥, 𝑡) =
±𝑖app(𝑡)

𝑎±𝑠 𝐿±
, ∀𝑥 ∈ 𝛺±.

(4) Initialization with physically consistent quadratic profile satis-
fying

𝑗±𝑛,0(𝑥, 𝑡) = 𝛼±0 (𝑡) + 𝛼±1 (𝑡)𝑥 + 𝛼±2 (𝑡)𝑥
2, ∀𝑥 ∈ 𝛺±,

where the coefficients 𝛼0–𝛼2 are determined by solving the following 
three equations based on the boundary conditions

𝑎±𝑠 ∫

𝛿±

0±
𝑗±𝑛,0(𝑥

′, 𝑡)𝑑𝑥′ = 𝑖app(𝑡),

𝜕𝑈±
se

𝜕𝑥

|

|

|

|

|𝑥=0±
= −

𝑖app
𝜎±eff

− 𝑟±𝛴
𝜕𝑗±𝑛,0
𝜕𝑥

|

|

|

|

|

|𝑥=0±
,

𝜕𝑈±
se

𝜕𝑥

|

|

|

|

|𝑥=𝛿±
=

𝑖app
𝜅±
eff

− 𝑟±𝛴
𝜕𝑗±𝑛,0
𝜕𝑥

|

|

|

|

|

|𝑥=𝛿±
.

5.3. Convergence test

We examine the convergence behavior of the proposed fixed-point 
iteration method for solving the IDEs in Section 3.2. To measure and an-
alyze both the speed and quality of convergence, the error contraction 
ratio 𝑞 is calculated:

𝑞𝑘(𝑡) =
‖𝐣𝑘+1 − 𝐣𝑘‖2
‖𝐣𝑘 − 𝐣𝑘−1‖2

which quantifies how much the iteration approaches the solution at 
each step. In practice, we are particularly interested in the first-step and 
second-step contraction ratios, 𝑞1 and 𝑞2, since minimizing the number 
of iterations is crucial for reducing computational cost.

The nature of convergence is further characterized by the estimated 
order of convergence, given by

𝑝𝑘(𝑡) =
log ‖𝐣𝑘+1 − 𝐣𝑘‖2 − log ‖𝐣𝑘 − 𝐣𝑘−1‖2
log ‖𝐣𝑘 − 𝐣𝑘−1‖2 − log ‖𝐣𝑘−1 − 𝐣𝑘−2‖2

Theoretically, the estimated order of convergence should converge 
to the true order as 𝑘 increases. However, in practice, numerical 
limitations may reduce the accuracy when the residual becomes very 
small, causing the estimated order of convergence to become unstable 
at higher iterations. In this study, we use the estimate at 𝑘 = 8, which 
was observed to be stable and representative across simulations.

To evaluate the convergence characteristics of the proposed solver, 
termination a very small termination tolerance is used, specifically, 
𝜖 = 1 × 10−20, to avoid premature termination of iteration process. The 
calculated contraction ratios and estimated order of convergence for 
1C and 3C discharge tests are presented in Fig.  5. It shows that the 
initial contraction ratios depicted in Fig.  5(a) are very small, suggesting 
that the solver can reach a highly accurate solution within just first 
one or two iterations in practice. Furthermore, in Fig.  5(b), most of 
the time the estimated order of converge remains slightly below 1 
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Fig. 5. Results or convergence test with different initialization methods. (a) First- and second-step contraction ratio under 1C-discharge. (b) Estimated order of 
convergence under 1C-discharge. (c) First- and second-step contraction ratio under 3C-discharge. (d) Estimated order of convergence under 3C-discharge.
and higher than 0.95, indicating the algorithm exhibits approximately 
linear convergence, comparable to many state-of-the-art AE solvers.

Although some differences are observed among the presented ini-
tialization strategies, e.g., zero initialization appears to yield a slightly 
better first-step contraction ratio as seen from Fig.  5(a), the overall 
impact of the initial guess is not significant. This indicates that the 
proposed AE solver exhibits low sensitivity to initial estimate of the 
algebraic states, which is advantageous for practice implementation.

Fig.  5(c) and (d) show the convergence performance under a 3C 
discharge condition. This represents an extremely high current rate, 
given that the maximum rated C-rate for the battery chemistry under in-
vestigation is approximately 2C. Under such higher current conditions, 
the battery experience stronger polarization effects and greater het-
erogeneity in internal state distributions (concentrations, molar fluxes, 
etc.). Consequently, both the contraction ratio and order of conver-
gence are somewhat degraded in general. Nonetheless, the observed 
values (0.01 < 𝑞 < 0.5, 0.85 < 𝑝 < 0.99) remain within satisfactory 
bounds, ensuring that the proposed fixed-point iteration still converges 
rapidly.

