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A B S T R A C T   

Hydrogen energy is recognized as a crucial solution for addressing energy crises and advancing energy con-
servation and emissions reduction. It will play a significant role in the future integrated energy systems (IESs). 
However, the influence of seasonal variations in scheduling optimization of hydrogen-integrated energy system 
has rarely been investigated. A low-carbon scheduling model for IES, adopting multiple demand responses and a 
ladder-type carbon trading mechanism, has been established. Additionally, a multi-time scale dispatch optimi-
zation strategy considering seasonal hydrogen utilization is thus proposed in this paper. Specifically, day-ahead 
scheduling optimizes the system taking into account the seasonal variations of renewable energy and load. In the 
intraday stage, rolling optimization is adopted to address the forecasting errors introduced by wind and 
photovoltaic fluctuations. In the real-time stage, chance-constrained methods are employed to ensure short-term 
supply-demand balance. The efficacy of the proposed strategy is verified using real-world measurements, and the 
results show the multi-time scale scheduling strategy and multiple demand responses effectively enhanced the 
system’s self-regulation capability, leading to a 12% increase in renewable energy absorption. In addition, 
seasonal hydrogen utilization is essential for system design, as it enhances the absorption of renewable energy, 
reducing the purchase cost by 4% and the total cost by 2.6%.   

1. Introduction 

Energy systems are experiencing a rapid global transition towards a 
more sustainable and diversified paradigm [1–3]. The large-scale 
adoption of renewable energy, such as solar and wind, has effectively 
reduced greenhouse gas emissions and alleviated the pressure from 
increased energy consumption [4,5]. However, the unsteady and inter-
mittent nature of renewable resources and the limited energy transfer 
capability cause a significant amount of curtailment of renewable gen-
eration every year [6–8]. An integrated energy system (IES) is a prom-
ising solution that can provide a platform for these diversified energy 
conversion processes with high-penetration renewables. Such a system 
can meet various end-user needs by providing different forms of energy 
supply, thus achieving highly efficient tiered energy utilization [9–11]. 

Recently, substantial progress has been made in the design and 
operation of IESs. Geidl et al. were among the first to propose the system 
structure of energy hubs [12], based on which substantial research 

works have been focused on the modeling, planning, and scheduling of 
IES. For example, in Ref. [13], a graph theory-based standardized matrix 
modeling method was introduced, which can reduce the nonlinearity in 
optimization models and facilitate the obtaining of the solution for such 
a complex system. In Refs. [14–17], different IES structures were pro-
posed and investigated by incorporating multiple forms of energy, such 
as electricity, gas, heat, and cooling. In Ref. [18], an electricity system 
integrated large-scale wind power and power to gas (P2G), which 
focused on the optimal short-term operation to enhance the coupling 
between natural gas and electrical energy. A novel combined heat and 
power (CHP) model incorporating P2G and carbon capture and storage 
(CCS) was proposed in Ref. [19], where both the system’s carbon 
emissions and operational costs were reduced. Reference [20] studied 
the competitive relationships between multiple market entities in an 
IES, solving scheduling problems in highly complex energy coupling 
systems with large-scale renewable energy generation. 

Amongst various forms of energy in a modern IES, hydrogen plays a 
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significant role in enhancing energy security and promoting the circular 
economy with a high penetration of renewable generation. By 2050, the 
demand for hydrogen energy is expected to be tenfold its current level, 
with its share in China’s terminal energy system to reach at least 10%. 
Due to its widespread availability, environmental friendliness, and zero 
carbon emissions, effective and efficient generation and utilization of 
hydrogen energy are indispensable for addressing the long-term issue of 
climate change and achieving carbon neutrality goals [21–23]. 

The IESs with hydrogen energy have also been extensively studied. 
For example, reference [24] established a wind-photovoltaic-hydrogen 
power integrated model, providing an effective pathway for accommo-
dating renewable energy in IES and ensuring reliable hydrogen supply. 
In Ref. [25], a methane reactor (MR) was coupled with CCS, and the 
refined utilization of hydrogen energy was considered on the basis of the 
traditional P2G, improving the energy efficiency of IES with significant 
economic, environmental, and technical benefits. In Ref. [26], a 
hydrogen subsystem consisting of hydrogen tanks and fuel cells was 
created by separating electrolyzers from P2G, and a dual-layer optimi-
zation model was proposed for this IES. This model considered the dy-
namic market environment involving electricity, hydrogen, and 
emission exchanges, strengthening system resilience against external 
disruptions and enhancing the capacity to absorb the generated 
renewable energy. In Ref. [27], an industry-cluster-based energy man-
agement system was constructed to minimize operational costs or 
maximize the production of green hydrogen. In Ref. [28]，a near-zero 
carbon IES featuring electricity, heat and hydrogen was constructed, 
which utilizes a multi-time scale operational optimization to fully 
capitalize on the advantages of hydrogen hybrid energy storage. It can 
be seen that the above works focus on constructing suitable IES and 
optimizing their scheduling strategies based on varying demands, 
assuming fixed patterns in renewables and loads. However, these studies 
ignore variations in seasonal climate and load, which will limit the 
utilization of advantages of hydrogen storage, including long-term 
storage and cross-regional and cross-seasonal scheduling. 

It is worth noting that as the coupling level between various types of 
energy increases, the devices’ output characteristics show more pro-
nounced differences across time scale. The tight coupling and the 
multiple-source conversion between different energy forms pose 
considerable challenges to IES scheduling and management. In 
Ref. [29], electrical and thermal energy storage were utilized as 
short-term solutions. In contrast, hydrogen storage was employed for 
long-term use in an integrated energy microgrid, optimizing system 
scheduling through lifecycle analysis of energy chains. Reference [30] 
capitalized on the benefits of hybrid energy storage systems in stabi-
lizing power fluctuations and extending storage life, effectively 
addressing the scheduling issues of combined cooling, heat, and power 
(CCHP) and other storage devices across different time scales. In 
Ref. [31], the charging and discharging characteristics of electric vehi-
cles were considered under several typical scenarios with uncertainties, 
and the IES performance was optimized while ensuring stable grid 
operation. In Refs. [32,33], adaptive scheduling strategies were 
explored to match the response delay times of different devices. Their 
algorithms can enhance the reliability during the operation of 
multiple-energy systems and effectively handle the uncertainties intro-
duced by wind power generation. In Ref. [34], a multi-time scale game 
optimization scheduling model for the park-level IES was proposed， 
which optimized the unit output plan at each time scale through the 
game behavior of the system and users to motivate users to participate in 
demand response. The improvement of system operation can be further 
supported by applying demand response (DR) after analyzing the 
characteristics of renewable generation/load at different times. For 
example, DR was implemented in distributed IESs and a multi-temporal 
and spatial optimization model was established in Ref. [35]. This 
approach adjusts the load curve through time-shifting and peak-shaving 
responses, alleviating requirements on the energy supply. In Ref. [36], 
the changes in user satisfaction caused by load adjustments were 

considered when industrial users participated in multi-energy DR. The 
energy costs of industrial production and the dissatisfaction of industrial 
users were reduced, while the operational efficiency of production 
equipment and the stability of IES increased. Reference [37] designed a 
rural IES incorporating transferable DR in the optimization of system 
operations, and enhanced the match rate between supply and demand as 
well as the consumption rate of clean energy. Multi-time scale sched-
uling optimization and DR can adeptly accommodate the diverse char-
acteristics of various types of devices. However, many studies have not 
analyzed the differences in cross-seasonal scheduling optimization and 
the synergistic application among different DR strategies, which has 
been fully considered in this work. 

