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Abstract—Accurately predicting the remaining useful life 

(RUL) of lithium-ion batteries is crucial to ensure the safe and 

reliable operation of the energy storage and power supply 

systems. However, RUL prediction is significantly affected by the 

challenges posed by multi-dimensional nonlinearity. Embedding 

spatial-temporal variables helps reveal nonlinear relationships, 

making the degradation capacity spatial-temporal embedding an 

effective approach for extracting patterns and trends of battery 

degradation within multi-dimensional subspaces. Motivated by 

this, this work proposes a phase space reconstruction (PSR) 

approach that utilizes the C–C method combined with a 

convolutional neural network-bidirectional LSTM and 

hyperspace attention mechanism (CNN-BiLSTM-HAM) to 

address this challenge. First, the C-C method performs PSR 

according to time delay and embedding dimension values to 

transform degradation capacity data from one-dimensional time 

series into a multi-dimensional format. Next, the reconstructed 

capacity matrix is processed by the CNN to generate feature 

vectors that preserve the spatial structure and location 

information of the input data, while discarding irrelevant 

information. These feature vectors serve as input for training the 

BiLSTM. Finally, the HAM is used to allocate the weights of 

different feature subsets simultaneously. The proposed CNN-

BiLSTM-HAM model and C–C method are validated using the 

NASA dataset. Experimental results demonstrate that the 

proposed method yields accurate RUL prediction, with the 

absolute error, mean absolute error, and root mean square error 

all being less than 2, 1.3%, and 2%, respectively. 

 
Index Terms—Lithium-ion batteries, remaining useful life, 

capacity spatial-temporal embedding, convolutional neural 

network, bidirectional long short-term memory, hyperspace 

attention mechanism. 

I. INTRODUCTION 

HE energy storage system plays an increasingly critical 

role in modern energy and transportation systems, 

strongly supported by global energy-saving and 

emission-reduction policies [1],[2]. The lithium-ion battery is 

an environmentally friendly, high-energy, recyclable energy 

storage solution [3]. It has become integrated into the daily 

lives of consumers, powering devices like smartphones, 

laptops, and electric vehicles (EVs) [4],[5]. Despite their 

advantages, the increasing usage of lithium-ion batteries will 

 
This work was supported by the Fundamental Research Funds for the 

Central Universities of China (2023CDJYXTD-004). (Corresponding author: 

Yu Wang) 

Laijin Luo, Yu Wang, and Qiushi Cui are with School of Electrical 
Engineering, Chongqing University, Chongqing, China (e-mail: 

20241101048@stu.cqu.edu.cn; yu_wang@cqu.edu.cn; qcui@cqu.edu.cn). 

Yang Li is with Department of Electrical Engineering, Chalmers 
University of Technology, 41296 Gothenburg, Sweden (e-mail: 

yangli@ieee.org). 

inevitably cause performance degradation [6], which can lead 

to issues such as capacity loss, reduced driving range, and 

shortened service life [7]. Consequently, when the battery’s 

maximum available capacity falls to the failure threshold, i.e., 

typically 70 to 80% of its nominal capacity [8],[9],[10], it can 

no longer reliably power EVs. Timely battery replacement is 

essential to avoid increased safety risks [11]. To accurately 

monitor the power, safety, and reliability of the entire energy 

storage system, it is crucial to design an effective approach for 

predicting the battery’s remaining useful life (RUL), which 

also enables early warning of potential battery failure [12], 

[13]. 

Many researchers have conducted in-depth exploration into 

methods of battery RUL prediction over the past few years. 

There are three main categories of RUL prediction methods—

model-based [14], data-driven [15], and hybrid approaches 

[16]—as summarized in Table I. Model-based approaches 

require an accurate physical degradation model that describes 

the complex electrochemical behaviors inside a battery. 

However, these approaches involve extensive 

parameterization and computational efforts, resulting in many 

challenges in implementation and application [17]. In contrast, 

data-driven and hybrid approaches do not demand detailed 

battery physical parameters, such as convolutional neural 

network (CNN) [18], support vector machine (SVM) [19], and 

long short-term memory (LSTM) [20],[21]. They only require 

sufficient historical operating data to obtain more accurate 

battery capacity predictions [22].  

For example, Saxena et al. [18] predicted capacity decay 

curves utilizing discharging voltage data as CNN input. 

However, the current is sensitive to fluctuation with load 

variations in real working conditions, resulting in a predictive 

model that might fail to match the actual battery voltage 

behavior. In order to enhance the SVM, Swain et al. [19] built 

a more comprehensive battery capacity degradation model that 

combined the one-way analysis of variance to validate the 

impact of aging factors, such as temperature change and usage 

cycle, on battery capacity. Zraibi et al. [20] combined the 

advantages of CNN and LSTM to extract temporal and spatial 

features from discharge capacity data for battery RUL 

prediction. This not only provided an effective method for 

constructing a deep hybrid model but also demonstrated that 

the hybrid model is superior to a single model. Lyu et al. [21] 

extracted aging features from partial charging data to establish 

an offline SVM-based capacity estimation model. The model 

uses LSTM to predict aging features in real time, which are 

then incorporated into an offline model for RUL prediction. 

