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Abstract—Existing methods for estimating the state of health 

(SOH) of lithium-ion battery (LIB) typically rely on the 

assumption that the distribution of noise (or outliers) in the 

measurement data is known. However, this assumption rarely 

holds true for LIB operating under real-word conditions. This 

article proposes a stable framework for accurate SOH estimation 

that accommodates noises with unknown distribution in both 

measurement data and label values. The framework combines 

generalized correntropy loss (GCL) with Savitzky-Golay (SG) 

filter and extreme learning machine (ELM) to obtain 

measurement data filter named SG-GCL and SOH estimator 

named generalized ELM (GELM), respectively. The SG-GCL 

filtering of the measurement data keeps the root mean square 

error (RMSE) within 0.0365%, and Pearson correlation between 

extracted feature and SOH improves by 0.4963, which in turn 

leads to the reduction of the RMSE metrics of the ELM for the 

estimation of the SOH by 43.69%. From the filtering results, 

feature extraction and estimation results proved its necessity and 

effectiveness. GELM effectively suppresses the influence of label 

value noise on the model in the training process, which reduces 

the SOH estimation RMSE index by more than 0.66%. The 

results from experiments with different distributional noise 

conditions show that the proposed SOH estimation framework 

has excellent and stable performance. 

 
Index Terms—State of health, Savitzky-Golay filter, generalized 

correntropy loss, extreme learning machine, measurement noise 

with unknown distribution  

 
This work was supported in part by the National Natural Science 

Foundation of China under Grant 62473308, the National Key R.D Program 
of China under Grant 2021YFB2401900, the Joint Fund project of the 

National Natural Science Foundation of China under Grant U21A20485, and 

the Science and Technology Plan Project of Xi’an under Grant 
23GXFW0071. Corresponding author: Wentao Ma, and Yang Li.  

Wentao Ma, Jingsong Xue, Peng Guo, and Xinghua Liu are with the school 

of electrical engineering, Xi’an University of Technology, 710048 China (e-
mail: mawt@xaut.edu.cn, 2221920068@stu.xaut.edu.cn, 2211921110 

@stu.xaut.edu.cn,  liuxh@xaut.edu.cn). 

Yang Li is with the Department of Electrical Engineering, Chalmers 
University of Technology, 41296 Gothenburg, Sweden (e-mail: 

yangli@ieee.org). 

Zhongbao Wei is with the National Engineering Laboratory for Electric 
Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, 

Beijing 100081, China (e-mail: weizb@bit.edu.cn). 

Yiwen Wang is with the Department of Electronic and Computer 
Engineering, Hong Kong University of Science and Technology, Hong Kong 

(e-mail: eewangyw@ust.hk). 

Badong Chen is with the Institute of artificial intelligence and robotics, 
Xi’an Jiaotong University, Xi’an, 710048 China (e-mail: 

chenbd@mail.xjtu.edu.cn). 

Color versions of one or more of the figures in this article are available 
online at http://ieeexplore.ieee.org 

I. INTRODUCTION 

UE to high energy density and long cycle life, 

lithium-ion battery (LIB) is widely used as power 

sources for electric vehicles [1]. However, as LIB is cycled, 

irreversible aging occurs within them, reflected in the 

degradation of maximum usable capacity and an increase in 

internal resistance. This can lead to reduced battery life and 

increased safety risks. In order to ensure the safe and reliable 

operation of LIB, the battery management system (BMS) has 

been developed [2]. The state of health (SOH) as one of the 

key parameters of BMS cannot be measured directly and must 

be estimated via measurement data [3]. However, the 

measurement data are susceptible to noise interference in 

complex environments, and thus how to perform accurately 

online SOH estimate using noisy measurement data remains a 

challenge [4]. 

At present, the mainstream methods for estimating SOH 

can be broadly categorized into two types: model-driven (MD) 

methods and data-driven (DD) methods [5-6]. MD methods 

require accurate equivalent circuit or electrochemical models 

and have the shortcomings of high complexity and inability to 

migrate between different batteries [7]. The DD methods, by 

contrast, only need to train a black-box model with the 

collected data and do not require priori knowledge of LIB [8]. 