5.4. Performance comparison with existing AE solvers

In this section, the performance of the proposed gradient-free AE 
solver is compared with MATLAB’s fsolve function, which is based 
on the trust-region dogleg algorithm combining Newton’s method and 
gradient descent. To evaluate the trade-off between computational 
speed and solution accuracy, different termination tolerance values 𝜖
are tested. Three solver configurations are considered: (1) 𝜖 = 1× 10−5, 
(2) 𝜖 = 1 × 10−3, both without any limit on the maximum number 
of iterations, and (3) a single-iteration setting, where the maximum 
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number of iterations is limited to one. For all cases, the molar fluxes 
are initialized to zero at every time step.

Figs.  6 and 7 show the simulation results under a dynamic discharg-
ing profile based on the Federated Urban Driving Schedule (FUDS). 
In Fig.  6, the original FUDS profile is applied, where the maximum 
current rate is 1C. In Fig.  7, the original current profile is amplified 
by a factor of three, and it is repeated applied until the voltage 
reaches the cut-off voltage of 3.0 V to evaluate performance under more 
extreme conditions. The evaluation metrics involve voltage prediction 
error (relative to the gradient-based fsolve baseline), the number of 
iterations, and CPU runtime per simulation time step. Table  5 further 
provides a summary of the comparison results.

As can be seen in Fig.  6 and Table  5, under the original FUDS 
current profile, all three solver settings yield high predictive accuracy 
compared to the benchmark. For 𝜖 = 1×10−5, the number of iterations is 
between 1 and 4, while for 𝜖 = 1×10−3, the number of iterations ranges 
from 1 to 3. These results suggest that both settings offer sufficiently 
accurate solutions, potentially exceeding the accuracy requirements 
for practical applications. Notably, even in the single-iteration case, 
the solver achieves a voltage root-mean-square error (RMSE) of less 
than 1 × 10−5 V, and maximum absolute error (MaxArr) of 0.151 mV, 
indicating the minimal iteration is often adequate.

As expected, higher current magnitudes, such as those in the am-
plified FUDS profile, demand for more iterations to attain the similar 
levels of accuracy, as shown from Fig.  7(h) and Table  5. Nevertheless, 
across all test conditions, the proposed solver consistently demonstrates 
significantly lower computational cost than fsolve, with CPU run-
times reduced by more than one order of magnitude. This performance 
enhancement is primarily due to the fact that the proposed method 
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Fig. 6. Comparison of gradient-based and proposed gradient-free AE solvers under FUDS profile with the maximum current of 1C. (a) Voltage. (b) Voltage error. 
(c) Battery temperature. (d) Temperature error. (e) Solid-phase concentrations in the negative electrode. (f) Electrolyte concentrations. (g) Iteration number. (h) 
CPU runtime for solving AEs.
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Fig. 7. Comparison of gradient-based and proposed gradient-free AE solvers under a repeated, modified FUDS profile, where the magnitude of the current is 
amplified by 3 times. (a) Voltage. (b) Voltage error.(c) Battery temperature. (d) Temperature error. (e) Solid-phase concentrations at electrode boundaries. (f) 
Electrolyte concentrations at electrode/current collector (col.) boundaries. (g) Iteration number. (h) CPU runtime for solving AEs.
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Table 5
Numerical performance comparison of gradient-based and proposed gradient-free AE solvers.
 Current
Profile

Solver
Config.

Voltage (V) Iteration CPU runtime (s)

 RMSE MaxArr Average Max Average Max  
 
FUDS (Orig.)

fsolve – – – – 0.0105 0.029  
 (1) 1.87 × 10−11 5.90 × 10−10 2.67 4 0.00035 0.0037 
 (2) 1.86 × 10−9 4.73 × 10−8 2.08 3 0.00029 0.0013 
 (3) 4.87 × 10−6 1.51 × 10−4 1 1 0.00016 0.0007 
 
FUDS (Mod.)

fsolve – – – – 0.0155 0.0466 
 (1) 1.51 × 10−9 7.14 × 10−8 3.67 9 0.00068 0.0045 
 (2) 1.82 × 10−7 1.06 × 10−5 2.57 5 0.00051 0.0044 
 (3) 2.48 × 10−4 1.05 × 10−2 1 1 0.00025 0.0038 
Fig. 8. Comparison of BDF, CN, and IMEX methods under a 1C discharging with a simulation time step of 20 s. (a) Voltage error. (b) Molar flux in the positive 
electrode. (c) Electrolyte concentration. (d) CPU Runtime for solving the full battery models.
only solves a linear equation for each electrode at every iteration and 
eliminates the requirement for Jacobian evaluation.