This approach provides novel insights for indirect RUL 

T 
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prediction and health management. 

Although CNN, LSTM, and SVM have achieved notable 

success in battery RUL prediction, they present various 

limitations. For example, while CNN is excellent in extracting 

abstract features in image processing, it is difficult to establish 

temporal dependencies in time series data. Meanwhile, SVM, 

as a commonly used supervised learning method, often relies 

on expert knowledge to perform reliable feature engineering. 

LSTM can memorize and update the input data information 

through the unique logic gates, but its unidirectional structure 

restricts the model to learning information soley from past 

time steps. In addition, the regeneration phenomenon during 

battery aging can easily cause deviations in capacity data. 

Therefore, using the bidirectional structure of BiLSTM to 

learn information from both past and future time steps offers 

an effective solution for improved prediction accuracy and 

overcoming the above challenges [22]. 

 
TABLE I 

COMPARISON OF THREE RUL PREDICTION METHODS 

 

Method Advantages Disadvantages 

Model-based 
High interpretability; 

low data requirements 

Complex modeling and 

parameter identification 

Data-driven 
Adaptable to diverse 

patterns; high accuracy 

High data dependency and lack 

of interpretability 

Hybrid 

approaches 

Combines strengths of both 

approaches 

Increased complexity; needs data 

and expertise 

 

Notably, in data-driven and hybrid approaches, data 

dimension is important for the effectiveness of the algorithm. 

Overly large data dimensions and lengths can increase model 

complexity and lead to overfitting on the training set, resulting 

in poor performance on unseen data. Small data lengths and 

dimensions fail to capture long-term dependencies that are 

important for making accurate predictions. According to 

Takens’ theorem, choosing an appropriate time delay and 

embedding dimension is critical for effectively predicting 

nonlinear time series [18]. Therefore, determining the 

dimension and length of input data is a challenging but crucial 

task. The C–C method proposed by Kim et al., which utilizes 

two correlation integrals and is named after the statistical 

concept, can be effectively used to calculate the embedding 

dimension and time delay in solving non-linear time series 

prediction problems [19],[20]. Particularly, phase space 

reconstruction with the C–C method offers the advantage of 

better capturing the nonlinear relationships and dynamics 

buried in the data. This capability contributes to enhanced 

feature extraction, analysis, and modeling accuracy. On the 

other hand, the presence of the capacity regeneration 

phenomenon causes the nonlinear problem to exhibit varying 

degradation rate trends at different stages, making it difficult 

to capture the dynamic changes in battery capacity over time. 

Specifically, available capacity will recover briefly or even 

increase compared to the previous cycle, with an amplitude 

typically ranging from 0% to 5%. However, this is often 

followed by a faster decay in battery capacity during the 

subsequent cycle [21]. This capacity regeneration 

phenomenon can cause a failure to accurately reflect the 

overall trend of changes and reduce the confidence level in the 

predicted results. 

In order to resolve the above issues, this paper proposes a 

novel convolutional neural network bidirectional LSTM with 

hyperspace attention mechanism (CNN-BiLSTM-HAM) 

structure as well as a capacity data phase space reconstruction 

(PSR) technique for reducing prediction error and improving 

the performance of battery health monitoring. In the PSR 

technique, we drop the classical strategy of using a fixed 

moving window for a one-dimensional time series. Instead, we 

perform spatio-temporal embedding by mapping one-

dimensional capacity data into a high-dimensional space and 

determining appropriate time delay and embedding dimension 

values. This approach ensures that the complex nonlinear 

dynamics of different degradation rate stages are captured in a 

more comprehensive way. Meanwhile, by considering the 

interdependence between different degradation stages within 

the capacity data embedded through spatial-temporal 

dimensions, valuable coupling features are automatically 

extracted through the convolutional and pooling layers of the 

CNN. The BiLSTM effectively models the accurate temporal 

dependencies of each degradation rate stage, enhancing the 

reliability and accuracy of RUL prediction. To tackle the 

heterogeneity and complexity of degradation rates, we propose 

the HAM to selectively and dynamically adjust the weights of 

different degradation rate stages. The main contributions and 

novelties of this research are outlined as follows: 

 

1) A methodology is introduced for embedding spatial-

temporal degradation capacity data based on PSR with the C–

C method. This proposed approach enhances data 

dimensionality and reconstruction, allowing the network to 

extract more valuable information and prepare for more 

effective training in subsequent steps. 

2) A hybrid prediction model based on CNN-BiLSTM-

HAM is constructed. In this model, CNN is employed to 

extract a rich feature map from the reconstructed matrix 

(including dimension and length of capacity data). The 

BiLSTM network consists of two independently and inversely 

processed LSTM layers, allowing it to capture information 

from both past and future time steps simultaneously. At the 

same time, each LSTM selectively forgets and stores 

information in the input data based on memory units and 

gating structures to achieve an accurate prediction of the 

battery regeneration part. The HAM captures underlying 

relationships between different time steps and allocates 

learnable weights to enhance the representation of significant 

information at each time step. 

3) A framework for predicting the RUL is constructed by 

combining the C-C method with the CNN-BiLSTM-HAM 

hybrid model. This structure transforms traditional one-

dimensional capacity data into a higher-dimensional space, 

enabling the capture of hyperspace-level dynamic degradation. 