The two key parts of DD methods for accurate SOH 

estimation are health feature (HF) extraction and model 

training [9]. SOH is the ratio of the LIB's current maximum 

capacity to its rated capacity and HF is data sequences 

containing LIB aging information [9].  

Extracting HFs that accurately reflect battery aging is an 

important prerequisite for accurate SOH estimation using a 

DD method [10]. Charging of LIB almost always include both 

constant current (CC) and constant voltage (CV) modes, and 

many HFs can be extracted from the CC-CV charging process. 

Cai et al. [11] extracted two temporal HFs of high correlation 

with SOH from the CC and CV charging stages of LIB to 

achieve accurate SOH estimation. Zhou et al. [12] extracted 

two types of HFs, the relative rate of change of ohmic internal 

resistance and the peak of incremental capacity (IC) curve, 

from the collected discharge data and charging data, 

respectively. Then the correspondence between different aging 

stages and SOH was established by combining the two kinds 

of HFs. Considering the different charging habits, the 

complete charging curves may be difficult to obtain. 

Therefore, multiple HFs of short stages based on the upper and 
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lower bounds of the battery state of charge were extracted in 

[13]. Deng et al. [14] split the voltage-capacity curve of a 

battery during CC charging into multiple voltage intervals, 

each representing a SOH-related HF. However, due to the 

complexity of the operating environment of LIB, the above 

references do not take into account that the data may contain 

noise. He et al. [15] employed a moving average (MA) 

filtering method for the IC curves, and the Gaussian filter was 

used to smoothen the IC curve in [16]. In addition, a complete 

ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) approach was applied in [17] to decompose and 

denoise the feature data collected from the voltage profile. 

Meanwhile, Zhao et al. [18] utilized a Kalman filter to 

smoothen the temperature difference curve derived from the 

charging data, ultimately yielding a more refined HF 

temperature difference curve that is easier to extract. Recently, 

Xu et al. [19] and Li et al. [20] used SG filters for filtering the 

IC curve obtained through their respective methods. Zhang et 

al. [21] utilized Savitzky-Golay (SG) filters to process the 

voltage-temperature curves and the computed differential 

thermo voltammetry curves to suppress the noise on the 

curves. Multiple HFs extracted from voltage and temperature 

curves were filtered using SG algorithm in [22]. Among the 

aforementioned filters, the SG filter can provide improved 

performance in terms of computational complexity and noise 

suppression ability [23].  

However, the filtering algorithm is not applied to the direct 

measurement data such as current and voltage in most 

previous studies. Instead, these measurement data are usually 

utilized to generate other signals before being sent to the filter. 

This can give rise to a concern that when the raw measurement 

data contain unknown distribution noise (or outliers), pre-

processing these data can generate invalid data sequences that 

do not contain any physical information. This concern can 

invalidate the filtering objects of existing studies. Therefore to 

the best of this study, an unresolved question is raised for the 

first time and verified in a follow-up to the article: How can 

measurement data containing unknown distribution noise be 

processed directly and efficiently to ensure that the extracted 

HFs contain sufficient aging information? 

Another key to the DD methods is model training. She et 

al. [24] introduced an integrated learning approach that 

initially trains multiple radial basis function neural networks 

(RBFNNs) and subsequently determines the weights of each 

RBFNN using random forests (RF), which can achieve precise 

SOH estimation. In Ref [25], an advanced two-stage attention-

based long short-term memory (LSTM) neural network was 

introduced by fusing the encoder and decoder parts of the 

network with two distinct attention mechanisms, thereby 

optimizing the impact on both input and output, respectively. 

Wang et al. [26] used a hybrid neural network combining 

convolutional neural network and fully connected neural 

network to fully exploit the relationship between different HFs 

and battery capacity. Zhou et al. [27] designed a recursive 

Gaussian process regression (GPR) model with a one-step 

delayed feedback loop to merge the estimated SOH value at 

the previous moment with the HF at present. However, overly 

complex estimation models are not practically applicable in 

BMS. By parameter identification of the HF extracted from 

the electrochemical impedance spectrum, Pang et al. [28] 

achieved accurate SOH estimation using a fitted quadratic 

function. Fu et al. [29] implemented the estimation of SOH 

based on an extreme learning machine (ELM) incorporating 

regularization in conjunction with the proposed improved 

electrochemical impedance spectral computation with fast 

Fourier Transform. A ridge regression model incorporating a 

regularization term was applied in [30]. 