In addition to seasonal hydrogen utilization and DRs, it is well- 
accepted that carbon trading can provide further enhancement for 
high energy efficiency, reduce carbon emissions, and improve opera-
tional economics, especially in an IES. This technique was investigated 
in works such as [38,39], where the system costs due to carbon emis-
sions were considered as the optimization objective function. However, 
these studies designed carbon trading under a fixed price. Such a market 
mechanism cannot provide sufficient incentives to limit high carbon 
emissions, whereas adaptive carbon emission regulation is deemed to be 
more rewarding. Therefore, in Ref. [40], a ladder-type carbon trading 
mechanism (LTCTM) was proposed for an integrated electricity-gas-heat 
energy system to strengthen the suppression of carbon emissions, 
thereby enhancing the low-carbon benefits of IES. In Ref. [41], small 
modular nuclear power units were introduced into an IES with the 
LTCTM, where a new low-carbon scheduling model was established to 
demonstrate good economic and environmental benefits. 

In view of the above, few studies have considered the source-load 
scheduling differences in the seasonal scheduling of IES with hydrogen 
utilization. As a result, the full potential of hydrogen storage’s long 
duration and large-scale storage capabilities has not been effectively 
utilized. Furthermore, while some limited studies have considered the 
time response differences between various devices and DR, these efforts 
have not optimized the operational characteristics with multiple de-
mand responses at different time scales. Clean units such as P2G and CCS 
can indeed reduce the carbon emissions of the IES. However, their 
impact on the total CO₂ emissions needs to be combined with a carbon 
trading mechanism to address overall system constraints. Hence, this 
paper proposes a multi-time scale low-carbon scheduling model for the 
hydrogen-integrated energy system (HIES), incorporating seasonal 
hydrogen utilization and various load demand response and employing 
a ladder-type carbon trading mechanism to reduce the carbon emissions. 
The following merits contribute to the research area, demonstrated 
using real-world measurement data from a hydrogen energy park in 
South China. 

(1) In the proposed HIES with seasonal utilization, the multiple en-
ergy conversion processes through hydrogen fuel cells, methane 
reactors, and hydrogen-blended gas boilers offer enhanced sys-
tem scheduling flexibility to consume more renewable energy. It 
also considers cross-seasonal source-load fluctuations and storage 
handling to optimize system scheduling results.  

(2) The proposed model for scheduling the HIES is designed with 
three stages at different time scales, i.e., day-ahead, intraday, and 
real-time, where a piecewise linearization method is utilized for 
model simplification. Specifically, intraday scheduling is ach-
ieved by rolling optimization based on day-ahead planning. At 
the real-time stage, chance-constrained methods are adopted to 
ensure the short-time balance between supply and demand.  

(3) More types of DR resources are fully utilized to participate in the 
coordinated operation of the system, achieving coordinated 
operation on both the supply and demand sides of IES. The 
response characteristics of different DR types across time scales 
and energy types are analyzed, providing strategic suggestions 
from the demand side for the economic operation of IES. 
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2. Modeling and operation of a HIES 

2.1. System configuration of a HIES 

The structure of the HIES under investigation is illustrated in Fig. 1. 
The system adopts a bus configuration, and five forms of energy are 
included: electricity, gas, heat, hydrogen, and cooling. This structure can 
support independent modeling and connection of different power and 
gas sources, energy storage, and energy conversion devices. It also fa-
cilitates the optimization and simulation implementation of the HIES, 
enhancing the system scheduling’s universality and flexibility. The 
established HIES is divided into four parts: energy supply, energy con-
version, energy storage, and energy consumption. The HIES receives 
electricity and gas from the external power grid and pipeline networks, 
respectively, to ensure energy supply. It also facilitates the consumption 
of renewable energy sources (RES) by connecting wind turbines (WT) 
and photovoltaic (PV) devices to the buses. 

The energy conversion mainly consists of a two-stage process: P2G, 
hydrogen-to-electricity-and-heat, and other energy conversion pro-
cesses. In the first stage, surplus electrical energy is converted into 
hydrogen energy using electrolyzers (ELs). In the second stage, the 
hydrogen energy is further transformed into natural gas chemical energy 
through MR. The hydrogen-to-electricity-and-heat process involves 
hydrogen fuel cells (HFC) using electrochemical reactions to convert 
hydrogen energy into electricity. It supplies heat externally through 
water cooling. In addition, a hydrogen-blendeded gas boiler (GB) con-
verts chemical energy into heat by burning hydrogen-enriched natural 
gas. Other energy conversion processes include a gas turbine (GT) 
transforming natural gas chemical energy into electrical and thermal 
energy output. Furthermore, an electric chiller (EC) and an absorption 
chiller (AC) convert electrical and thermal energy, respectively, into 
cold energy to meet the cold load requirements of the system. Through 
these processes, inherent physical barriers between different forms of 

energy are mitigated. 
The energy storage comprises electrical energy storage (EES), ther-

mal energy storage (TES), gas energy storage (GES), hydrogen energy 
storage (HES), and cold energy storage (CES). The energy storage can be 
used to absorb surplus energy generation effectively, facilitate cross- 
period energy transfer, balance loads, and smooth out peaks and val-
leys in the energy profiles. It is worth noting that in the proposed 
configuration, hydrogen storage devices are categorized into short-term 
hydrogen energy storage (HES) and seasonal hydrogen energy storage 
(SHES) based on the usage requirements of hydrogen energy. HES cor-
responds to meeting short-term direct hydrogen energy demands, where 
hydrogen gas can be directly supplied to devices such as HFC and MR 
through gas valves connected outside the hydrogen storage tank. In 
contrast, the SHES employs low-pressure hydrogen storage tanks, suit-
able for applications without limitations on size and capable of meeting 
long-term cross-seasonal energy storage demand. 

Finally, energy consumers are the end-users of the system, and the 
HIES can meet the demands of users for five different forms of energy. 

2.2. Modeling of energy equipment 

In this section, the mathematical models of all components in the 
HIES are established and analyzed, including different types of equip-
ment for energy supply, energy conversion, and energy storage, by 
considering their operational mechanisms and characteristics. 

