
Received 27 March 2025; accepted 4 April 2025. Date of publication 9 April 2025;
date of current version 1 May 2025. The review of this article was coordinated by Editor Yunhong Che.

Digital Object Identifier 10.1109/OJVT.2025.3559237

Smart Electric Vehicle Charging Algorithm to
Reduce the Impact on Power Grids: A

Reinforcement Learning Based Methodology
FEDERICO ROSSI 1 (Graduate Student Member, IEEE), CESAR DIAZ-LONDONO 2 (Senior Member, IEEE),

YANG LI 3 (Senior Member, IEEE), CHANGFU ZOU 3 (Senior Member, IEEE),
AND GIAMBATTISTA GRUOSSO 1 (Senior Member, IEEE)

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
2Microgrid and Renewable Energy Research Center, Huanjiang Laboratory, Zhejiang University, Zhuji 311100, China

3Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden

CORRESPONDING AUTHOR: GIAMBATTISTA GRUOSSO (e-mail: giambattista.gruosso@polimi.it).

The work of Changfu Zou and Yang Li was supported by The Swedish Energy Agency within the Vehicle Strategic Research and Innovation Program under Grant
P2022-00960.

ABSTRACT The increasing penetration of electric vehicles (EVs) presents a significant challenge for power
grid management, particularly in maintaining network stability and optimizing energy costs. Existing model
predictive control (MPC)-based approaches for EV charging and discharging scheduling often struggle to bal-
ance computational efficiency with real-time operationability. This gap highlights the need for more advanced
methods that can effectively mitigate the impact of EV activities on power grids without oversimplifying
system dynamics. Here, we propose a novel scheduling methodology using a pre-trained Reinforcement
Learning (RL) framework to address this challenge. The method integrates real grid simulations to monitor
critical electrical points and variables while simplifying analysis by excluding the influence of real grid
dynamics. The proposed approach formulates the scheduling problem to minimize costs, maximize rewards
from ancillary service delivery, and mitigate network overloads at specified grid nodes. The methodology is
validated on a benchmark electric grid, where realistic charging station utilization scenarios are simulated.
The results demonstrate the method’s robustness and ability to efficiently cope with the EV smart scheduling
problem.

INDEX TERMS Electrical vehicle scheduling, reinforcement learning, V2G.

I. INTRODUCTION
Electric vehicles (EVs) have rapidly evolved from a niche
market to a global phenomenon. With the global EV stock
reaching 40.5 million in 2023 and 16% of new car sales in
Europe in 2024, their adoption is reshaping the future of trans-
portation [1]. While this transition supports a more sustainable
future, it also presents significant challenges for power grids,
particularly at the distribution level.

The widespread adoption of EVs leads to voltage fluctu-
ations, grid imbalances, harmonic distortion, and increased
peak hour loads, ultimately straining equipment and deteri-
orating power quality [2]. In particular, the uncoordinated
charging of large numbers of EV overloads transformers

and cables, shortening their lifespan and necessitating costly
infrastructure upgrades [3], [4]. By 2050, projections indi-
cate that four out of seven transformers could exceed their
operational capacity due to rising energy demand from EV
charging [5].

Smart charging strategies and Vehicle-to-Grid (V2G) tech-
nology are crucial in mitigating these effects and ensuring
efficient energy management. In this context the optimiza-
tion and scheduling of EVs charging activities is one of the
most significant challenges that must be addressed to limit
their impact on the electric distribution network. Various
approaches have been proposed to address this challenge,
including centralized and decentralized solutions [6]. For
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example, [7] analyzes the impact of growing EV charging
demand on grid stability, while [8] examines parking lot-
based charging strategies and their impact on cost and voltage
stability. In [9] the authors highlights smart charging solu-
tions to reduce grid costs and improve renewable integration.
On the other side, to manage uncertainties associated with
large-scale deployment of EVs and photovoltaic, [10] pro-
poses a peer-to-peer energy trading framework, ensuring grid
security and cost-effectiveness. Finally, [11] introduces a two-
stage methodology to optimize charging costs and guarantee
grid stability.

Among the various methods analyzed for addressing
EV charging scheduling, Reinforcement Learning (RL) and
Model Predictive Control (MPC) are two of the most com-
monly used approaches. A systematic review of RL applica-
tions in charging scheduling is provided in [12], highlighting
key algorithms, challenges, and future research directions. For
instance, to minimize charging time in public stations, [13]
formulates the scheduling problem as a Markov decision
process (MDP) and applies deep RL, showing significant
improvements over baseline methods. The impact of RL on
optimizing photovoltaic self-consumption and EV state of
charge is examined in [14], where it is compared with the
rules-based and MPC strategies, demonstrating its potential
to improve efficiency in managing energy use. Similarly, [15]
proposes a multi-agent RL approach for optimal EV charg-
ing and discharging scheduling, ensuring grid stability while
minimizing costs. Lastly, [16] reviews RL-based frameworks
for EV energy management, analyzing coordination strategies
and optimization techniques for charging under uncertainty.
MPC-based approaches also play a crucial role in optimizing
EV charging. In [17], a MPC approach is proposed to manage
demand charges in real-time EV charging scheduling, show-
ing improvements in operational profit and charging schedul-
ing under demand charge constraints. In [18] the authors
introduce a smart EV charging pool algorithm using optimal
control, aiming to minimize operational costs while ensuring
flexibility in charger management and reducing power de-
mand. In [19], two smart charging coordinators are proposed
to manage EV charging, optimizing grid integration and pre-
venting transformer overloads across various scenarios.