This approach offers new perspectives for understanding 

lithium-ion battery degradation mechanisms and effectively 
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bridges the gap between simple models and high-dimensional 

degradation features. 

The benefits of the proposed approach are demonstrated by 

comparing it with LSTM, BiLSTM, CNN-BiLSTM, CNN-

BiLSTM with single-head attention (CNN-BiLSTM-SHA), 

and CNN-BiLSTM-HAM methods. Furthermore, the 

performances of these methods are validated by establishing 

different prediction starting points (30, 50, and 70) in the 

experimental analysis. 

The remainder of this work is arranged as follows. Section 

II introduces established model methodologies and the 

proposed prediction frameworks, including the C-C method, 

CNN algorithm, BiLSTM algorithm, and HAM algorithm. 

Section III focuses on the experimental datasets, and four error 

metrics are used to analyze and discuss the predicted results of 

the comparison experiments. Section IV summarizes the key 

findings. 

II. PROPOSED METHODOLOGY 

A. Proposed RUL Prediction Framework.  

The proposed framework of the RUL prediction process is 

presented in Fig.1, based on the C-C method and the CNN-

BiLSTM-HAM hybrid model proposed in this paper. In this 

approach, the C-C method is used to embed spatial-temporal 

capacity data and determine the size of the capacity 

reconstruction matrix. By stacking multiple convolutional 

layers, the model achieves multi-level feature extraction, 

which contributes to better uncovering abstract features and 

underlying patterns. The BiLSTM effectively captures 

bidirectional dependencies within the data by 

comprehensively considering both past and future information 

at each time step. Finally, the HAM is introduced to process 

the weight assignments of different feature subsets in parallel, 

which enables precise forecasting of battery capacity 

degradation trends. 
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Fig. 1. Proposed RUL prediction framework based on C-C method and CNN-BiLSTM-HAM. 

 

Specifically, the proposed prediction framework is divided 

into the following three steps:  

Step 1: Capacity data acquisition and spatial-temporal 

embedding. Degradation sequence data of the battery capacity 

are obtained from NASA. Then the time delay and embedding 

dimension m are determined by the C-C method for 

reconstructing a capacity matrix. Different starting points of 

the capacity cycle are set to divide the data into training and 

testing sets.  

Step 2: Construction of prediction model. First, the 

reconstructed capacity matrix is input into a CNN containing 

two convolutional layers (kernel size of 2×2) to extract 

complex features. Next, the CNN outputs are fed into the 

BiLSTM network that simultaneously considers bidirectional 

dependencies to overcome capacity regeneration phenomenon 

at relevant moments. Finally, the output is calculated through 
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weighted summation based on the hyperspace attention matrix 

derived from combining the multi-head attention score matrix 

in different sub-spaces. 

Step 3: Evaluation index analysis of the result. The 

established CNN-BiLSTM-HAM model is trained for RUL 

prediction, and the predicted results are evaluated using four 

performance indicators. 

B. Spatio-Temporal Embedding of Capacity Data With the C–

C Method 

The C-C method is based on two correlation integrals to 

calculate the time delay and the embedding dimension. It is 

worth mentioning that the C-C method is very suitable for 

time series problems in nonlinear systems [20,21]. The 

capacity data of the battery can be represented as a time series

 1 2, , , ,L i LQ Q Q Q Q= . The correlation integral can be 

described as: 

1

2
( , , , ) ( )

( 1)

M M

i j

i i j

C m L r F r Q Q
M M


 

= − −
−

         (1) 

where ( 1)M L m = − −  represents the number of embedded 

points in the m-dimensional space, L is the size of the capacity 

time series data, r denotes the space distance, and τ indicates 

the reconstructed delay. Here F represents a function: if x ≥ 0, 

then F(x) = 1; if x < 0, then F (x)= 0. 

Next, the statistic S is a characteristic function to describe 

nonlinearity in a time series. S can be calculated by the 

following partitioning averaging strategy: 

1

1
( , , , ) ( , , , ) (1, , , )m

s s

S

L L
S m L r C m r C r



  
  =

 
= − 

 
      (2) 

Assuming m and are fixed, as L approaches infinity, S will 

be constant and equal to 0 for all space distance r. Normally, 

the collected data is limited and likely to be correlated in 

practice. Thus, ( , , , ) 0S m L r   . Further, the optimal delay

can be either the first zero crossings of ( , , , )S m L r  or location 

where the minimum rate of variation of ( , , , )S m L r   with 

respect to r. By selecting two representative rj, the following 

quantity is defined: 

   ( , ) max ( , , ) min ( , , )j jS m S m r S m r   = −         (3) 

where ( , , ) lim ( , , , )j j
L

S m r S m L r 
→

= , as these two quantities 

on the RHS of (3) can be considered equally important, the 

optimal delay problem can be transformed into finding the 

minimum of ( , )S m  . In order to do this, we define the 

following variable: 

( ) ( )corS S S =  +                              (4) 

where ( )S  and ( )S   represent the average values of 

( , )S m  and ( , , )jS m r  , respectively. The minimum of corS

denotes the time delay window w , and the first zero crossing 

of ( )S  or the first local minimum of ( )S  denotes the time 

delay d , thereby, the embedding dimension m can be obtained 

by solving ( 1)w dm = − . 