2.2.1. Energy supply 
The energy supply equipment includes WT and PV. A WT converts 

the kinetic energy of wind into mechanical energy in the turbine- 
generator mass, then transforms it into electrical energy. Therefore, 
the output power of WT is closely related to wind speed. Due to the 
uncertainty of wind, WT power is also intermittent and stochastic. The 
relationship between the output power of the wind turbine Pt

wt and wind 

Fig. 1. Structure diagram of HIES.  
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speed v is described by 

Pt
wt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 vt < vi or vt < v0

(vt)
3
− (vi)

3

(vr)
3
− (vi)

3Pwt vi < vt < vr

Pwt vr < vt < v0

(1)  

where Pwt represents the rated power of WT, and vr, vi, and v0 represent 
the rated wind speed, cut-in wind speed, and cut-out wind speed of WT, 
respectively. 

The primary factor influencing the PV output power Ppv is solar 
irradiance I. The corresponding relationship can be directly described 
using a linear equation: 

Pt
pv = ηsSIt (2)  

where ηs and S represent PV’s conversion efficiency and total area, 
respectively. 

2.2.2. Energy conversion 
This section includes the modeling of various energy conversion 

devices such as GT, HFC, EC, AC, EL, GB, and MR. These devices can 
convert energy generated from the energy supply into a different form 
that meets various loads, achieving efficient energy utilization. In 
particular, GT and HFC incorporate waste heat recovery processes, 
enabling the simultaneous supply of electrical and thermal energy to the 
external environment, thereby enhancing the overall efficiency of the 
system. Due to the fact that the flame temperature of hydrogen is nearly 
300 ◦C higher than that of natural gas and its ignition delay time is over 
three times shorter than that of natural gas, the hydrogen-blendeded gas 
boiler is employed. Different from the boilers, which only burn natural 
gas, the hydrogen-blendeded gas boiler can further reduce carbon di-
oxide emissions by around 10%, making it more energy-efficient and 
environmentally friendly. The energy conversion processes of these 
devices are described by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

Pt
gt,e = ηgt,eP

t
gt,gφg

Pt
gt,t = ηgt,t

(
1 − ηgt,e

)
Pt

gt,gφg
⎧
⎨

⎩

Pt
hfc,e = ηhfc,eP

t
hfc,hφh

Pt
hfc,t = ηhfc,t

(
1 − ηhfc,e

)
Pt

hfc,hφh

Pt
ec,c = ηecP

t
ec,e

Pt
ac,c = ηacP

t
ac,t

Pt
el,h = ηelP

t
el,e

Pt
gb,t = ηgb

(
Pt

gb,h + Pt
gb,g

)

Pt
mr,g = ηmrP

t
mr,h

(3)  

where Pt
gt,e and Pt

gt,t represent the output electrical power and thermal 
power of the GT at time t, respectively; ηgt,e and ηgt,t represent the cor-
responding electrical efficiency and thermal efficiency, respectively; 
Pt

gt,g represents the natural gas consumption of the GT; φg is the lower 
heating value of natural gas; Pt

hfc,e and Pt
hfc,t represent the output elec-

trical power and thermal power of the HFC, respectively; ηhfc,e and ηhfc,t 

represent the corresponding electrical efficiency and thermal efficiency 
of the HFC; Pt

hfc,h is the hydrogen consumption of the HFC; φh is the lower 
heating value of hydrogen; Pt

ec,c, Pt
ec,e, and ηec represent the output cold 

power, consumed electrical power and cooling efficiency of the EC, 
respectively; Pt

ac,c, Pt
ac,t , and ηac represent the output cold power, 

consumed thermal power and cooling efficiency of the AC, respectively; 

Pt
el,h, Pt

el,e, and ηel represent the hydrogen production quantity, input 
electrical power, and hydrogen production efficiency of the EL, 
respectively; Pt

gb,t , Pt
gb,h, Pt

gb,g, and ηgb represent the thermal power 
output, hydrogen consumption, natural gas consumption and thermal 
efficiency of the GB, respectively; Pt

mr,g , Pt
mr,h, and ηmr represent the 

natural gas production quantity, hydrogen consumption, and conversion 
efficiency of the MR, respectively. 

2.2.3. Energy storage 
Energy storage is used to smoothen the output of renewable energy, 

support peak shaving, and improve system stability through planned 
charging and discharging. The integration of hybrid energy storage 
technologies allows them to complement each other and effectively in-
creases renewable energy generation in both the short and long terms. It 
also enhances the overall utilization efficiency, further reducing the 
operational costs of HIES. The considered energy storage includes EES, 
TES, GES, HES, and CES. Here, we differentiate the hydrogen storage 
devices between normal HES and SHES, meeting the daily hydrogen 
energy scheduling needs and long-term hydrogen energy consumption 
requirements. The models for energy storage are as follows: 

Et+1
m =

{ Et
m(1 − θm) + Pt

m,cηm,cΔt

Et
m(1 − θm) − Pt

m,dΔt
/

ηm,d
(4)  

where m ∈ {ees, ges, tes, hes, shes, ces} represents the type of energy 
storage; Pt

m,c and Pt
m,d are the charging and discharging power of device 

m at time t, respectively, which cannot occur at the same time; ηm,c and 
ηm,d represent the charging and discharging efficiencies, respectively; θm 

represents the energy loss coefficient; Et
m and Et+1

m represent current and 
next-step states of stored energy, respectively; Δt is the time step. 

2.3. Carbon trading mechanism 

As a crucial component of climate finance, the development of the 
carbon market is of significant importance for clarifying carbon emis-
sion rights and promoting the low-carbon and green development of 
industries. In order to highlight the contributions of HIES to energy 
conservation, emissions reduction, and low-carbon operation, this paper 
adopts the ladder-type carbon trading mechanism. Carbon emissions 
resulting from higher-level power and those generated by energy con-
version equipment are subject to rewards and penalties in the form of 
carbon trading rights. Furthermore, a quantitative assessment subsidy is 
provided for the carbon recovery benefits of the MR, which is included 
in the HIES economic cost model. 

The LTCTM billing system prices carbon emissions based on intervals 
over a certain period of time. As carbon emissions increase, the carbon 
trading price gradually rises, incentivizing proactive reductions in car-
bon emissions during system dispatch optimization. The billing baseline 
for system carbon emissions can be expressed as 

EMCO2 =
∑

X

∑

T
ωxPt

x (5)  

where Pt
x represents the equivalent electrical load of HIES demand en-

ergy x ∈ {e, g, t} at time t; ωx represents the free carbon emission quota 
coefficient for energy form x. 