Although the existing studies have achieved good 

estimation results, they have not considered the problem that 

the labeled values of the training data may contain outliers. 

For the source of outliers in labeled values, it contains two 

aspects. On the one hand, the labeled values used nowadays 

are all calculated by the ampere-hour integration method, 

which can cause cumulative errors. On the other hand, 

incomplete charging and discharging can result in calculated 

label values that do not accurately reflect the actual capacity. 

In response to the problem of labeled values containing 

outliers, almost all of the existing research has dealt with 

removing the data of cycles in which outliers are located. 

However, not using these data can lead to underutilization of 

the data already available. The scarcity of battery aging data 

presents a challenge, as utilizing limited datasets may 

compromise the estimation accuracy of the existing models. 

Therefore, this brings up another question: How to train a 

stable model when the labeled values of the training data 

contain outliers? 

In order to solve the above two problems, this article 

proposes a framework that combines a stable filtering method 

and a stable training model for raw data. Firstly, the SG filter 

is chosen due to its lower complexity and stronger de-noising 

ability. The collected current and voltage curves are filtered 

and denoised using this method. Then, multiple short-time 

HFs are extracted from the curves obtained by filtering. The 

HFs having high correlation with SOH are selected under each 

dataset for the subsequent state estimation. Finally, the ELM 

as an easy-to-implement and effective neural network model is 

applied for SOH estimation. Moreover, both problems target 

unknown noise. In information theoretical learning 

methodology, the generalized correntropy loss (GCL) is 

proposed in [31] due to its stability and flexibility for 

unknown noise. Specifically, there is a generalized Gaussian 

kernel with adjustable parameters in GCL. In the generalized 

Gaussian kernel, the metric resembles l2-norm when the data 

are close in distance. As the distance between data increases, 

the metric resembles l1-norm and finally resembles l0-norm. It 

is through the geometric property that GCL achieves stability 

to noise (or outliers) as compared to least squares (LS) 

computation of l2-norm between data. Therefore, the GCL is 

chosen to resist the unknown noise interference in data in this 

work that a novel SG filter with GCL (SG-GCL) is further 

developed to enhance the quality of the input measurement 

data, and an ELM with GCL (called generalized ELM, 

GELM) is introduced to mitigate the impact of outliers in the 

label values of training data. The main contributions of this 
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article can be summarized as follows: 

1) A stable filter called SG-GCL is proposed for the 

problem that the original measurement data contains 

unknown noise. The replacement of the error criterion 

in the traditional SG using the GCL makes the SG-

GCL not only retain the properties of SG filtering, but 

also greatly improve its stability in the face of non-

Gaussian noise. This provides a much better guarantee 

for the subsequent extraction of HF. 

2) Pioneering a new perspective, the retention of outliers 

in label values during model training is explored. In 

response, the GELM based stable estimator is 

introduced to mitigate the influence of outliers during 

the training of labeled values. This ensures the 

accuracy of model estimation based on enhanced data 

utilization. 

3) The proposed framework is validated on two datasets. 

The unknown distribution noise in the measurement 

data is effectively filtered out. The filtering of the 

unknown distribution noise in the measured data 

results in an improvement of 0.4963 in the Pearson 

correlation between the extracted HF and SOH, which 

in turn leads to a 43.69% decrease in the RMSE index 

of the ELM estimation of SOH. And the influence of 

SOH label outliers during model training is also well 

suppressed, which is reflected in the reduction of 

estimated RMSE for GELM by 0.66% compared to 

ELM. 

The rest of the article is organized as follows. In Section II, 

the framework for SOH estimation is provided and the 

improved methodology used is derived. The dataset used in 

the article is elaborated in Section III. Section IV conducts 

filtering of measurement data and extraction of HF. In Section 

V, SOH estimation based on extracted HF is performed and 

compared from different angles. Section VI discusses the 

existing deficiencies in the work and future research 

directions. Finally, the article is concluded in Section Ⅶ.  