According to (2)-(4), the delay and embedding dimension 

of the reconstructed matrix can be calculated. In this paper, the 

embedding dimension is the length of the time window. The 

relationship between the original capacity time series and the 

reconstructed capacity matrix is shown in (5), which facilitates 

the understanding of the subsequent CNN feature map 

extraction process. 
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                      (5) 

C. Convolution Neural Network 

As mentioned earlier, conventional RUL prediction 

approaches for batteries face the challenge of the relatively 

small amount of available data and the presence of complex 

nonlinear degradation [15]. However, CNN has brought new 

perspectives for RUL prediction with its remarkable feature 

extraction capability. A basic CNN usually consists of four 

types of layers, including the convolution layer, activation 

layer, pooling layer, and fully connected layer. The formula 

for discrete two-dimensional convolution is as follows: 

( , ) ( , ) ( , )
p q

O i j I i p j q K p q= + +                 (6) 

where O(i, j) is the element of the ith row and jth column of 

the output feature map, I(i+p, j+q) represents the input 

element of the i+pth row and j+qth column; K(p, q) denotes 

the element of the pth row and qth column of the 

convolution kernel. 

We designed a CNN with an eight-layer structure, 

consisting of two convolutional layers, two batch 

normalization layers, two ReLU activation layers, one pooling 

layer, and one flattening layer. The convolutional kernel size 

is selected as 2×2, which can balance computational resources 

while exploring more feature combinations; batch 

normalization layers normalize the data to approximate a 

Gaussian distribution, helping to accelerate training and 

prevent gradient vanishing or explosion. 

D. Bidirectional Long Short-Term Memory 

Deep learning technology, as a powerful artificial 

intelligence tool, is driving advancements across various fields 

[16]. Owing to its excellent performance in processing 

sequence data and forecasting tasks, LSTM has been regarded 

as an essential RNN. A basic LSTM cell consists of three 

control gates, including forgetting gate ft, input gate it, and 

output gate ot. Furthermore, the LSTM cell also depends on 

storing the long-term state Ct and short-term state ht. The cell 

architecture of LSTM is shown in Fig. 2. The governing 

equations of each LSTM cell are given as follows: 

1( [ , ] )t f t t ff w h x b −= +                          (7) 

1( [ , ] )t i t t ii w h x b −= +                           (8) 

1tanh( [ , ] )t c t t cc w h x b−= +                        (9) 
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1( [ , ] )t o t t oo w h x b −= +                        (10) 

1t t t t tC f C i c−= +                           (11) 

tanh( )t t th o S=                            (12) 

where σ represents the sigmoid function; w and b are the 

corresponding weight and bias matrices of the corresponding 

control gate, respectively; xt and ht-1 denote input at time t, and 

the output of the previous LSTM cell at time t-1, respectively; 

Ct and Ct-1 represent cell states at time t and t-1 respectively; 

is the Hadamard product, which can be viewed as 

intermediate variables. 

Ct-1

ht

σ

× 

xt

ht-1

ft

+

it Ct

~
× 

× 

ht

Ct

σ tanh σ

tanh

 
Fig. 2. Cell architecture of LSTM. 

 

The BiLSTM network layer is composed of a forward and a 

backward passing information LSTM layer. The output result 

ht can be calculated after obtaining the forward LSTM hidden 

layer state th , and the backward LSTM hidden layer state th , 

i.e., 

1( , )t t th f x h −=                                (13) 

1( , )t t th f x h −=                                (14) 

t t t t t th w h w h b= + +                            (15) 

where tw and tw are the weight of forward and backward 

LSTM hidden layer, respectively; output result ht is a linear 
combination of forward and backward LSTM, plus a bias bt. 

E. Hyperspace Attention Mechanism. 

Conventional attention mechanism typically employs an 
attention weight distribution to weight the input data. The 
drawbacks of this strategy include the lack of parallelism and 
the unbalance of learning information in a single-head self-
attention mechanism [17]. To address these issues, we propose 
the hyperspace attention mechanism (HAM), applied after the 
spatial-temporal embedding of capacity data and extraction of 
global spatial features from CNN. 

Furthermore, capacity degradation is influenced by various 
internal and external factors, resulting in multi-phase and 
variable-rate patterns that are difficult to distinguish in one-
dimensional data. Yet, these complex and variable degradation 
patterns are more effectively represented in hyperspace. 
Therefore, by introducing the HAM, the model can privilege 
vital time periods and features that significantly affect 
capacity evolution for improving prediction performance and 
adjusting dynamics between different sub-spaces. The HAM 
approach addresses the issue of significant multi-space hidden 

state loss, enhancing the model’s forecasting capabilities for 
both short-term and long-term predictions. Denoting the time 

series to be processed xn d
X R and n is the dimension of 

input capacity data segment, the query matrix 
QQ XW= and 

key matrix kK XW=  in the same k-dimension, the value 

matrix
vV XW= can be reconstructed in v-dimension by a 

linear transformation. Formally, the output of the single-head 
attention mechanism is acquired as follows: 

( , , ) soft max( )
T

k

QK
Attention Q K V V

d
=             (16) 

where 𝑇 represents the transpose operation and kd  is a 

scaling factor for the dot product attention. 
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Q K V

 
Fig. 3. Architecture of a hyperspace attention mechanism. 