The actual carbon emissions of the HIES consist of three parts: the 
‘virtual carbon emissions’ caused by purchased electricity, the emissions 
from coupled equipment operation, and the carbon recovery from the 
MR. The actual carbon emissions of the system can be expressed as 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EMCO2 ,a = EMgrid + EMtotal − EMmr

EMgrid =
∑

T

(

a1 + b1Pt
buy,e + c1

(
Pt

buy,e

)2
)

EMtotal =
∑

T

(
a2 + b2Pt

totla + c2
(
Pt

totla

)2
)

Pt
totla =

∑

N

(
Pt

n

)

EMmr =
∑

T
ϖPt

mr,g

(6)  

where EMgrid represents the virtual carbon emissions from higher-level 
power purchases; EMtotal is the actual carbon emissions from energy 
conversion equipment; EMmr is the actual carbon recovery from the MR; 
Pt

buy,e is the power of electricity purchases at time t; Pt
totla is the equivalent 

output power of energy conversion equipment at time t; Pt
n is the output 

power of energy conversion equipment n ∈ {gt, gb} at time t; ϖ is the 
carbon recovery efficiency of the MR. Based (5) and (6), the carbon 
emissions EMCO2 of the HIES participating in the carbon trading market 
and the cost of establishing LTCTM can be calculated by the following 
two equations, namely 

EMCO2 =EMCO2 ,a − EMCO2 (7)  

fCO2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λEMCO2 EMCO2 ⩽l
λ(1 + α)(EMCO2 − l) + λl l⩽EMCO2 ⩽2l

λ(1 + 2α)(EMCO2 − 2l) + λ(2 + α)l 2l⩽EMCO2 ⩽3l
λ(1 + 3α)(EMCO2 − 3l) + λ(3 + 3α)l 3l⩽EMCO2 ⩽4l
λ(1 + 4α)(EMCO2 − 4l) + λ(4 + 6α)l EMCO2 ⩾4l

(8)  

where fCO2 represents the total cost of carbon trading for the HIES; λ is 

the carbon trading base price; α is the carbon trading price growth rate; l 
is the length of the carbon emission interval. In (8), the billing system 
divides carbon emission quotas into five price intervals. The more 
quotas are allocated, the higher the price range for carbon trading is. In 
the model, this is represented by a larger calculation slope for carbon 
trading costs. Therefore, the higher price ranges are more sensitive to 
price increases. Compared to traditional fixed carbon emission trading 
mechanisms, during system dispatch optimization, more consideration 
will be given to running equipment in low-carbon emission price in-
tervals to achieve the overall goal of low-carbon and energy-efficient 
operation of the HIES. 

2.4. Multi-time scale demand response strategy 

DR is divided into spontaneous demand response (SDR) and 
incentive-based demand response (IDR). SDR is initiated by the load 
based on practical conditions. Users spontaneously adjust their energy 
usage time in response to price changes, leading to price-based demand 
response (PDR). If users change the type of load due to changes in load 
supply, it is referred to as the alternative demand response (ADR). IDR 
involves suppliers and users signing relevant agreements in advance, 
allowing direct control of load power and providing users with corre-
sponding compensation when necessary, which can achieve flexible 
resource scheduling for demand response. DR from a variety of types of 
loads usually exhibit a multi-time scale nature. To ensure the full 
participation of DR and the smooth operation of system scheduling, we 
design different DR strategies across multiple time scales. Specifically, in 
the day-ahead stage, the focus is on PDR and ADR, with preliminary 
optimization of electrical and gas loads. In the intraday stage, ADR and 
IDR are considered, leading to layered load responses. Finally, in the 

Fig. 2. Strategies of multiple demand response.  
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real-time stage, additional attention is paid to IDR, ensuring precise 
control over the load. The adopted strategies of multiple demand 
response are illustrated in Fig. 2. 

2.4.1. Price-based demand response 
Electricity and gas energy possess commodity attributes. According 

to microeconomic theory, differences in energy prices can influence 
changes in user energy consumption. By calculating the ratio of energy 
prices to corresponding changes, a price elasticity matrix can be estab-
lished, including both own-price elasticity and cross-price elasticity 
coefficients [42]. 

Mx =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m11
x m12

x ⋯ m1j
x

m21
x m22

x ⋯ m2j
x

⋮ ⋮ ⋱ ⋮
mi1

x mi2
x ⋯ mij

x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9)  

mii
x =

ΔLi
PDR,x

Li
PDR,x

(
ci

x − ci
x

ci
x

)− 1

(10)  

mij
x =

ΔLi
PDR,x

Li
PDR,x

(
cj

x − cj
x

cj
x

)− 1

(11)  

where Mx represents the price elasticity matrix for energy and x ∈ {e,g}; 
mii

x is the own-price elasticity coefficient; mij
x is the cross-price elasticity 

coefficient; ci
x, ci

x and cj
x, cj

x are the energy prices at times i and j with and 

without the PDR, respectively; Li
PDR,x and ΔLi

PDR,x are the load demand 
without the PDR and the load change at time i. 

In multiple periods, the price load response behavior of users can be 
modeled as follows: 

Lt
PDR,x =

(
1+ Lt

PDR,x

)∑

T′

(
Mx(t, t′) ⋅

(
pt′

x − pt′
x

) /
pt′

x

)
(12)  

where Lt
PDR,x represents the load demand at time t with PDR; pt′

x and pt′
x 

represent the energy prices at time t′ with and without the PDR, 
respectively. 

2.4.2. Alternative demand response 
The HIES consists of five types of energy loads, and users can utilize 

ADR to change energy consumption patterns based on seasonal varia-
tions and different energy supply levels. This achieves lateral comple-
mentary substitution for different energy loads. The response model is 
given by [43]. 
⎡
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⎥
⎥
⎥
⎥
⎥
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(13)  

where Lt
ADR,x represents the load demand with the ADR at time t; Lt

ADR,x 

Fig. 3. Multi-time scale scheduling optimization model for HIES.  
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represents the load demand without the ADR at time t; kxy represents the 
substitutability efficiency between energy x and y, kxy = − 1/ kyx, x, y ∈

{e, g, t, h, c} and x ∕= y. 

2.4.3. Incentive-based demand response 
IDR mainly considers interruptible load (IL) and convertible load 

(CL). IDR has a fast response speed to meet the requirements of rapid 
load in daily and real-time scenarios. The response model is expressed as 

Lt
IDR,x =Lt

IDR,x + ΔLt
CL,x + ΔLt

IL,x (14)  

where Lt
IDR,x and Lt

IDR,x represent the load demand of energy form x ∈

{e, g, t, h, c} with and without the IDR at time t, respectively; ΔLt
CL,x and 

ΔLt
IL,x represent the response quantities of CL and IL at time t, 

respectively. 

3. Multi-time scale optimization operation model of the HIES 

This section establishes a multi-time scale scheduling optimization 
model for HIES, as shown in Fig. 3. The day-ahead scheduling solves the 
output plan for the system’s equipment for the next 24 h, with a time 
interval of 1 h. Intraday scheduling rolls optimization on the basis of the 
day-ahead results to smooth out the planning errors caused by RES and 
load uncertainty, with a time interval of 15 min. The real-time sched-
uling process uses the chance-constrained method to ensure supply and 
demand balance in a short time, with a time interval of 5 min. At this 
stage, seasonal energy storage cannot meet the rapid energy scheduling 
demand and is treated as a constant value. By coordinating these three 
levels, the HIES can achieve optimized operation across multiple time 

scales and multiple energy flows. 

3.1. Day-ahead scheduling optimization model 

3.1.1. Clustering and scenario generation 
The wind and solar forecast data for HIES scheduling optimization 

reference historical weather and operational data from the monsoon 
climate region in South China. A series of modeling and k-means clus-
tering analyses were conducted, representing the characteristics as 
typical days for each season. The all-year load data were summarized to 
extract the wind and solar characteristic curves for four typical days 
corresponding to spring, summer, autumn, and winter. These curves 
serve as reference data for the RES input, aiming to characterize the 
impact of cross-seasonal environmental changes. The reader is referred 
to Ref. [44] for detailed explanations. 