Under a more technical point of view, RL learns optimal
policies by interacting with the environment, making it highly
adaptable to dynamic and uncertain conditions. While com-
putationally intensive during the training phase, it can deliver
superior performance once trained, particularly in handling
complex, nonlinear systems. Conversely, MPC relies on an
accurate mathematical model of the system to predict future
states and optimize control actions over a finite horizon. It
excels at managing multi-input, multi-output (MIMO) sys-
tems and handling constraints. MPC can be more robust than
RL in scenarios where the system model is well defined and
the uncertainties are minimal. However, its performance is
limited by the need for accurate system modeling, which is
challenging to achieve in highly dynamic and uncertain en-
vironments, such as EV charging networks. Moreover, MPC

can be computationally demanding, especially when applied
to large-scale systems or long prediction horizons, poten-
tially limiting its feasibility for real-time applications. On the
other hand, RL shows significant potential for optimizing EV
scheduling activities [20]. Indeed, RL is particularly effective
in dynamic scheduling environments where conditions change
frequently. This adaptability is essential for EV scheduling,
as it must account for variations in energy demand, charging
station availability, and traffic conditions. In addition, RL can
make real-time decisions by managing uncertainty and envi-
ronmental fluctuations, which are common in EV scheduling
due to unpredictable energy consumption patterns and the
variable availability of renewable energy sources. These pe-
culiarities are detailed in several works, such as in [21], where
the authors explore RL for coordinating EV charging with
grid services, considering battery aging and user satisfaction.
Additionally, [22] proposes a deep RL approach to optimize
charging costs and reduce waiting times. In [23], deep Q-
learning is applied to improve large-scale charging scheduling
during peak demand periods, while [24] integrates RL with
voltage control to enhance distribution network stability.

In light of the conducted literature review, we identified key
areas that require further investigation. First, we observed that
many works solve the optimal EV scheduling problem relying
on MPC, a method that, while effective, has computational
limitations in real-time applications. Second, several studies,
such as [14] and [22], simplify the grid model to mere power
balances, overlooking the impact of real grid dynamics on the
results. Furthermore, most RL applications lack pretraining,
resulting in slower convergence and suboptimal performance
compared to MPC and standard optimization techniques.

With ACER [25] promoting V2G technologies at the Euro-
pean level, several countries have begun initial testing phases.
In this context, this work focuses on developing and vali-
dating technical solutions to integrate V2G into the energy
system. This is achieved by creating a replicable model for
network simulations, intended for users seeking to optimize
vehicle management and improve overall grid efficiency in
real-world applications. In particular, this paper presents a
scheduling problem geared toward real-time applications and
overcomes the traditional limitations of MPC-based methods.
Furthermore, the primary objective is to mitigate the impact
on power grids, so the proposed methodology integrates sim-
ulation of the real grid to monitor its critical electrical points
and variables neglecting the impact of real grid dynamics
on the results. In order to accelerate the learning process, it
may be appropriate to rely on forms of pretraining that can
accelerate convergence and make the problem more robust.
The work therefore focuses on integrating these aspects and
in particular aims to:
� Formulate the EVs charging and discharging scheduling

problem as a MDP with the goal of minimizing costs,
maximizing rewards from the V2G service provision,
and limiting grid overloads. This approach leverages
state-of-the-art Proximal Policy Optimization (PPO) al-
gorithms to improve learning efficiency and accuracy
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� Improving performance by using Neural Network (NN)
pretraining techniques based on expert-generated trajec-
tories derived offline.

� Integrating power flow simulation of a power grid where
scheduling is applied. This algorithm incorporates power
flow calculations to evaluate transformer load levels and
overall network state, ensuring that network dynamics
are accurately accounted for. In addition, the algorithm
takes into account the actual characteristics of EV bat-
teries to optimize charging and discharging decisions.

� Employ the model-inversion method and a 0th-order
equivalent circuit model for a precise calculation of the
operational range of EV batteries.

The remainder of the paper is organized as follows.
Section II describes the problem formulation and provides
an overview of RL. Section III presents the model used to
run the simulation. Section IV describes the RL-based model
used to solve the optimization problem. Results are reported
in Section V and discussion, while Section VI concludes the
paper with suggestions for future work.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
This work aims to develop an aggregator model for manag-
ing EVs charging within a distribution network, optimizing
charging/discharging processes to minimize end-user costs
and reduce network overloads. A medium-voltage CIGRE
network is employed to simulate the distribution network,
containing distributed generation units such as photovoltaic
and wind systems, various nodes, and transformers between
MV and LV levels. The original network model is detailed
in [26], and its specific implementation is described in [27].
Stochastic loads, derived from real load profiles, are applied to
all network nodes, while a finite number of charging stations
(each with a variable number of charging points) is assigned
only to selected nodes. The management of charging and
discharging cycles for V2G, is governed by an optimization
algorithm based on Deep Reinforcement Learning (DRL).

The implemented model follows an iterative operational
flow over discrete time intervals t ∈ T . In each time step t ,
the model operates as follows: 1) Initially, the network state
is determined through a Power Flow (PF) calculation based
on the loads and distributed generators present. This provides
the current system conditions in terms of voltages, overloads,
and node capacities. Based on these results, the maximum
power deliverable to each Charging Station (CS) i ∈ I is cal-
culated, taking into account transformer capacity limitations
and general system conditions. This value serves as a key
input parameter for the next step, where energy flows for the
CSs are computed by the DRL algorithm 2) The optimization
of charging and discharging power for each EV k ∈ K is
based on a RL model that takes as input forecast data, the
vehicle presence vector, and the maximum power deliverable
by each station. Three charging stations are considered, each

equipped with six AC charging points. Within the simula-
tion time window, multiple vehicles can sequentially undergo
charging and discharging processes. Each vehicle State of
Charge (SoC) and departure time are continuously monitored.
At any given time, all six charging points at a station can be
occupied or free, determined by a random algorithm. The EVs
are modeled with diverse real-world characteristics, reflecting
different types and capabilities. Using the PPO algorithm, the
model determines the optimal charging/discharging profile for
each EV in each time interval, minimizing costs while staying
within the power limit derived in the previous step to avoid
network overloads. 3) After defining the charging profile, the
total power of each station is reintegrated into the network,
performing a new PF calculation to update the network state,
considering the contribution of the charging points. In this
way, the impact of charging on the network is evaluated, and
voltage variations and overload conditions are assessed.