 

However, the single-head attention mechanism struggles to 
achieve comprehensive attention when processing data across 
multiple sub-spaces. In this regard, the HAM is designed to 
enhance the prediction process of the battery capacity 
variations, as illustrated in Fig. 3. Specifically, based on the C-
C method, the capacity matrix is reconstructed in multiple 
sub-spaces, the multi-head attention is independently applied 
within each sub-space to calculate the dot-product attention 
scores. Finally, these score matrices are combined into a 
hyper-space attention matrix, which serves as the input to the 
fully connected layer. The computational process of HAM can 
be expressed as follows: 

1( , , , , ) o

i hMH Concat head head head W=     (17) 

( )space spaceHAM MH W b=  +                    (18) 

where Concat is the matrix concatenation operation,

( , , )i i i ihead Attention Q K V= , oW represents the weight matrix, 

h indicates the number of attention heads,  1,2, ,i h ; 

Wspace and bspace denote the weight and bias matrix in different 
sub-spaces, respectively, σ represents the sigmoid function. 

III. CASE STUDY 

A. Dataset Description and Normalization 

In this work, the lithium-ion battery dataset provided by the 

National Aeronautics and Space Administration (NASA) was 

utilized to demonstrate the proposed RUL prediction 

framework. Among them, the four 18650 cells with a nominal 

capacity of 2 Ah are numbered B0005, B0006, B0007, and 

B0018, respectively. The four batteries underwent a cycle 

aging test at room temperature (24 ℃), with each cycle 

consisting of charging and discharging modes. The charging 
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mode is further divided into two charging phases. In the first 

charging phase, the battery was charged at a 1.5 A constant 

current until its voltage reached 4.2 V. Then, the voltage was 

maintained at 4.2 V in the second charging phase until the 

current was reduced to 20 mA. For the discharging mode, the 

battery was discharged at a 2 A constant current until the 

voltage dropped to a certain cutoff threshold, which indicates 

that a complete charging-discharging cycle was completed. 

The life-long capacity degradation trajectories of the four 

batteries are shown in Fig. 4. 

 
Fig. 4. Four capacity decay curves of the NASA battery dataset. 

 

Existing literature has demonstrated that when the capacity 

degrades to 70-80% of its rated capacity, the performance of 

these aged batteries can exhibit significantly different 

characteristics under the same normal operation. In this paper, 

1.4 Ah (70% of rated capacity) is considered as the failure 

threshold. However, from Fig. 4, it can be observed that the 

battery B0007 did not reach the failure threshold before the 

end of the test. Therefore, we select 1.45 Ah (72.5% of rated 

capacity) as the failure threshold of B0007 to carry out the 

subsequent analysis.  

Additionally, to ensure the reconstructed capacity matrix 

with an equal scale in each sub-space, we employed the 

mapminmax function to normalize them individually. This not 

only balanced the capacity prediction weight but also 

effectively reduced the prediction difference among different 

sub-spaces. 

min

max min

X X
X

X X

−
 =

−
                             (19) 

 

where X and X   represent the raw data and the corresponding 

normalized data, respectively, while maxX  and minX  denote 

the maximum and minimum values, respectively. 

B. Evaluation Criteria 

To assess the RUL prediction performance of the proposed 

hybrid model, the mean absolute error (MAE), root mean 

square error (RMSE), R-squared error (R²), and absolute error 

are adopted as evaluation metrics. They are defined as follows:  

1

1 ˆ
N

i i

i

MAE Q Q
N =

= −                           (20) 
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=
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−
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−




                          (22) 

p rAE RUL RUL= −                            (23) 

where ˆ
iQ is the predicted capacity value, 

iQ represents actual 

capacity value, iQ is the average value of actual capacity iQ , 

RULp and RULr denote the predicted and real RUL values, 

respectively. For MAE, RMSE, and AE, higher RUL prediction 

accuracy is achieved when their values are closer to zero. In 

contrast, the R² value closer to one indicates a better fit of the 

model. 

C. Analysis and Discussion of Results 

We can obtain the delays of B0005, B0006, B0007, and 

B018 are 1, 2, 2, and 4, respectively, according to (2) - (4). To 

evaluate the prediction performance of the hybrid CNN-

BiLSTM-HAM model, we compare its accuracy and stability 

against four other different models: LSTM, BiLSTM, CNN-

BiLSTM, and CNN-BiLSTM-SHA. Furthermore, the 

generalization ability of the hybrid model is demonstrated by 

using three different starting points for the training and testing 

sets: the 30th, 50th, and 70th cycles. 

In these experiments, all models were trained with the first 

30, 50, and 70 cycles of known capacity data from the NASA 

battery dataset. The prediction results of the five models are 

depicted in Figs. 5-8, respectively. Correspondingly, Tables II-

V display the comparative results of RULp, AE, MAE, RMSE, 

and R² for all models under different prediction starting points, 

respectively. From Figs. 5-8, we can clearly observe that the 

capacity prediction trajectories of the proposed hybrid model, 

CNN-BiLSTM-HAM, align more closely with the actual 

capacity degradation trajectory for the same prediction starting 

point compared to the results of the other four models. 