3.1.2. Objective function 
In order to improve the economic and environmental performance of 

the HIES, we formulate the daily operational costs of HIES as an 
objective function for scheduling optimization. This cost consists of 
energy purchase cost fd

buy, equipment maintenance cost fd
om, carbon 

emission cost fd
CO2

, curtailed wind and solar cost fd
ab, and load loss penalty 

cost fd
loss. The optimization problem can be expressed as follows: 

min f d = f d
buy + f d

om + f d
CO2

+ f d
ab + f d

loss (15)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f d
buy =

∑

T

(
cePt

buy,e + cgPt
buy,g

)

f d
om =

∑

T

∑

N

(
kom,nPt

n

)

f d
ab =

∑

T

(
kab,PV Pt

ab,PV + kab,WT Pt
ab,WT

)

f d
loss =

∑

T

∑

X

(
kloss,xLt

loss,x

)

(16)  

where fd
buy represents the system’s pre-scheduling stage energy purchase 

cost; Pt
buy,g is the gas purchase quantity for the HIES at time t; Pt

n is the 
output power of energy conversion equipment n ∈ {gt, hfc, ec, ac, el, gb,
mr}; kom,n is the corresponding equipment cost coefficient; Pt

ab,PV and 
Pt

ab,WT are the curtailed wind and solar power for the system, respec-
tively; kab,PV and kab,WT are the respective penalty coefficients for cur-
tailed wind and solar, respectively; Lt

loss,x is the system’s load loss; and 
kloss,x is the penalty coefficient for load loss. 

3.1.3. Constraints 
The constraints in the day-ahead scheduling stage mainly include 

energy balance constraints, energy purchase constraints, and equipment 
operation constraints in both time and space. 

3.1.3.1. Energy balance constraints.  

where Lt
DR,x represents the load demand of energy x ∈ {e, g, t, h, c} at 

time t with DR. 

3.1.3.2. Energy purchase constraints 
{

0⩽Pt
buy,e⩽Pbuy,e,max

0⩽Pt
buy,g⩽Pbuy,g,max

(18)  

where Pbuy,e,max and Pbuy,g,max represent the maximum purchased elec-
tricity and gas quantities for the system, respectively. 

3.1.3.3. Equipment operation constraints. In the HIES, the equipment 
includes energy conversion devices and energy storage devices. The 
operational constraints for energy conversion devices include upper and 
lower limits on device operating power and ramping, i.e., 

0⩽Pt
n⩽Pn,max (19)  

0⩽Pt+1
n − Pt

n⩽δPn,max (20)  

where Pn,max and δPn,max are the upper limits of the power and ramping 
constraint of the energy conversion device n ∈ {gt,hfc, ec,ac, el, gb,mr}, 
respectively. 

Due to the use of hydrogen-blendeded gas as fuel in GB, the heat 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt
buy,e + Pt

PV − Pt
ab,PV + Pt

WT − Pt
ab,WT + Pt

gt,e + Pt
hfc,e − Pt

ess,c + Pt
ess,d = Lt

DR,e − Lt
loss,e + Pt

el,e + Pt
ec,e

Pt
buy,g + Pt

mr,g − Pt
ges,c + Pt

ges,d = Lt
DR,g − Lt

loss,g + Pt
gt,g + Pt

gb,g

Pt
gb,t + Pt

gt,t + Pt
hfc,t − Pt

tes,c + Pt
tes,d = Lt

DR,t − Lt
loss,t + Pt

ac,t

Pt
el,h − Pt

shes,c + Pt
shes,d − Pt

hes,c + Pt
hes,d = Lt

DR,h − Lt
loss,h + Pt

hfc,h + Pt
gb,h + Pt

mr,h

Pt
ec,c + Pt

ac,c − Pt
tes,c + Pt

tes,d = Lt
DR,c − Lt

loss,c

(17)   
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released from hydrogen combustion is higher compared to an equal 
amount of natural gas. To ensure the safe operation of the equipment 
and avoid significant structural modifications to the equipment itself, 
strict limitations are imposed on the proportion of hydrogen. The 
maximum proportion of hydrogen power to the total is considered as 
0.3: 

0⩽Pt
gb,h

/(
Pt

gb,h +Pt
gb,g

)
⩽0.3 (21) 

In addition to the upper and lower limits on charging and dis-
charging, the constraints on energy storage devices also include capacity 
constraints. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Em,min⩽Et
m⩽Em,max

0⩽Pt
m,c⩽λm,cPm,c,max

0⩽Pt
m,d⩽λm,dPm,d,max

λm,c + λm,d = 1

, i= 1, 2, 3 (22)  

where Em,max and Em,min represent the capacity upper and lower limits of 
energy storage device m ∈ {ees,ges,tes,hes,shes,ces}, respectively. Pm,c,max 

and Pm,d,max represent the maximum charging and discharging power of 
energy storage device m, respectively; λm,c and λm,d are binary variables 
representing the charging and discharging states of energy storage de-
vices, respectively. 

Considering the continuity of the energy storage dispatch period, the 
states of other types of energy storage, excluding the SHES, should 
remain consistent at the beginning and end of the dispatch cycle. 
Furthermore, the initial and final states of SHES must also be consistent 
throughout the annual dispatch cycle. These give 

E0
m =E24

m (23)  

E0
shes =ET

shes (24)  

3.2. Intraday rolling scheduling optimization model 

3.2.1. Stochastic uncertainty of RES and load 
In the intraday scheduling phase, due to the decreasing uncertainty 

of renewable energy and load power with the shortening of the time 
scale, a normal distribution is employed to model the intraday predic-
tion errors of the RES and load, as shown below. 
⎧
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2π

√ e− (ξi
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2
/

2σ2
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f
(

ξi
pv

)
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1
σpv

̅̅̅̅̅
2π

√ e− ζi2
pv/2σ2

pv

f
(
ξi

L
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=

1
σL

̅̅̅̅̅
2π

√ e− ξi2
L /2σ2

L

(25)  

where ξi
wt, ξ

i
pv and ξi

L are the intraday power deviations for WT, PV, and 
load, respectively; μwt, σwt , σpv, and σL are the corresponding distribution 
coefficients. 

3.2.2. Objective function 
In the intraday scheduling stage, based on the results of the day- 

ahead scheduling, the adjustment costs f i
ad of HIES in each scheduling 

period and the additional operational costs f i
IDR due to IDR adjustments 

are considered in the objective function (26): 

min f i = f i
buy + f i

om + f i
CO2

+ f i
ab + f i

loss + f i
ad + f i

IDR (26)  

⎧
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⎪⎪⎩

f i
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∑

T

∑

N

(
kad,nΔPt

n

)

f i
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∑

T

(
cIL,x

⃒
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⃒ΔLt

IL,x

⃒
⃒
⃒+ cCL,x

⃒
⃒
⃒ΔLt

CL,x

⃒
⃒
⃒

) (27)  

where kad,n is the adjustment cost coefficient for energy conversion de-
vices; ΔPt

n is the power adjustment of energy conversion devices at time 
t; f i

IDR is the subsidy cost of IDR in the intraday scheduling stage; cIL,x and 
cCL,x are the unit subsidy prices for IL and CL for energy x. 