In the next subsections are described the basis of RL and the
PPO, i.e. the algorithm used to control the power exchanged
among the EVs and the grid.

B. PRINCIPLES OF RL
RL is a machine learning (ML) paradigm where an agent in-
teracts with an environment to maximize a long-term reward.
This interaction is modeled as a MDP, represented by the tuple
(S,A, P, R), where:
� S is the set of states;
� A is the set of actions;
� P(st+1 | st , at ) is the transition probability to the next

state given the current state and action;
� R(s, a, r) is the reward function, providing the immedi-

ate reward r for a given state-action pair;
At each time step t , the agent observes a state st , selects

an action at based on the policy receives a reward rt , and
transitions to the next state st+1. There are two main types
of policies, deterministic and stochastic ones, expressed by
μ(at |st ) and π (at |st ) respectively. The goal of RL is to find
an optimal policy π∗ that maximizes the expected cumulative
reward, or return, defined as:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =
∞∑

k=0

γ kRt+k+1 (1)

RL methods are typically divided into three categories:
value-based, policy-based, and actor-critic methods. Value-
based methods, such as Q-learning, aim to compute the
optimal Q-values iteratively using the Bellman equation and
then derive the optimal policy. While value-based methods are
effective in discrete action spaces, they face limitations in con-
tinuous action environments. To overcome this, policy-based
methods were developed. They leverage on the policy gradient
method to find the optimal parameter θ of the NN to obtain the
correct probability distribution over the action space. The goal
is to assign high probabilities to the actions that maximize the
cumulative reward of a trajectory τ .

J (θ ) = Eτ∼πθ (τ )[G(τ )] (2)
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The objective function is maximized by computing the gradi-
ent ∇θJ (θ ) and updating the parameters according to:

θ = θ + α∇θ J (θ ) (3)

Actor-critic methods combine both value-based and policy-
based approaches. They use two networks: the actor-network,
which is responsible for updating the policy, and the critic net-
work, which evaluates the policy produced by the actor. The
parameters of both networks are updated at each step of the
episode. This combination helps stabilize training by benefit-
ing from both the direct policy optimization of policy-based
methods and the value estimation of value-based methods.

C. PPO ALGORITHM WITH CLIPPED SURROGATE LOSS
Policy gradient methods are on-policy algorithms, meaning
they improve the same policy used to generate trajectories dur-
ing each iteration. As previously shown in (3), these methods
adjust the network parameters by computing the gradient of
the objective function with respect to the policy parameters,
often using a small learning rate α to avoid large deviations
between the old and new policies. This approach helps miti-
gate issues such as model collapse, where the policy updates
are too large, destabilizing training. However, taking small
steps with a small learning rate can slow down learning. Trust
Region Policy Optimization (TRPO) [28] addresses this issue
by attempting to make larger policy updates while ensuring
that the new policy does not differ too much from the old one.
This is achieved by constraining the Kullback-Leibler (KL)
divergence between the old and new policies to be below a
threshold, δ. This constraint is known as the trust region con-
straint, which allows TRPO to make larger updates without
risking instability. The downside is that TRPO is computation-
ally expensive because it requires second-order optimization
methods. PPO [29] improves upon TRPO by simplifying the
process. PPO ensures that the policy updates stay within the
trust region using a first-order method, which makes it com-
putationally more efficient. Instead of using direct constraints
in the objective function, PPO uses a clipping function (in
the PPO-Clip variant) to limit how much the new policy can
differ from the old one. This ensures that the updates remain
stable and efficient without needing complex second-order
methods. There are two main variants of PPO: PPO-Penalty
and PPO-Clip. The second variant is used in this paper, and
its pseudocode is presented in Algorithm 1.

III. MODEL FRAMEWORK
To implement the above strategy, a Python-based simulation
framework has been developed. It enables the modeling of all
aspects of EV creation and management, as well as the evalua-
tion of their impact on the network. The following subsections
outline its various components.

A. ELECTRIC VEHICLES
In the proposed energy management model for EVs, a de-
tailed database is used, including key specifications of various
vehicle models such as battery capacity, maximum charging

Algorithm 1: PPO-Clip.
1: Input: initial policy parameters θ0, initial value

function parameters φ0

2: for k = 0, 1, 2, . . . do
3: Collect a set of trajectories Nk = {τi}N

i=1 by
running policy πk = π (θk ) in the environment.

4: Compute rewards-to-go Rt for each state st .
5: Estimate the advantage Ât , based on the current

value function Vφk , using:

Ât = Q(st , at ) − Vφk (st ) (4)

or, using Generalized Advantage Estimation
(GAE).

6: Compute the gradient of the objective function
∇θLclip where:

Lclip = 1

|Nk|
∑
τ∈Nk

T −1∑
t=0

min
(
rt (θ )Ât ,

clip(rt (θ ), 1 − ε, 1 + ε)Ât
)

(5)

and:

rt (θ ) = πθ (at |st )

πθk (at |st )
(6)

7: Update the policy network parameter θ typically
via gradient ascent with Adam:

θk+1 = θk + α∇θ Lclip (7)

8: Compute the mean square error (MSE) of the
value network

J (φ) = 1

|Nk|
∑
τ∈Nk

T −1∑
t=0

(
Vφ (st ) − R̂t

)2
(8)

9: Compute the gradient of the value network ∇φJφ

10: Update the value network parameter φ typically
via gradient descent with Adam:

φk+1 = φk − β∇φJφ (9)

11: end for

and discharging power, and support for V2G functionality.
This data enables the construction of a management system
that simulates the real behavior of batteries during charging
and discharging cycles. The real-world characteristics of 12
different vehicles have been considered. The data can be found
in [30], which is based on the RVO-NL report. The maximum
and minimum power absorbable by each vehicle are defined

by P
ch

and Pch, respectively. Similarly, the power deliverable

during discharge is limited by P
dis

and Pdis. These values are
determined using an empirical methodology that maps the
maximum power value based on the SoC of a vehicle at a
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TABLE 1. Coefficients for the Open Circuit Voltage (OCV) Polynomial and
Battery Cell Specifications

given moment, according to its characteristics. These param-
eters vary depending on the charging mode, AC or DC. The
derivation of this mapping is described below.