It is worth noting that MATLAB’s fsolve is internally optimized 
using C/Fortran via MEX. The proposed algorithm, if similarly com-
piled, is expected to achieve further improvements in computational 
efficiency. This aspect, however, is left for future investigation, while 
the current results already demonstrate significant advantages.

5.5. Comparison of time integration schemes

In previous section, all simulation were conducted using the FVM 
implementation described in Sections 4.1 and 4.2, with the time-
domain integration based on the single-step explicit method derived 
from the IMEX formulation, as defined in (71).

In this section, we compare that scheme with two alternatives: the 
CN scheme described in (72) and a widely used multistep method for 
solving the stiff DAEs, i.e. the BDF, implemented in MATLAB’s ode15s
function. To test each method’s capability to handle longer time steps 
(important for accelerating large-scale battery system simulations), the 
integration step size is increased to 20 s. Based on previous findings, 
the number of fixed-point iterations is limited to two for both the IMEX 
and CN schemes, with each iteration initialized with zero guess of molar 
fluxes. Simulation results are presented in Fig.  8.

Although not shown in the illustrated examples, the IMEX and CN 
methods exhibits similar accuracy when using small step sizes (e.g., 1 
s), as used in the previous study cases. However, as the step size 
increases, the CN scheme begins to exhibit oscillatory behavior in 
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the calculated molar flux and the electrolyte concentration, quantities 
that contribute significantly to the stiffness of the P2D model. Further 
increasing the step size leads to numerical instability and crash of the 
simulation. In contrast, the IMEX scheme remains stable and deliver 
accurate voltage predictions, achieving an RMSE below 0.02 mV.

In addition, as expected, both the IMEX and CN schemes with 
the proposed gradient-free framework demand much lower computa-
tional burden, i.e., about two orders of magnitude lower than the BDF 
method, thanks to their single-step nature and avoidance of Jacobian 
evaluations.

6. Conclusion

This paper presents a numerical framework for solving the pseudo-
two-dimensional (P2D) model of lithium-ion batteries using a gradient-
free, single-step implicit–explicit (IMEX) method. A general iterative 
formulation is derived by reformulating the original partial differential–
algebraic equation (PDAE) system into a partial integro-differential 
equation (PIDE) system. The PIDE system is then spatially discretized 
using the FVM method at the macro-scale, and a single-step numer-
ical scheme with a closed-form update is developed for time-domain 
integration, leveraging the quasi-linear structure of the discretized 
model. Simulation results demonstrate that the proposed method yields 
numerically stable and robust solutions while significantly reducing 
computational cost. The framework consistently outperforms several 
widely used solvers in battery research community, which offers a 
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promising approach for large-scale simulation and real-time applica-
tions. Future work will focus on incorporating more advanced tech-
niques, such as spectral-based methods such as the Galerkin method 
and physics-informed data-driven techniques, into the solution of the 
PIDE system. These enhancements are expected to further improve 
computational efficiency while maintaining high accuracy within the 
proposed framework.
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Appendix A. Additional model equations

The following nonlinear functions are used in the P2D model to 
describe the temperature- and concentration-dependent parameters. 

𝑓±
1 (𝑐

±
ss, 𝑇 ) = 𝑈± +

𝜕𝑈±
ss

𝜕𝑇
(𝑇 − 𝑇ref), (A.1)

𝑓±
2 (𝑐

±
ss, 𝑐

±
𝑒 , 𝑇 ) = 𝑘±eff(𝑐

±
𝑒 )

𝛼(𝑐±𝑠,max − 𝑐±ss)
𝛼(𝑐±ss)

1−𝛼 , (A.2)

𝑓 𝑗
3 (𝑐

𝑗
𝑒 , 𝑇 ) = (𝜀𝑗𝑒)

brugg𝑗𝐷𝑗
𝑒0, (A.3)

𝑓 𝑗
4 (𝑐

𝑗
𝑒 , 𝑇 ) = (𝜀𝑗𝑒)

brugg𝑗 𝜅𝑗
0 , (A.4)

𝑓±
5 (𝑇 ) = 𝐷±

𝑠0 exp
(

−
𝐸±
𝑎,𝐷𝑠



(

1
𝑇

− 1
𝑇ref

))

, (A.5)

𝑓±
6 (𝑇 ) = 𝜎±0 exp

(

−
𝐸±
𝑎,𝜎



(

1
𝑇

− 1
𝑇ref

))

, (A.6)

𝑓±
7 (𝑇 ) = 𝑟±𝑓0 exp

(

−
𝐸±
𝑎,𝑟𝑓



(

1
𝑇

− 1
𝑇ref

))