3.2.3. Constraints 
The intraday rolling optimization model involves all devices 

responding within 15 min, and the constraints include energy balance 
constraints (17), energy purchase constraints (18), and equipment 
operation constraints (19)-(24)-(24). In addition, IDR constraints and 
power adjustment constraints for energy conversion devices need to be 
considered. 
{

0 ≤ ΔLt
IL,x ≤ ΔLt

IL,x,max

0 ≤ ΔLt
CL,x ≤ ΔLt

CL,x,max
(28)  

0≤ΔPt
n ≤ ΔPt

n,max (29)  

where ΔLt
IL,x,max and ΔLt

CL,x,max represent the maximum response quan-
tities of IL and CL corresponding to energy x, respectively; ΔPt

n,max is the 
upper limit of the adjustment quantity for coupled device n. 

3.3. Real-time stochastic scheduling optimization model 

3.3.1. Chance-constrained scheduling optimization 
In the real-time scheduling stage, short-term prediction errors of the 

RES and load power are modeled using a normal distribution. The 
fluctuation amplitude is small at this stage. Therefore, this paper adopts 
the chance-constrained programming(CCP) to ensure that the proba-
bility of constraint conditions holding is not less than a certain confi-
dence level when optimizing system scheduling based on the objective 
function. 

3.3.2. Objective function 
The short-response devices with faster response in the HIES take 

priority in participating in real-time scheduling optimization adjust-
ments, while the SHES does not participate in this stage of scheduling. 
The objective function is: 

min f r = f r
buy + f r

om + f r
CO2

+ f r
ab + f r

loss + f r
ad + f r

IDR + f r
es (30)  

f r
es =

∑

T

∑

M

(
kes,mΔPt

m

)
(31)  

where f r
es represents the real-time stage energy storage adjustment cost, 

ΔPt
m is the power adjustment of energy storage device m, and kes,m is the 

adjustment cost coefficient of energy storage device m. 

3.3.3. Constraints 
In the real-time optimization model, the chance-constrained method 

is employed. The control of energy storage devices only needs to meet 
the supply rates of various loads at their respective confidence levels. 
The remaining slight deviations can be compensated by real-time pur-
chasing from upper-level electricity, gas, and load adjustment. There-
fore, the constraint conditions at this stage are similar to the energy 
purchase constraints (18), equipment operation constraints (19)-(24) 
and DR constraints (28)-(29), while the difference is that the following 
chance constraints are applied instead of the deterministic constraints, i. 
e., 
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Fig. 4. Multi-time scale scheduling optimization flowchart.  
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Where the probability Pr{} represents the confidence level, and βi =

0.95 is the designed confidence level of power balance. 

4. Case study 

4.1. Solution method 

Fig. 4 shows the process of optimizing scheduling strategies at 
multiple time scales proposed in this article. Clearly, the LTCTM model, 
which includes segmented functions and quadratic terms, makes the 
HIES a typical mixed integer nonlinear programming (MINLP) model. 
Metaheuristic optimization can be readily applied to solve this MINLP 
model, but it usually requires a heavy computational load and signifi-

cant computational resources. To facilitate rapid computation and on-
line applications, we propose first to carry out piecewise linearization 
and transform the model into a mixed integer linear programming 
(MILP) model, then call the software package Yalmip in the CPLEX 

Table 1 
Scenarios for day-ahead optimization scheduling for HIES.  

Scenario P2G P2H SHES Fixed CTM LTCTM 

1   ✓  ✓ 
2 ✓ ✓   ✓ 
3 ✓  ✓  ✓ 
4 ✓ ✓ ✓   
5 ✓ ✓ ✓ ✓  
6 ✓ ✓ ✓  ✓  

Table 2 
Day-ahead optimization scheduling results of HIES in different cases.  

Scenario Purchase cost (¥) Maintenance cost (¥) Curtailed wind and light (%) Load loss (kW) Carbon emissions (kg) Total cost (¥) 

1 13,804 1076 0.89 917 11,636 28,114 
2 15,301 1426 0.25 0 10,412 20,091 
3 14,012 1244 0.16 917 9758 27,519 
4 14,225 1308 0.30 0 12,179 24,707 
5 14,331 1342 0.27 0 11,637 19,782 
6 14,679 1416 0.20 0 10,659 19,576  

Fig. 5. Optimization results of the system with different seasonal hydrogen storage capacity.  
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(32)   
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commercial solver. Specific model parameters and the linearization 
process are detailed in Appendix A. 

4.2. Day-ahead scheduling analysis 

To analyze the impact of seasonal hydrogen energy utilization and 

the LTCTM on HIES operations, six scenarios were established for 
comparative analysis in the day-ahead stage. These scenarios are. 

Scenario 1: Comprehensive utilization of hydrogen energy is not 
considered. Hydrogen generated by the EL is only used to meet the 
hydrogen load demand of the system. 

Fig. 6. Energy supply and demand scheduling results of HIES in the day-ahead stage.  
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Scenario 2: Seasonal hydrogen storage is not considered when 
employing the LTCTM scheme. 
Scenario 3: The Power-to-Hydrogen (P2H) process is not considered, 
and traditional EL and MR are employed for P2G and LTCTM 
scheme. 

Scenario 4: Seasonal hydrogen energy utilization is considered in the 
LTCTM scheme, but the objective function does not involve carbon 
trading costs. 
Scenario 5: A traditional fixed carbon trading model is employed. 
Scenario 6: Both seasonal hydrogen energy utilization and the 
LTCTM scheme are employed, which is the proposed scheduling 
plan. 

Fig. 6. (continued). 

Z. Wang et al.                                                                                                                                                                                                                                   



International Journal of Hydrogen Energy 67 (2024) 728–749

740

The scenarios for demonstrating the day-ahead scheduling are given 
in Table 1. 

4.2.1. Economic analysis of different cases 
To better evaluate the cross-seasonal scheduling characteristics of 

the system, the scheduling results were calculated based on the average 
cost of typical daily scheduling over a year in different scenarios. The 
economic cost of system scheduling for each scenario is shown in 
Table 2. Scenario 1, due to its complete disregard for refined hydrogen 
energy utilization, struggles to achieve supply and demand balance, 
resulting in a significant loss of wind, solar, and load. In Scenario 2, only 
short-term hydrogen storage was adopted to meet system demand, 
leading to reduced flexibility in schedule and increased dependence on 
external energy purchases. Purchase and maintenance costs increase by 
4% and 0.7%, respectively, compared to Scenario 6. This indicates that 
long-term hydrogen storage can enhance economic efficiency. Scenario 
3, like Scenario 1, lacks FC compensation for thermal energy supply, 
leading to significant thermal load shedding. In Scenario 4 where the 
economic aspect was prioritized, low-cost natural gas was purchased 
more, leading to a substantial increase in carbon emissions (i.e., 14.3% 
more than in Scenario 6). Scenarios 5 and 6 yield the closest scheduling 
results, but the traditional fixed carbon price trading of Scenario 5 is less 
responsive to carbon emission adjustments, leading to higher carbon 
emissions and trading costs. The scheduling method that takes into ac-
count seasonal hydrogen energy utilization and LTCTM enhances the 
adjustability and flexibility of the HIES. It effectively promotes inter-
active regulation between various energy conversion devices and mul-
tiple energy sources. Therefore, Scenario 6 has the best overall cost- 
effectiveness, with total costs reduced by 2.6% and 1% compared to 
Scenarios 2 and 5, respectively. 