In this paper, the same battery cell specifications are consid-
ered for all battery packs of different vehicles. The parameters

that vary are P
ch

, Pch, P
dis

, Pdis, and the EV battery capacity
E , to account for the actual power limitations defined by the
Battery Management Systems (BMS) of each vehicle.

1) EQUIVALENT CIRCUIT MODEL FOR THE BATTERY
The battery considered for the model is a Sanyo Li-ion 18650
cell, model UR18650E, characterized by an anode composed
of Li(NiMnCo)O2 and a carbon cathode. The main specifica-
tions of the cell are listed in Table 1. To represent the electrical
behavior of the battery, a 0th-order Equivalent Circuit Model
(ECM) is used [31]. In this model, the battery voltage V (t ) is
represented as:

V (t ) = OCV(z(t )) + R · I (t ) (10)

where:
� OCV(z(t )): Open Circuit Voltage (OCV), a function of

the SoC z(t ).
� R: internal resistance of the battery.
� I (t ): current, the control variable of the battery. When

positive, it indicates charging; when negative, it indicates
discharging.

As illustrated in (11), the derivative of the SoC z(t ) can be
expressed as the ratio between the current and the nominal ca-
pacity of the battery bcap,Ah in ampere-hours (Ah). Integrating
this equation over time with a step size �t , the SoC is updated
iteratively for each time interval. Equation (12) enforces that
the SoC z(t ) remains within the range of 0 (fully discharged)
to 1 (fully charged):

dz(t )

dt
= I (t )

bcap,Ah
(11)

0 ≤ z(t ) ≤ 1 (12)

FIGURE 1. SoC - P map for a battery of 11kWh.

The OCV is modeled as a fourth-degree polynomial based
on voltage measurements at different SoC levels. The coeffi-
cients obtained from the fit are shown in Table 1. The resulting
polynomial is expressed in (13).

OCV(t ) = γ4 · z(t )4 + γ3 · z(t )3 + γ2 · z(t )2 + γ1 · z(t ) + γ0

(13)

2) POWER CALCULATION
Once the OCV curve as a function of the SoC is obtained,
the charge/discharge current is calculated using the model-
inversion method [32]. Since both current and voltage must
remain within safe limits, two current limits are defined:
� Maximum current limited by power, Icp:

Icp = −OCV(z(t )) +
√

OCV(z(t ))2 + 4 · Pmax · R

2R
(14)

� Maximum current limited by voltage, Icv:

Icv = Vmax − OCV(z(t ))

R
(15)

The actual current is then constrained to the minimum value
between Icp and Icv to ensure that neither the maximum power
nor the maximum voltage are exceeded:

I (t ) = min(Icp, Icv) (16)

This approach ensures that the battery always operates
within safe limits, avoiding overcurrents and overvoltages.
Once the current for a given time instant t is determined, the
updated SoC can be derived as follows:

z(t + 1) = z(t ) + I (t )

3600 · Q
· Ts (17)

At each time step, the power P(t ) delivered or absorbed by
the battery is calculated as the product of the battery voltage
V (t ) and the current I (t ):

P(t ) = V (t ) · I (t ) (18)

This method provides a power map as a function of the SoC
as the one in Fig. 1, which is useful for evaluating battery
behavior and the maximum deliverable/absorbable power un-
der various charge/discharge conditions. The obtained values
are calculated at the battery cell level and must therefore
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be scaled proportionally to the capacity of the vehicle under
consideration to reach the battery pack level.

B. CHARGING STATION SIMULATION
In the simulator, the simultaneous charging of a group of
EVs is centrally managed by a CS i ∈ I. Each vehicle k ∈ K,
with K being the set of all vehicles, has a variable initial
SoC and specific arrival and departure times. These values are
randomly determined within the time window during which
the simulation takes place. The station simulation dynami-
cally monitors vehicle availability and their remaining energy,
allocating charging power while respecting the operational
limits of the station. The parameters used in the simulation
are defined as follows:
� SOCk (t ): current state of charge of vehicle k at time t ∈
T .

� SOCarr
k (t ): arrival state of charge of vehicle k.

� SOCtarget
k (t ): minimum state of charge that vehicle k

must have upon departure.
� tarr

k and tdep
k : arrival and departure times of vehicle k.

� uk,t : binary variable indicating whether vehicle k is
connected to the station at time t (1 if connected, 0
otherwise).

� N : total number of vehicles managed by the station.
� t ∈ T : current time in the simulated day.
At each time step t ∈ T , the vehicles present and those

departing within the next hour are initially identified. Suppose
a vehicle k ∈ K is connected and leaving in the immediately
following time step. In that case, it is added to a list of ve-
hicles leaving the station in the next interval. This allows for
assessing the SoC of the departing vehicle to apply a potential
penalty if its SoC is lower than the target value set. This logic
is the same used in [33]. In addition to this, the station imposes
constraints on the total available power to avoid overloading,
with dynamic power distribution to the charging EVs:
� Station Maximum Power Constraint: the sum of the pow-

ers assigned to the vehicles must respect the maximum
station capacity P

cs
i at all times t ∈ T .

� Power Constraint for each EV: the power allocated to
each EV cannot exceed the individual limits.

This mechanism ensures that the station’s total power us-
age remains within the maximum allowable limit, preventing
overloads while maintaining operational stability.