Tables II-V also clearly show that the prediction errors, 

MAE, and RMSE of the proposed method are lower than those 

of the other four methods for RUL prediction. In addition, the 

proposed method demonstrates the closest RULp to RULr, the 

smallest AE, and the highest R² value. These results strongly 

validate the excellent performance and robustness of our 

proposed hybrid model in addressing the battery RUL 

prediction problem. 

Taking the starting point of the 50th cycle of the B0005 

battery as an example, the MAE and RMSE of the predicted 

results are reduced by 24.61% to 76.94% and 22.09% to 

71.05%, respectively. Compared to CNN-BiLSTM-SHA, the 

proposed CNN-BiLSTM-HAM achieves an attention score 

matrix across different sub-spaces, which improves the 

model’s ability to capture data nonlinearity and complexity. 

Furthermore, the prediction errors of CNN-BiLSTM are 

higher than those of CNN-BiLSTM-SHA, highlighting SHA’s 

capability to enhance key information characterization through 

learnable weights, thereby improving prediction accuracy. To 

illustrate this more intuitively, the AE results show that the 

starting point 50th cycle of B0005 battery RULr is the 74 cycle, 
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and the predicted RUL is 75 from the proposed model with an 

error of only one cycle. In contrast, the RUL predictions of the 

other four models are 71, 68, 81, and 86, respectively, and the 

respective errors are 3, 6, 7, and 12 cycles. 

   
                         (a) B0005-30th cycle                                                   (b) B0005-50th cycle                                                   (c) B0005-70th cycle  

Fig. 5. B0005 battery capacity prediction with different amounts of training data. 

   
                         (a) B0006-30th cycle                                                   (b) B0006-50th cycle                                                   (c) B0006-70th cycle  

Fig. 6. B0006 battery capacity prediction with different amounts of training data. 

   
                         (a) B0007-30th cycle                                                   (b) B0007-50th cycle                                                   (c) B0007-70th cycle  

Fig. 7. B0007 battery capacity prediction with different amounts of training data. 

   
                         (a) B0018-30th cycle                                                   (b) B0018-50th cycle                                                   (c) B0018-70th cycle  

Fig. 8. B0018 battery capacity prediction with different amounts of training data. 
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TABLE II 

COMPARISON OF RUL PREDICTION RESULTS OF B0005 

 

Models Cycle RULr RULp AE MAE RMSE R² 

PSR-LSTM [20] 

30 94 

111 17 0.0471 0.0517 0.8517 

PSR-BiLSTM [22] 87 7 0.0397 0.0450 0.8755 

PSR-CNN-BiLSTM [22] 90 6 0.0181 0.0243 0.9283 

PSR-CNN-BiLSTM-SHA [23] 91 3 0.0124 0.0159 0.9607 

PSR-CNN-BiLSTM-HMA 96 2 0.0101 0.0142 0.9725 

PSR-LSTM [20] 

50 74 

86 12 0.0412 0.0487 0.8667 

PSR-BiLSTM [22] 81 7 0.0345 0.0416 0.9024 

PSR-CNN-BiLSTM [22] 68 6 0.0186 0.0241 0.9672 

PSR-CNN-BiLSTM-SHA [23] 71 3 0.0126 0.0181 0.9813 

PSR-CNN-BiLSTM-HMA 75 1 0.0095 0.0141 0.9889 

PSR-LSTM [20] 

70 54 

68 14 0.0445 0.0477 0.7621 

PSR-BiLSTM [22] 61 7 0.0311 0.0361 0.8632 

PSR-CNN-BiLSTM [22] 59 5 0.0173 0.0216 0.9512 

PSR-CNN-BiLSTM-SHA [23] 58 4 0.0139 0.0168 0.9703 

PSR-CNN-BiLSTM-HMA 54 0 0.0068 0.0129 0.9923 

Note: Marked with red and bold are the best evaluation metric values. 

 
TABLE III 

COMPARISON OF RUL PREDICTION RESULTS OF B0006 

 

Models Cycle RULr RULp AE MAE RMSE R² 

PSR-LSTM [20] 

30 79 

89 10 0.0451 0.0561 0.8626 

PSR-BiLSTM [22] 86 7 0.0403 0.0486 0.8844 

PSR-CNN-BiLSTM [22] 86 7 0.0272 0.0368 0.9123 

PSR-CNN-BiLSTM-SHA [23] 77 2 0.0137 0.0227 0.9656 

PSR-CNN-BiLSTM-HMA 78 1 0.0128 0.0194 0.9796 

PSR-LSTM [20] 

50 59 

76 17 0.0485 0.0521 0.8667 

PSR-BiLSTM [22] 66 7 0.0388 0.0434 0.9067 

PSR-CNN-BiLSTM [22] 65 6 0.0213 0.0291 0.9586 

PSR-CNN-BiLSTM-SHA [23] 62 3 0.0135 0.0199 0.9803 

PSR-CNN-BiLSTM-HMA 60 1 0.0095 0.0169 0.9858 

PSR-LSTM [20] 

70 39 

49 10 0.0441 0.0486 0.7964 

PSR-BiLSTM [22] 46 7 0.0279 0.0357 0.8901 

PSR-CNN-BiLSTM [22] 43 4 0.0191 0.0233 0.9529 

PSR-CNN-BiLSTM-SHA [23] 37 2 0.0116 0.0182 0.9715 

PSR-CNN-BiLSTM-HMA 39 0 0.0085 0.0158 0.9883 

Note: Marked with red and bold are the best evaluation metric values. 