To further illustrate the impact of seasonal hydrogen utilization on 
the scheduling optimization of IES, the operation of the system with 
varying proportions of seasonal hydrogen storage capacity is optimized. 
The results respectively display the total cost, purchase cost, and wind 
and solar power curtailment of the IES with 0%, 33%, 66%, and 100% 

capacity of seasonal hydrogen storage, as shown in Fig. 5. It is evident 
that as the increase of seasonal hydrogen utilization, the system’s total 
cost, purchase cost, and wind and solar power loss all decrease. This 
indicates that seasonal hydrogen utilization can enhance the utilization 
of renewable energy sources in IES, reduce the amount of energy pur-
chased from the grid, and thereby lower operational costs. However, 
there is also a clear marginal effect associated with seasonal hydrogen 
storage. As capacity increases, the cost reduction and wind and solar 
power absorption gradually diminish. Therefore, it is crucial to equip the 
IES with a reasonable capacity of seasonal hydrogen storage to maintain 
a balance between cost reduction and efficiency enhancement. 

4.2.2. Results of day-ahead scheduling optimization 
Fig. 6(a) to Fig. 6(e) display the optimization results of various forms 

of energy for the HIES scheduling plan across four typical seasonal days. 
The balance of electric power shows that during periods of low elec-
tricity prices (1:00–5:00 and 22:00–24:00) and insufficient renewable 
energy supply, the system purchases large amounts of electricity to meet 
load demands. During midday, when supply from PV and WT is ample, 
HIES purchases less energy from the external. GT and FC compensate the 
electrical network as per the actual scheduling situation. The hydrogen 
balance illustrates that EL increases its operation power during times of 
surplus electricity or renewable energy generation, converting excess 
electrical energy into hydrogen for use within other energy flow sys-
tems. The system’s natural gas purchases are influenced by peak and off- 
peak gas prices but remain high due to the significant demand from GB 
and GT. MR and FC increase output power when hydrogen supply is 
abundant, meeting hydrogen load demands and providing energy in 
other forms. To maintain thermal balance, GT and GB are mainly used 
for thermal energy demand, with the remainder supplied by FC. For cold 
load supply in the HIES, EC is more economical, supplemented by AC. 
The five types of energy storage exhibit similar patterns in the optimi-
zation results: Discharging during energy shortages and charging during 
surpluses, demonstrating their role in peak shaving and enhancing sys-
tem economic stability. 

Fig. 6. (continued). 
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The scheduling results also highlight the HIES’s seasonal advantages, 
especially in thermal and cold energy forms. In typical summer days, the 
system increases MR and AC output, utilizing hydrogen energy for 
cooling, thus enhancing the system’s cooling capacity. Conversely, on 
typical winter days, the system adapts accordingly – EC output de-
creases, and excess electricity is diverted to hydrogen production for FC, 

which in turn increases thermal output, enhancing the system’s thermal 
supply capacity. 

From the analysis, multi-energy flow HIES scheduling on large 
temporal and spatial scales is the result of multiple device coordination. 
On the one hand, influenced by renewable energy supply fluctuations 
and energy prices, the system can arrange scheduling plans rationally by 

Fig. 7. Energy flow diagram of the system.  
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leveraging coordination among energy input, production, conversion, 
storage, and consumption. Therefore, it promotes efficient renewable 
energy consumption and the internal energy supply-demand balance of 
HIES, leading to increased system economic efficiency. On the other 
hand, considering seasonal hydrogen energy utilization provides an 
additional method for energy supply-demand balance, improving the 
system’s adaptability and resilience to seasonal and large-scale load 
changes. 

4.2.3. Influences of high penetration level of wind and solar 
Fig. 7 illustrates the overall energy flow of the HIES on a typical day, 

compared to the IES without hydrogen utilization. The most direct and 
effective means of meeting electric and gas load demands is to purchase 
electricity from renewable generation and gas from natural gas pipe-
lines. In the HIES, the penetration level of supply from these sources 
reached 58.8% for electricity and 74.8% for gas, with the remainder 
being flexibly supplemented by other equipment. This is because direct 
supply avoids the energy conversion losses associated with intermediate 

Fig. 8. Energy flow diagram of the system after increasing wind and solar power generation.  
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equipment, thus enhancing system efficiency and economy. The supply 
of heat and cold primarily considers GT, GB, and EC, with their supply 
penetration level reaching 84.4% and 80.2%, respectively. The EL is the 
core of the hydrogen network in HIES, and the hydrogen produces not 
only the needs to meet the system’s hydrogen load demand but also 
ensures sufficient supply for other equipment. The traditional network 
experienced a load reduction of 3.67 × 103 kW and a renewable energy 
curtailment of 2.38 × 103 kW, whereas the proposed HIES completely 
met the system load demand with ignorable curtailment. Compared to 
an IES without a hydrogen network, the incorporation of the hydrogen 
chain in HIES is beneficial for overall energy flow, significantly 
enhancing the capability to adopt more renewable energy. 

To further demonstrate the scheduling optimization and high pene-
tration level of wind and solar energy in the HIES, the total input of wind 

and solar energy was increased by 30%, and the same method was 
applied to reschedule both systems. The results, as shown in Fig. 8, 
indicate that with increased renewable energy supply, the overall pur-
chase of energy was reduced in both systems. However, the IES without 
a hydrogen network still exhibited load shedding. It failed to balance the 
demand and supply, and the total renewable energy had to be curtailed 
again by 12,520 kW. Although the HIES also experienced a slight in-
crease in renewable energy curtailment, compared to the IES, its 
renewable energy penetration level was increased by 12%, and it 
managed to avoid load shedding, ensuring a balance between supply 
and demand on both sides of the source and load. Furthermore, with the 
presence of the hydrogen network, the EL, FC, and MR adaptively 
increased their power outputs. The overall energy utilization efficiency 
is increased and the system operational costs are reduced, thus 

Fig. 9. Energy supply and demand scheduling results of HIES in the intraday stage.  
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demonstrating the capability to consume a significant level of renewable 
energy. 

4.3. Intraday rolling scheduling analysis 

Intraday rolling scheduling refines the day-ahead scheduling results 

by shortening the time scale and adjusting the output power of various 
devices. It also considers ADR and IDR, using intraday rolling optimi-
zation to further optimize the scheduling results. The energy supply and 
demand scheduling results for the intraday rolling stage are presented in 
Fig. 9. 