C. ELECTRIC GRID
An important feature of the simulator used is its capability
to include a physical model of the grid and perform PF cal-
culations. As previously mentioned, the simulated electrical
grid is based on the CIGRE MV network depicted in Fig. 2.
The model was constructed using the pandapower pack-
age [34]. It includes a set of MV buses b ∈ B interconnected
by distribution lines, loads l ∈ L, distributed generators g ∈
G (considering both photovoltaic (PV) and wind sources),
transformers t ∈ T , and various switches s ∈ S . Additionally,
to allow for the inclusion of a fixed number of CSs c ∈ C,

FIGURE 2. CIGRE distribution network. Buses 15, 16, and 17 are equipped
with charging stations. The diagram also allows to identify the types of
generators installed at each bus, where present. Additionally, the two
types of transformers used in the system are shown.

FIGURE 3. Distribution of active power for the three main load categories:
industrial, commercial, and residential. Each category includes multiple
load profiles, which have been adjusted and randomized to simulate real
scenarios.

three low-voltage LV buses were added, interfaced to the
grid via three transformers. These transformers are of type
0.25 MVA 20/0.4 kV, suitably rated to support loads up
to 0.25 MVA.

The active power demand of the loads is obtained from
a real-world dataset [35], while the reactive power (Q) is
calculated using a power factor of cos(ϕ) = 0.95. The distri-
bution of active power for the normalized loads is illustrated
in Fig. 3. As illustrated, the loads are grouped into three main
categories: industrial, commercial, and residential. Multiple
load profiles are defined for each category. These profiles were
adjusted and randomized to simulate realistic variations and
reflect the characteristics of loads connected to both MV and

VOLUME 6, 2025 1077



ROSSI ET AL.: SMART ELECTRIC VEHICLE CHARGING ALGORITHM TO REDUCE THE IMPACT ON POWER GRIDS

FIGURE 4. Hourly generation profiles for PV generators, calculated based
on nominal capacity and expected generation values.

LV buses. Specifically, industrial and commercial loads are
connected to MV nodes, while residential loads, along with
CSs, are assigned to LV nodes. For PV generators, the power
of each generator is derived by multiplying the nominal plant
capacity by the expected generation value for a specific hour
on a given day. These values, shown in Fig. 4, were obtained
using a methodology similar to that described in [36] and
the data collected by ENTSO-e [37]. Power flow calculations
are performed at each time step t to assess the state of the
network, calculate power flows along each branch, and mon-
itor transformer loading. Transformer loads are continuously
monitored to ensure they do not exceed 100%, thus avoiding
rapid degradation caused by thermal effects from overloading.
The loading percentage of each transformer (Ltrafo) is calcu-
lated as:

loading% = max

(
ihv · vhv

sn_mva
,

ilv · vlv

sn_mva

)
· 100 (19)

where ihv and ilv are the currents on the high-voltage and low-
voltage sides of the transformer, vhv and vlv are the voltages
on the high-voltage and low-voltage sides, and sn_mva is the
transformer’s nominal power in MVA.

To prevent overloading, the maximum additional power that
can be drawn from the LV buses by individual CSs without
exceeding the transformer’s capacity is calculated as:

Pmax LV = Snom · (100 − Ltrafo)

100
· cos(ϕ) (20)

where Pmax LV represents the maximum power that can be
safely added without compromising transformer performance.

IV. PROPOSED DRL-BASED CHARGING STRATEGY
This work focuses on maximizing the profit derived from
providing V2G services. Specifically, the goal is to minimize
charging and maximize discharging during periods of high
energy demand, and vice versa, while satisfying user require-
ments, such as ensuring the vehicle is charged to the desired

SoC upon departure, and respecting grid constraints, such
as avoiding transformer overloads. In this scenario, the tarr

and tdep, as well as their target SoC, are considered known.
Additionally, the capacity E of the vehicle battery is assumed
to be provided when connecting to the CS. Time is discretized
into intervals t ∈ T , and the number of vehicles k ∈ K varies
dynamically. This optimization problem is solved for a sin-
gle CS, as randomizing variables such as tarr

k , tdep
k , and uk,t

enables the training of a NN capable of managing a generic
station. Therefore, a single controller model can be developed
and applied locally at each CS c ∈ C. The optimization prob-
lem is formulated as follows.

Objective function:

max
Pch,Pdis

∑
t∈T

∑
k∈K

(
Pdis

k,t · cdis
t + Pch

k,t · cch
t

)
· �t (21)

Subject to:

Pk,t = Pch
k,t − Pdis

k,t ∀k,∀t (22)

SOCk,t+1 = SOCk,t + Pk,t

Ek
· �t ∀k,∀t (23)

SOCk,t=tarr
k

= SOCarr
k ∀k (24)

SOC
k,t=tdep

k
≥ SOCtarget

k ∀k (25)

SOCk ≤ SOCk,t ≤ SOCk ∀k,∀t (26)

Pch
k ≤ Pch

k,t ≤ P
ch
k ∀k,∀t (27)

Pdis
k ≤ Pdis

k,t ≤ P
dis
k ∀k,∀t (28)∑

k∈K
Pk,t ≤ P

cs ∀k,∀t (29)

Pch
k,t · Pdis

k,t = 0 ∀k,∀t (30)

In (21) Pdis
k,t and Pch

k,t represent the discharging and charging

power of vehicle k at time t , respectively, and cdis
t and cch

t are
the electricity prices in the day-ahead market for discharging
and charging, respectively, at time t . The profit is calculated
over the time step �t . The difference between charging and
discharging power is expressed as Pk,t as shown in (22).