 

 
TABLE IV 

COMPARISON OF RUL PREDICTION RESULTS OF B0007 

 

Models Cycle RULr RULp AE MAE RMSE R² 

PSR-LSTM [20] 

30 113 

126 12 0.0414 0.0493 0.8659 

PSR-BiLSTM [22] 125 11 0.0356 0.0406 0.9091 

PSR-CNN-BiLSTM [22] 108 5 0.0292 0.0371 0.9239 

PSR-CNN-BiLSTM-SHA [23] 117 4 0.0114 0.0141 0.9789 

PSR-CNN-BiLSTM-HMA 115 2 0.0082 0.0115 0.9841 

PSR-LSTM [20] 

50 93 

77 16 0.0335 0.0394 0.8581 

PSR-BiLSTM [22] 108 15 0.0303 0.0331 0.8989 

PSR-CNN-BiLSTM [22] 88 5 0.0154 0.0211 0.9593 

PSR-CNN-BiLSTM-SHA [23] 95 2 0.0102 0.0134 0.9835 

PSR-CNN-BiLSTM-HMA 93 0 0.0064 0.0106 0.9907 
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PSR-LSTM [20] 

70 73 

89 16 0.0429 0.0456 0.6405 

PSR-BiLSTM [22] 87 14 0.0314 0.0334 0.8074 

PSR-CNN-BiLSTM [22] 79 6 0.0174 0.0211 0.9125 

PSR-CNN-BiLSTM-SHA [23] 77 4 0.0099 0.0128 0.9716 

PSR-CNN-BiLSTM-HMA 74 1 0.0055 0.0102 0.9967 

Note: Marked with red and bold are the best evaluation metric values. 

 
TABLE V 

COMPARISON OF RUL PREDICTION RESULTS OF B0018 

 

Models Cycle RULr RULp AE MAE RMSE R² 

PSR-LSTM [20] 

30 67 

85 18 0.0473 0.0547 0.7566 

PSR-BiLSTM [22] 83 16 0.0427 0.0493 0.8028 

PSR-CNN-BiLSTM [22] 57 10 0.0302 0.0378 0.8838 

PSR-CNN-BiLSTM-SHA [23] 60 7 0.0121 0.0191 0.9708 

PSR-CNN-BiLSTM-HMA 65 2 0.0102 0.0157 0.9898 

PSR-LSTM [20] 

50 47 

65 18 0.0501 0.0565 0.5585 

PSR-BiLSTM [22] 58 11 0.0463 0.0493 0.6651 

PSR-CNN-BiLSTM [22] 38 9 0.0218 0.0274 0.8963 

PSR-CNN-BiLSTM-SHA [23] 44 3 0.0109 0.0159 0.9648 

PSR-CNN-BiLSTM-HMA 45 2 0.0086 0.0142 0.9919 

PSR-LSTM [20] 

70 27 

36 9 0.0408 0.0431 0.7911 

PSR-BiLSTM [22] 35 8 0.0299 0.0351 0.5891 

PSR-CNN-BiLSTM [22] 20 7 0.0192 0.0242 0.8094 

PSR-CNN-BiLSTM-SHA [23] 28 1 0.0085 0.0156 0.8791 

PSR-CNN-BiLSTM-HMA 27 0 0.0077 0.0134 0.9876 

Note: Marked with red and bold are the best evaluation metric values. 

 

To demonstrate the superiority of the PSR with the C-C 

method, we compare the embedding spatial-temporal capacity 

matrix by PSR with the original one-dimensional data as the 

inputs for the CNN-BLSTM-HAM model. The prediction 

errors are shown in Table VI. We conclude from Table VI 

that the PSR-based capacity matrix with the C-C method 

yields better prediction results than the original one-

dimensional capacity data. This improvement is due to the 

fact that the embedding spatial-temporal capacity matrix 

contributes to better capability in capturing the underlying 

nonlinear relationships and dynamic characteristics, which 

improves the accuracy of feature extraction, analysis, and 

modeling. 