The HIES attempts to find a balance of multiple energy forms at the 

Fig. 10. Power imbalance adjustment for real-time scheduling optimization.  
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intraday stage. However, there are noticeable differences between 
intraday rolling and day-ahead scheduling plans, especially in minor 
energy forms, i.e., heat, hydrogen, and cold energy. This is because the 
prediction accuracy at the intraday stage is higher than in the day-ahead 
stage, and scheduling changes have a more significant impact on the 
energy forms of insignificant amounts. Likewise, the power scheduling 
of various types of energy storage also shows significant changes due to 

the reduction in time scale. The flexibility of energy storage devices in 
charging and discharging makes them more sensitive to short-term 
supply and demand fluctuations. The solid and dashed lines in the 
intraday scheduling results represent the load changes before and after 
the inclusion of DR into the model. All types of loads have been reduced 
during peak energy usage periods through IL, and electricity loads have 
also been shifted from peak periods to off-peak periods through CL. This 

Fig. 10. (continued). 
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demonstrates that the implementation of IDR reduces the energy supply 
burden on the system and enhances the economic efficiency of HIES. 

4.4. Real-time scheduling analysis 

4.4.1. Analysis of system imbalance for real-time scheduling 
The results of power fluctuation adjustments during the real-time 

stage are illustrated using a typical summer day, as shown in Fig. 10. 
The power imbalance in the real-time stage primarily results from 
fluctuations in WT, PV, and five types of loads. Due to the short time 
intervals in real-time scheduling, the system’s DR only considers IDR 
adjustments. The HIES addresses energy supply and demand balance by 
prioritizing energy storage adjustments and flexible energy conversion 
equipment. On the demand side, it is necessary to consider the amount 
of scheduling and costs to adaptively adjust the size of the IDR. Table 3 
presents the cost of HIES-optimized scheduling across different time 
scales. Compared to the day-ahead schedule, real-time scheduling is 
more refined, resulting in less external energy purchasing. Although the 
total cost is relatively higher, it includes adjustment costs and IDR, 
which are not present in the day-ahead phase. Compared to the intraday 
stage, WT, PV, and load deviations are lower in real-time scheduling. 
The adjustments in HIES’s output plan aim to achieve power balance 
during the real-time stage, reducing the remaining costs by 30%, with 
purchase costs, maintenance costs, and carbon trading costs remaining 
essentially unchanged. 

4.4.2. Analysis of multiple demand responses 
It is important to note that as the demand side plays an increasingly 

significant role in the optimized operation and energy allocation of 
HIES, the time characteristics of DR also deserve considerable attention. 
For instance, the effects of multiple demand responses in different en-
ergy forms and scales were investigated on a typical summer day, and 
the results are depicted in the waterfall comparison charts in Fig. 11. 
Each chart displays the comparative results of all forms of DR for that 
particular energy type, reflecting the impact of DR on scheduling at 
different time scales. 

As commodity energy, both electricity and gas are suitable for PDR. 
PDR adjusts according to energy prices, reducing loads when prices are 
high and increasing loads when prices are low, thereby reducing system 
costs and improving economic efficiency. Electric and cold loads use 
ADR, characterized by a reduction in electric and cold loads during peak 
periods, while gas and heat loads experience a corresponding increase, 
effectively substituting a portion of electric and cold loads with gas and 
heat loads. IDR, with the highest operability among all DR types, is 
involved in the adjustment of all five types of loads. In terms of time 
scale, PDR has the longest adjustment scale, covering the entire period of 
high and low energy purchase prices. ADR adjusts at the day-ahead and 
intraday time scales, covering a smaller range than PDR. IDR has the 
smallest time scale for adjustment, meeting the demand response needs 
of intraday and real-time stages with sensitive and high-frequency curve 
changes. 

In summary, multiple demand responses are involved in HIES 
scheduling optimization through energy prices and incentive signals, 

Fig. 10. (continued). 

Table 3 
Scheduling results at different time scales.  

Time scale Purchase cost (¥) Maintenance cost (¥) Carbon emissions (¥) Remaining costs (¥) Total cost (¥) 

Day-ahead schedule 14,679 1416 3454 27 19,576 
Intraday schedule 14,662 1423 3663 571 20,318 
Real-time schedule 14,674 1424 3655 440 20,193  
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optimize load curve distribution, reduce system costs, and improve 
system energy efficiency. Furthermore, different types of demand re-
sponses exhibit distinct time distribution characteristics. Selecting 
appropriate DR types based on the adjustment time scale in practical 
engineering applications helps to improve the supply-demand balance 
and enhance the system’s economic performance. 

5. Conclusion 

This paper proposes an operational strategy based on multi-time 
scale scheduling optimization for HIES. Seasonal hydrogen energy uti-
lization and multiple demand responses are considered in a three-stage 
optimization process. The strategy is validated using historical weather 
and operational data from South China with a monsoon climate. In the 
day-ahead scheduling stage, the data are used to cluster and analyze the 

Fig. 11. Comparison of multiple demand responses.  
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typical daily input power of the HIES across all seasons, taking into 
account the LTCTM. A mixed-integer nonlinear model is established for 
HIES based on the utilization of seasonal hydrogen energy. In the 
intraday phase, the scheduling plan of the day-ahead phase is used as a 
reference, considering 15-min level forecast values and a rolling opti-
mization model incorporating ADR and IDR is established. In the real- 
time phase, the scheduling plan from the intraday stage is adopted, 
and a chance-constrained method is designed for refined scheduling 
solutions, taking into account changes in the 5-min level time scale and 
IDR mechanisms. The results show that the comprehensive utilization of 
seasonal hydrogen energy and the LTCTM are more efficient and stable 
in meeting system operation and supply-demand balance, and the total 
operational costs can be reduced by 2.6% and 1%, respectively. 

Furthermore, renewable energy generation and load changes have 
significant seasonal characteristics. Considering seasonal energy storage 
and hydrogen utilization enhances self-regulation capability in response 
to load variations. In addition, refined hydrogen energy utilization im-
proves the overall energy flow in the HIES. The ability to consume 
renewable energy generation is increased by 12% compared to tradi-
tional systems, significantly enhancing the system’s energy utilization 
efficiency. 

The successful implementation of DR requires guidance from gov-
ernment policies, effective operation by power system operators, and 
active participation from users. Various types of DR strategies exhibit 
significant differences in their suitability concerning time scales and 
load types. In practical systems, the implementation of different types of 
DR can be adjusted to balance between system economy and reliability. 

It is important to point out that the proposed method of model 
reformulation and solution through piecewise linearization is only 
validated for linearized models and low-degree polynomial models. 
However, the output characteristics of system equipment in practical 
applications may exhibit strong nonlinearity and are closely related to 
time-varying dynamic characteristics. Therefore, more detailed models 
and more sophisticated solution methods, possibly combined with 
intelligent algorithms, need to be further developed, which can be the 
direction for future research in this area. 
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