The second constraint (23) governs the evolution of SoC
of each vehicle over time. The SOC at time t + 1 depends on
the previous SOC, adjusted for the charging and discharging
powers. The third and fourth constraints, (24) and (25), set
the SoC at arrival and departure times. Specifically, the SoC
at arrival must match the initial value SOCarr

k (given as a
random input), while the SoC at departure is constrained to
the target value SOCtarget

k . The constraint (26) ensures that the
SOC of each vehicle remains within allowable bounds, SOCk
and SOCk , throughout the time period. The sixth and seventh
constraints, (27) and (28), limit the charging and discharging
power of each vehicle. Thus the power must remain within
predefined bounds, which account for the physical limits of
the vehicle’s battery and charging system. The constraint (29)
ensures that the total power requested from all vehicles at
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any given time does not exceed the power capacity P
cs

of
the CS. This is necessary to avoid overloading of the trans-
former. Lastly, the ninth constraint (30) ensures that a EV
cannot charge and discharge simultaneously. This constraint
is enforced by the product of the charging and discharging
powers, which must be zero at all times, ensuring that the
vehicle operates in a mutually exclusive mode for charging or
discharging. The simplest, but also very effective, way to deal
with these constraints is to consider them as soft constraints
via loss functions [38].

A. OPTIMIZATION SOLUTION
In the proposed DRL-based framework for EV charging
optimization the PPO agent is initially trained offline in a sim-
ulation environment that emulates the dynamic behavior of
the distribution network and EV charging demands. Through
this process, the agent learns an optimal policy π that deter-
mines the charging and discharging actions for each vehicle
k at every time step t . The policy is subsequently applied in
real-time to manage CSs efficiently and profitably, ensuring
efficient power allocation while adhering to grid constraints
and user requirements.

B. STATE AND ACTION SPACES
The state, serving as the input to the PPO agent, encapsulates
key information about the EV charging environment. This
includes the maximum power deliverable by each CS, the
actual electricity price, forecasts on future electricity prices
for a time horizon h = 24 hours, SoC of each vehicle (if
present), and the time remaining until each vehicle’s departure
(assumed to be known). All these features are normalized
using the Min-Max normalization, thus remaining within the
range [0, 1] scaling technique to handle the diverse ranges of
the parameters before being processed by the agent:

St =
[
P

cs
i , pt , p̃t+1, p̃t+h, SoC1:k,i,t , tdep

1:k,i − t
]
∀k,∀i,∀t

(31)
The action space consists of the charging and discharging

power allocated to each vehicle:

at = [
�P1,i,t , . . . ,�Pk,i,t

] ∀k,∀i,∀t (32)

Differently from the state space, the action space is bounded
between [−1, 1]. This is justified by the fact that EVs pro-
vide V2G services. This means that they can both absorb
and withdraw energy. By interacting with the environment
during training, the PPO agent learns to make incremental
adjustments to charging decisions. This enables the agent,
once trained, to dynamically optimize the charging process
in real-time, achieving efficient energy utilization and com-
pliance with user and system constraints.

C. NEURAL NETWORK STRUCTURE
The NN used in the PPO framework consists of an actor-critic
architecture, with both the actor and critic networks having
identical structures. The input to the network corresponds to
the state space defined in the previous section. The output of

the actor-network represents the charging/discharging power
allocated to each vehicle.

The model is composed of five fully connected layers with
400, 300, 128, 64, and k neurons, respectively, where k corre-
sponds to the dimension of the action space, i.e. the number of
EVs in the system. The first four layers employ the tanh acti-
vation function, which is well-suited for capturing non-linear
relationships and preventing the vanishing gradient problem.
The final output layer also applies the tanh function to en-
sure the outputs remain within a bounded range, reflecting
the predicted charging power. This is necessary in order to
comply with the action space constraints, which are bounded
in the range of [−1, 1]. Indeed this is the optimal range for
PPO when implemented with Stable Baselines 3 (SB3) [39].
This structure is used both for the actor and the critic in
the PPO framework, ensuring that the agent can effectively
optimize the charging process while adhering to the system’s
constraints.

D. IMITATION LEARNING-BASED INITIALIZATION
To improve the efficiency of the DRL training process for
optimizing EV charging and discharging, Imitation Learning
(IL) was employed to initialize the weights of the actor NN.
Directly training the DRL agent from scratch in environments
with large state and action spaces can be computationally
expensive and may even fail to converge in some scenarios.
The adoption of IL mitigates these challenges by leveraging
expert demonstrations to provide a strong initialization for the
actor NN, thereby reducing the number of steps required for
policy optimization.

In this work, offline optimization was used to generate ex-
pert trajectories, where each trajectory maps network states st

to optimal charging and discharging actions for EVs. These
(state, action) pairs were then used to train the actor NN
through supervised learning, effectively formulating the prob-
lem as a regression task. The training objective minimizes
the mean squared error (MSE) between the predicted actions
and the expert actions, as stated in (33). The actor NN was
trained using the Adam optimizer with a batch size of 256 and
a learning rate of 0.001.

L(θ ) = 1

NIL

∑
(st ,at )∈Dtrain

‖at − μθ (st )‖2 (33)

where Dtrain is the training dataset containing NIL samples, st

represents the system state, at denotes the expert action, and
μθ is the parameterized mapping function of the actor NN.

The trained weights serve as the initial parameters for the
actor NN within the PPO framework. This initialization not
only accelerates the convergence of the DRL agent but also
provides a validation mechanism for the NN structure, ensur-
ing its ability to capture relevant patterns in the state-action
mapping. However, as IL alone may not generalize across
all operating conditions of the network, the DRL process is
subsequently employed to further refine the control policy
through iterative interaction with the environment.
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FIGURE 5. Flowchart of the interaction of the environment with the agent.

E. OFFLINE TRAINING PROCESS OF PPO AGENT FOR
EFFECTIVE CHARGING PLANNING
The training of the PPO agent, as shown in Fig. 5, involves
interaction with the environment in a series of episodes. Each
episode starts with the reset(·) function, which initializes
the system, retrieves the necessary data (e.g. vehicle specifica-
tions, energy prices, and grid data), and sets the initial state st .
The agent then takes actions based on its current policy, which
are passed to the step(·) function. This function computes
the updated state, the resulting reward, and the done signal
based on the agent’s actions, and progresses to the next time
step. The episode terminates when the last time step t ∈ T is
reached, marking the end of the episode.