 
TABLE VI 

COMPARISON OF PHASE SPACE RECONSTRUCTION 

 

Battery Cycle Method RMSE R2 

B0005 

30 
CNN-BiLSTM-HMA 0.0151 0.9615 

PSR-CNN-BiLSTM-

HMA 
0.0142 0.9725 

50 

CNN-BiLSTM- HMA 0.0138 0.9846 

PSR-CNN-BiLSTM-

HMA 
0.0141 0.9889 

70 
CNN-BiLSTM- HMA 0.0139 0.9795 

PSR-CNN-BiLSTM-

HMA 
0.0129 0.9923 

B0006 

30 

CNN-BiLSTM-HMA 0.0212 0.9675 

PSR-CNN-BiLSTM-

HMA 
0.0194 0.9796 

50 
CNN-BiLSTM- HMA 0.0192 0.9818 

PSR-CNN-BiLSTM- 0.0169 0.9858 

HMA 

70 

CNN-BiLSTM- HMA 0.0173 0.9741 

PSR-CNN-BiLSTM-

HMA 
0.0158 0.9883 

B0007 

30 

CNN-BiLSTM-HMA 0.0146 0.9782 

PSR-CNN-BiLSTM-

HMA 
0.0115 0.9841 

50 
CNN-BiLSTM- HMA 0.0124 0.9860 

PSR-CNN-BiLSTM-

HMA 
0.0106 0.9907 

70 

CNN-BiLSTM- HMA 0.0115 0.9771 

PSR-CNN-BiLSTM-

HMA 
0.0102 0.9967 

B0018 

30 
CNN-BiLSTM-HMA 0.0192 0.9702 

PSR-CNN-BiLSTM-

HMA 
0.0157 0.9898 

50 

CNN-BiLSTM- HMA 0.1702 0.9601 

PSR-CNN-BiLSTM-

HMA 
0.0142 0.9919 

70 

CNN-BiLSTM- HMA 0.0177 0.8441 

PSR-CNN-BiLSTM-

HMA 
0.0134 0.9876 

Note: Marked with red and bold are the best evaluation metric values. 

 

To further demonstrate the superiority of the proposed 

method, a comparison with several advanced RUL prediction 

techniques is presented in Table VII. Considering the 

extensive research achievements in RUL prediction based on 

battery B0005, this battery is selected in Table VII to 

facilitate a clear comparison with the existing studies in the 

literature. Although our method imposes a higher 

computational burden, the MAE and RMSE error metrics 

clearly show that the proposed method outperforms several 
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previously published RUL prediction techniques. In practical 

applications, especially in energy storage systems, large 

battery packs are often assembled. Due to the complexity and 

non-direct observability of the internal aging mechanisms, 

accurately predicting the RUL of all batteries is challenging. 

Consequently, data-driven methods relying on degradation 

capacity data and hybrid models offer an effective solution. 

In this sense, balancing accuracy and computational 

efficiency is both practical and essential, which provides 

significant potential for future applications in battery pack 

RUL prediction techniques. 

 
TABLE VII 

PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR BATTERY 

B0005 

 

Method Cycle AE RMSE Time(s) 

SVM [19] 

30 

16 0.1134 1.28 

GWO-SVM [21] 14 0.1021 6.13 

LSTM-SVM [21] 5 0.0583 4.48 

UKF [28] 19 0.1389 2.56 

AUKF [28] 10 0.0832 3.25 

AUKF-SVM [28] 8 0.0756 3.98 

Proposed 2 0.0142 5.79 

SVM [19] 

50 

11 0.0696 1.37 

GWO-SVM [21] 11 0.0622 7.72 

LSTM-SVM [21] 4 0.0287 4.78 

UKF [28] 14 0.0944 2.98 

AUKF [28] 7 0.0513 3.66 

AUKF-SVM [28] 5 0.0453 4.23 

Proposed 1 0.0141 5.94 

SVM [19] 

70 

8 0.0537 1.54 

GWO-SVM [21] 8 0.0482 11.41 

LSTM-SVM [21] 1 0.0168 5.13 

UKF [28] 11 0.0817 3.64 

AUKF [28] 6 0.0344 4.37 

AUKF-SVM [28] 3 0.0239 4.86 

Proposed 0 0.0129 6.27 

Note: Marked with red and bold are the best evaluation metric values. 

IV. CONCLUSION AND FUTURE WORK 

In order to overcome the poor stability of single models 

and the redundancy and insufficiency of data in conventional 

data-driven approaches, this paper proposes a degradation 

capacity spatial-temporal embedding RUL prediction 

framework and a CNN-BiLSTM-HAM hybrid model. 

Specifically, the time delay and embedding dimension are 

calculated by the C-C method with two correlated integrals, 

allowing for the argumentation and reconstruction of capacity 

data. This process helps the network uncover more valuable 

information. In this hybrid model, the CNN is employed to 

extract rich feature maps from the reconstructed matrix, 

which are then fed into a BiLSTM network comprised of two 

independently and inversely processed LSTM units. Finally, 

the HAM method is introduced to selectively and 

dynamically adjust corresponding weights of various 

degradation rate stages that can be effectively captured and 

updated to improve RUL prediction precision. Although 

satisfactory results are achieved in this study, several aspects 

are worth further exploration: 

1) Interpretability of neural networks: The inherent “black 

box” nature of neural networks limits the transparency of the 

prediction process. Future research should focus on 

enhancing the interpretability and trustworthiness of the 

model by introducing interpretable artificial intelligence 

methods, such as analyzing the significance of aging features. 

2) Extension to battery packs: In practical applications, 

such as energy storage systems, multiple batteries are 

typically assembled into a battery pack. Extending RUL 

prediction to the entire battery pack is essential, considering 

the interactions among individual batteries and the impact of 

energy management strategies within the pack. 
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