, (A.7)

𝑓±
8 (𝑇 ) = 𝑘±0 exp

(

−
𝐸±
𝑎,𝑘



(

1
𝑇

− 1
𝑇ref

))

, (A.8)

where 𝑈± = 𝑓±
9 (𝑐

±
ss∕𝑐

±
𝑠,max), 

𝜕𝑈±
ss

𝜕𝑇 = 𝑓±
10(𝑐

±
ss∕𝑐

±
𝑠,max), 𝐷𝑗

𝑒0 = 𝑓11(𝑐
𝑗
𝑒 , 𝑇 ), 

and 𝜅𝑗
0 = 𝑓12(𝑐

𝑗
𝑒 , 𝑇 ). The nonlinear functions 𝑓±

9  and 𝑓±
10 are based on 

electrodes’ materials, 𝑓11 and 𝑓12 are based on electrolyte’s material, 
and they are usually fitted from experimental data.

Appendix B. Model parameters

The Li-ion battery electrochemical parameters are obtained from
[32,33] and are given in Table  B.6.

Data availability

Data will be made available on request.
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Table B.6
Electrochemical parameters of Li-ion battery.
 Sym. Parametric value/expression
 + sep –  
 𝑅±

𝑝 2 × 10−6 – 2 × 10−6  
 𝐷±

𝑠0 1.0 × 10−14 – 3.9 × 10−14  
 𝑎±𝑠 8.85 × 105 – 7.236 × 105  
 𝐿𝑗 8.0 × 10−5 2.5 × 10−5 8.8 × 10−5  
 𝜀±𝑠 0.59 – 0.4824  
 𝜀𝑗𝑒 0.385 0.724 0.485  
 𝜎±

0 100 – 100  
 brugg𝑗 4 4 4  
 𝑐±𝑠,max 51,554 – 30,555  
 𝑐±𝑠0 25,545 – 26,128  
 𝑘±0 2.334 × 10−11 – 5.031 × 10−11  
 𝜌𝑗 2500 1100 2500  
 𝑐𝑗𝑝 700 700 700  
 𝐸±

𝑎,𝐷𝑠
5000 – 5000  

 𝐸±
𝑎,𝜎 5000 – 5000  

 𝐸±
𝑎,𝑟𝑓

5000 – 5000  
 𝐸±

𝑎,𝑘 5000 – 5000  
 𝑟±𝑓0 0 – 0.01  
  96,487
 𝑇ref 298.15
  8.314
 𝑐0𝑒 1000
 𝑡+ 0.364
 𝑓+∕− 1
 ℎ 2
 𝑓+

9
−4.656+88.669𝜃2−401.119𝜃4+342.909𝜃6−462.471𝜃8+433.434𝜃10

−1+18.933𝜃2−79.532𝜃4+37.311𝜃6−73.083𝜃8+95.96𝜃10 𝑓−
9 0.7222+0.1387𝜃+0.029𝜃0.5−0.0172𝜃−1+0.0019𝜃−1.5+0.2808 exp(0.9−15𝜃)−

0.7984 exp(0.4465𝜃−0.4108)

 𝑓+
10

−0.001
(

0.199521039−0.928373822𝜃+1.364550689𝜃2−0.611544894𝜃3
)

1−5.661479887𝜃+11.47636191𝜃2−9.824312136𝜃3+3.048755063𝜃4

 𝑓−
10

0.001

⎛

⎜

⎜

⎜

⎜

⎝

0.005269056+3.299265709𝜃−91.79325798𝜃2

+1004.911008𝜃3−5812.278127𝜃4+19329.7549𝜃5

−37147.8947𝜃6+38379.18127𝜃7−16515.05308𝜃8

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1−48.09287227𝜃+1017.234804𝜃2−10481.80419𝜃3

+59431.3𝜃4−195881.6488𝜃5+374577.3152𝜃6

−385821.1607𝜃7+165705.8597𝜃8

⎞

⎟

⎟

⎟

⎟

⎠

 𝑓11 10−4 × 𝑐𝑒

⎛

⎜

⎜

⎜

⎜

⎝

−10.5+0.668 × 10−3𝑐𝑒+0.494 × 10−6𝑐2𝑒
+(0.074−1.78 × 10−5𝑐𝑒−8.86 × 10−10𝑐2𝑒 )𝑇

+(−6.96 × 10−5+2.8 × 10−8𝑐𝑒 )𝑇 2

⎞

⎟

⎟

⎟

⎟

⎠

2

 𝑓12 10−4 × 10
−4.43− 54

𝑇−229−5.0 × 10−3 𝑐𝑒
−0.22 × 10−3 𝑐𝑒
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