As previously mentioned, this paper adopts the soft con-
straints approach. This means that the previously described
constrained optimization problem is converted into an uncon-
strained optimization problem by introducing penalty terms
with fixed coefficients. Thus, the resulting reward function
becomes:

Reward = − [Rec + Rsoc + Rol] (34)

where 1© Rec is the general cost associated with the difference
between the energy drawn from and injected into the grid 2©
Rsoc is the penalty for charging incompleteness, applied when
an EV SoC at departure is below the target value. The penalty
increases as the final SoC deviates from this target 3© Rol is
the penalty for grid overload, applied when the total energy
used by the EVs exceeds the grid’s available power capacity

at any given hour.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Rec = ∑
t∈T

∑
k∈K

(
−Pdis

k,t · cdis
t + Pch

k,t · cch
t

)
· �t

Rsoc = ∑
t∈T

∑
k∈K

(
100 ·

∣∣∣SOCtarget
k − SOCfinal

k,t

∣∣∣)

Rol = ∑
t∈T

∑
k∈K 10 ·

(
Pch

k,t −Pdis
k,t

)
−P

cs

P
cs if > 0

(35)
The PPO agent interacts with the environment and learns to

optimize its policy by observing the rewards generated at each
step. One epoch corresponds to a complete pass through the
training data.

F. HYPERPARAMETER TUNING AND SIMULATION
SETTINGS
The hyperparameters of the RL model are set based on the
values provided in [40], with the exception of the learning
rate, which was set to 1 × 10−4 . During the pretraining phase,
the model was trained over 10,000 epochs, while in the subse-
quent PPO training phase, the model was trained for 500,000
timesteps. The entire simulation model is based on Python
3.11.9. All simulations were conducted on a laptop featuring
an Intel i7-11800H processor running at 2.30 GHz, with 32
GB of RAM.

V. STUDY CASES
In this section, the performances of the developed model
are assessed by analyzing three different case studies. First,
the general scenario is presented, where 500 distinct trajec-
tories are analyzed to determine whether the RL algorithm
achieves results comparable to those obtained using tradi-
tional optimization. Then, the analysis focuses on two specific
case studies where the algorithm is put under stress: 1) a
random-case scenario with a higher number of EVs during
the same day, and 2) a worst-case scenario where all EVs
arrive at the CSs when the grid is almost overloaded. In
the latter two cases, the charging and discharging profiles
of the EVs, as well as their impact on grid overload, are
thoroughly examined. The charging and discharging actions
obtained with the RL algorithm are compared to the optimal
actions derived through an optimization algorithm using the
Gurobi solver [41], under the assumption of full knowledge
of external variables. Given this full-knowledge approach, an
open-loop optimization is enough for the comparison, elim-
inating the need to solve the problem using a closed-loop
strategy such as MPC. Both analyses are performed using
30-minute time steps and a 24-hour time horizon.

A. CASE STUDY 1: GENERAL-CASE SCENARIO
In this subsection, we analyze the results of the general
scenario in which the PPO algorithm, was tested on 500 ran-
dom V2G service provision configurations. In this scenario,
generic tarr and tdep as well as different power values were
considered for each of the 500 trajectories. The only constant
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TABLE 2. User Satisfaction and Algorithm Performance Metrics

factor was the SOCtarget , set at 80% of the nominal capacity
for all cases. The performance of the PPO algorithm is then
compared to a Traditional Optimization Algorithm (TOA)
to assess how well the RL-based approach can handle these
variable conditions.

The performance of the PPO algorithm is evaluated using
several metrics, as shown in Table 2. The results demon-
strate that the PPO algorithm performs, in terms of accuracy,
similarly to TOA across all key metrics. Specifically, user sat-
isfaction, defined in (36), is almost identical for both methods,
with PPO achieving a 97.3% satisfaction rate at CS 1 and
96.4% at CSs 2 and 3, compared to 100% for TOA.

εuser = 1

N
·
∑
n∈N

SoCn

SoCtarget
n

(36)

The number of overloads and the overloading values are also
nearly identical between the two methods, with only slight
differences observed in the results. This is mainly because,
considering the constraints into the loss function the problem
is soft-constrained. All the constraints for the TOA are hard
constraints, except for the station maximum power constraint
described in (29), which has been set as a slack constraint.
This is because it may be necessary to overload the grid
temporarily to ensure that a vehicle can depart fully charged.
Additionally, in cases where the grid is already overloaded,
the contribution of the CSs might be insufficient to allevi-
ate the situation. Consequently, while adhering to the station
maximum power constraint is desirable, it is treated flexibly
to avoid rendering the problem infeasible in scenarios where
strict compliance is not possible. In terms of costs, PPO
yields slightly higher values, with an average cost of approx-
imately 50.718€ at station 1, as opposed to 44.278€ with
TOA. The energy consumption results are similarly close,
with PPO reporting an average energy consumption ranging
from 147.6 kWh to 149.9kWh, compared to TOA values of
157.1kWh to 157.3kWh. These small discrepancies indicate
that PPO is able to manage the system effectively while pro-
viding slightly worse rewards for the users. However, the
difference in performance between PPO and TOA is minimal,
suggesting that PPO is a competitive solution for managing

the charging process. It should also be noted that the reference
solver operates with full knowledge of the environment, and
is therefore considered the exact solution to the problem. On
the other hand, the RL algorithm only knows the SoC of
the EVs for the entire duration of their stay at the CS, the
predictions of day-ahead market prices and the residual time
before departure. This assumption is acceptable in light of
recent developments in communication protocols for EVs in
the context of providing services to the grid [42].

Turning now to the computational effort, the training of the
NN involved two main phases. The pretraining phase took
approximately 50 minutes to initialize the model, followed by
the fine-tuning phase using PPO, which required an additional
4 hours. While these training times may seem substantial, it
is important to note that they are incurred only once and for
all. After the model is trained, it can be reused for multiple
simulations, making the model highly efficient for real-time
applications where quick responses are needed.