II. METHODOLOGY 

In this section, the proposed stable model used in each of 

the two stages of SOH estimation is derived in detail. The 

general framework of the SOH estimation method is shown in 

Fig. 1. It mainly consists of two parts: offline training and 

online estimation. Both offline training and online estimation 

involve measurement data contaminated with noise. The 

unknown distribution noise contained in each measurement 

data sequence is suppressed using the SG-GCL filtering 

method. And the labeled data containing noise only appears in 

the offline training part, and it only affects the training of the 

model. For this part of the noise the GELM model is used for 

suppression. The experiment on processing measurement data 

with noise will be presented in Section IV, and the experiment 

on processing label data with noise will be presented in 

Section V. 

A. Generalized Correntropy Loss 

Correntropy as a measure of local similarity is very 

effective for non-Gaussian measurement noise with large 

outliers [32]. It has been used in several fields such as 

navigation systems [33], image classification [34], and state 

estimation [35]. Generalized correntropy, as a generalized 

form of correntropy, replaces the Gaussian kernel in the 

correntropy with a generalized Gaussian density function to 

achieve higher flexibility [31]. In the case of a finite number 

of samples 
1

( , )
N

i i i
x y


, the GCL can be defined as [31] 

 
,
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1
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GCL i i
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where 0   denotes the shape parameter and 0   is the 

scale parameter. 

From (1) and (2), it can be analyzed that the GCL can limit 

the loss value to [0, 1) regardless of the value of the adjustable 

parameter, which reduces the effect of large errors caused by 

outliers on the loss value. In contrast, LS based on l2-norm 

shows a regularity of power growth in the loss value as the 

error increases, which makes the local outliers in the data have 

a great impact on the loss function and leads to a negative 

impact on the overall effect of the algorithm. The comparison 

of the two losses is also displayed in Fig. 2. From Fig. 2, it can 

be seen that by tuning the different parameters, the GCL 

exhibits a more flexible and versatile localization property 

compared to the LS. Therefore, by adjusting the appropriate 

shape parameters and size parameters, the GCL can be made 

to adapt to different types of algorithms. 

Measurement data 
with noise

SG-GCL filtering HFs extraction

SOH estimation 

with GELM

Label data with noise

GELM training

Offline training Online estimation
 

Fig. 1. SOH estimation framework. 

B. Savitzky-Golay Filter with GCL 

The SG filter [23] is based on the LS method of fitting a 

polynomial to the data within the window. As such, it has two 

main parameters namely window length and polynomial order. 

Considering a symmetric window of length 2 1m   in a 

sequence of data 
1 0

[ , , , , , ]
m m m

C c c c c
  

  and then a 

polynomial of order n can be utilized to fit it by minimizing 

the LS loss defined as  

 
2 2

0

ˆ( ) ( )

m m n

k

SG LS l l k l

l m l m k

J c c a l c


  

       (3) 

where ˆ
l

c  represents the l-th fitted value in the present window 
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and 
k

a  denotes the coefficients of order k in the polynomial. 

However, the LS loss given in (3) may be problematic at the 

presence of large outliers in the sequence data, because only 

the second-moment of error is used [32]. Although this 

problem can be solved to some extent by adjusting the 

window length and polynomial order, this will inevitably 

increase the computational burden and the cost of debugging 

parameters. Hence, in this study, the SG-GCL model is 

developed by employing GCL [31] instead of the LS loss in 

original SG filter aiming to enhance its stability against 

outliers. 

Combining (1)-(3), we can defined a novel loss as 

 0
1

1 exp( ).
2 1
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Similarly, taking the derivative of (4) with respect to the 

coefficients and setting the derivatives to zero yields the 

coefficient matrix of the SG-GCL as 
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where 0,1, ,p n . a  is a matrix of coefficients consisting 

of 
k

a  and Λ  is a diagonal matrix whose diagonal element is 
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Λ  (6) 

After the introduction of the diagonal matrix of (6), the 

larger the output error due to data noise, the smaller the values 

of the elements in the corresponding positions of the 

coefficient matrix will be, so that the influence of noise on the 

output results will be reduced. The solution in (5) is a fixed-

point equation, and the optimal solution can be solved using a 

fixed-point iterative algorithm, as shown in Algorithm 1. 