For the generation of the 500 trajectories, the RL algorithm
required 1h30, which is notably faster than the 3h45 needed
by TOA to solve the same problem. These times align with
those reported in other studies, where traditional solvers based
on mathematical models are generally more computationally
intensive.

Despite the longer initial training time with PPO, the one-
time computational cost makes it an attractive option for
scenarios that require fast decision-making. Once the model
is trained, it can generate results almost instantaneously,
allowing for quicker responses in real-time applications.
This efficiency, combined with similar performance outcomes
compared to TOA, positions PPO as a viable and efficient
solution for optimization problems in dynamic environments.

B. CASE STUDY 2: MEAN-CASE SCENARIO
This subsection examines a generic scenario where the grid,
initially excluding the presence of CSs, is not in an overload
condition. In this scenario, the algorithm’s primary focus is
on maximizing profits from providing the V2G service, as
power constraints are not a limiting factor. An important and
noteworthy finding is that the learning process was carried out
considering only one vehicle per day. However, as demon-
strated by this case study, this assumption does not limit the
model’s performance. By fully randomizing the arrival and
departure times of the vehicles, the algorithm can optimize
the V2G service based solely on the SoC at each moment
and the remaining hours until departure, effectively solving
the optimization problem. As for the costs, there is an in-
crease of 1.87% by the RL compared to TOA. Regarding user
satisfaction εuser defined in (36), in 50% of the cases it was
above 100% (indicating a SoC higher than the target), and
in the remaining 50% of the cases it never went below 80%
of the target (i.e. 64% SoC in that specific case). The figures
clearly show that the evolution of the SoC closely aligns with
the TOA, and that the energy trading actions are designed to
exploit the price profile to minimize costs. These results are
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FIGURE 6. SoC profiles in presence of more EVs during a single day.

FIGURE 7. Actions profiles in presence of more EVs during a single day.

illustrated in Fig. 6 for the SoC profiles and Fig. 7 for the
corresponding action profiles.

C. CASE STUDY 3: WORST-CASE SCENARIO
This subsection considers the worst-case scenario, where the
grid is already very close to an overload condition and all EVs
arrive during peak hours. The presence of CSs in such a sit-
uation risks exacerbating the overload, pushing transformers
dangerously close to 130% of their rated capacity. In this case,
the controller must limit the cumulative power demand of the
CSs. To demonstrate this, an ablation study was conducted
in which only the charging and discharging of the vehicles
was controlled based on electricity prices, without any con-
sideration of the power limits required by the transformers. In
Fig. 10, it can be seen that both the RL and the TOA model
aim to regulate the power generation in order to avoid further
overload. Specifically, it can be observed that for RL, the num-
ber of violations reached 4, with a maximum value of 108%,
whereas with TOA, the number of violations was 7 but with
smaller magnitudes, around 101%. Furthermore, as shown in
Fig. 8, user satisfaction in this scenario reached a value close
to 100%, indicating that the optimization process effectively
manages the grid’s stability while meeting the demands of the
EVs. The corresponding actions are shown in Fig. 9 .

FIGURE 8. SoC profiles in the worst case scenario.

FIGURE 9. Actions profiles in the worst case scenario.

FIGURE 10. Overloading profile throughout the day showing the
performances of the different algorithms and considering the ablation
study.

VI. CONCLUSION AND FUTURE WORKS
In this work, we presented a novel RL-based aggregator model
for managing V2G service provision within a distribution
network. The focus of the study was on optimizing the charg-
ing and discharging cycles of EVs to minimize costs, ensure
user satisfaction and reduce network transformers overloads.
The proposed model employed the PPO algorithm for RL
to control the charging behavior of EVs, considering real-
time network conditions and constraints. It also integrated
a realistic equivalent circuit model for the EV battery and
the model-inversion method to precisely calculate the battery
operational limits.

The performance of the model was rigorously evaluated
through a series of case studies. The results demonstrated
that the RL-based approach, despite its reliance on limited
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information compared to traditional solvers, achieved perfor-
mance comparable to TOA in terms of cost minimization, user
satisfaction, and network overload management. In particular,
the RL model operated efficiently in scenarios with dynamic
conditions, such as varying EV arrival and departure times and
grid congestion, while minimizing computational time. Fur-
thermore, the results confirmed the model’s ability to manage
a variable number of EVs on the same day. Even when the
network was near its capacity limits (worst-case scenario), the
RL algorithm successfully regulated EV charging to prevent
excessive transformer overloads and maintain grid stability.

The RL-base approach proved to be highly competitive,
offering a promising solution for real-time decision-making in
dynamic grid environments. Additionally its ability to manage
charging processes in a decentralized and adaptive manner
makes it a strong candidate for large-scale EV integration into
smart grids.

Future research could focus on developing hard-constrained
models to ensure stricter adherence to grid limits, especially
under high-load conditions. Additionally, exploring scenarios
where the arrival and departure times of EVs are unknown
would provide further challenges for the model, highlighting
its ability to adapt to more uncertain and dynamic conditions.
Another potential direction is the development of a multi-
agent model for the coordinated management of multiple EVs.
Another area for improvement in future work involves the
challenges of training reinforcement learning (RL) algorithms
in the real world, which arise from the high costs and risks as-
sociated with data collection. Innovative techniques can help
bridge the gap between simulated experiences and real-world
applications. By utilizing powerful simulation environments
with domain randomization, targeted real-world data collec-
tion, and safe RL methods, researchers can overcome the
limitations imposed by limited real-world data and enhance
the transfer of policies from simulation to actual implemen-
tation. Key approaches include Domain Randomization and
System Identification, which focus on adjusting simulation
parameters and calibrating environments to develop robust
policies. Furthermore, utilizing pre-collected historical inter-
action data enables the use of offline RL methods, reducing
the need for continuous exploration in the real world. By inte-
grating these strategies, future research can effectively address
the challenges posed by limited real-world data and improve
the transferability of trained policies.
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