Remark: The presence of outliers can make the error term 

result larger. The effect of outliers on (4) is limited to some 

extent by putting the error term into an exponent that can 

achieve a suppression effect on the outliers, and thus this 

characteristic imbues the proposed method with robust 

stability. In addition, we know that the HF with higher 

correlation with SOH can be extracted from the data closer to 

the real data, and the high correlation HF is the prerequisite 

for the accurate estimation of SOH using the data-driven 

method. Therefore, the preprocessing (filtering) of the 

measurement data using SG-GCL will be considered in our 

work to improve the validity of the extracted HF in order to 

promote stability and accuracy of the estimation model under 

the real situation. 

 

 
Fig. 2. Comparison of GCL and LS losses for different 

parameters. (a) α=1.2 for GCL and LS. (b) σ=10 for GCL and 

LS. 

Algorithm 1 SG-GCL. 

Input: samples  
m

l l m
c


 

Output: coefficient matrix a  

 Parameters setting: polynomial order k, window 

 length 2 1m  , shape parameter  , scale parameter 

  , maximum iteration number Q1 and termination 

 tolerance   

 Initialization: set 
0

0a  

1. for q = 1, 2, …, Q1 do 

2.   Compute the error based on 
1q

a :    

  
, 10

n k

l k q lk
e a l c


   

3.   Compute the diagonal matrix Λ based on (6) 

4.   Update the coefficient matrix a :     

  
1

( )
T T

q


a l Λl l Λc  
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5.   Until 
1

( ) ( )
SG GCL q SG GCL q

J J 
  

 a a  

6. end for 

C. Extreme Learning Machine with GCL 

The traditional ELM [36] is trained by minimizing the LS 

loss between the actual labeled value 
1 2

[ , , , ]
T

N
y y yY  and 

estimated value Ŷ , while a regularization term with a penalty 

factor of   is usually introduced to prevent model overfitting. 

The function with respect to the output weight matrix β  can 

be expressed as 

 
2 2 2 2ˆ( )

ELM
J       β Y Y β Y Hβ β  (7) 

where 
1 21 2

[ , , , ]( ) ( ) ( ) T

N N
H h x h x h x  denotes the hidden 

layer output matrix, ( )h  represents the activation function, 

and 
1 2

[ , , , ]
N

X x x x  denotes the input matrix, which in 

this article denotes the matrix consisting of HFs. 

By taking the derivative of (7) with respect to β  and letting 

the derivative be equal to zero one obtains 
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In the same way as the idea of improving the SG filter, the 

GCL is substituted for the loss function of the conventional 

ELM to develop the GELM model. Specifically, through the 

combination of (1), (2) and (7), it can be defined the following 

loss 
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Differentiating (9) with respect to β  and letting the 

derivative equal zero yields the output weight matrix of the 

GELM as 
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where Λ a diagonal matrix, and the diagonal elements of Λ

can be expressed as 
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Then the fixed-point iterative process of the GELM can be 

summarized in Algorithm 2. 

Algorithm 2 GELM. 

Input: samples  
1

,
N

ii iy


x  

Output: weight vector β  

 Parameters setting: number of hidden nodes n, 

 penalty factor  , maximum iteration number Q2, 

 shape parameter  , scale parameter  , and 

 termination tolerance   

 Initialization: set 
0

0β  

1. for q = 1, 2, …, Q2 do 

2.   Compute the error based on 
1q

β : 
1i i qie y


 h β  

3.   Compute the diagonal matrix Λ based on (11) 

4.   Update the coefficient matrix β :     

  
1

( 2 )
T T

q N


 β H ΛH H ΛY  

5.   Until 
1

( ) ( )
GELM q GELM q

J J 


 β β  

6. end for 

Ⅲ. EXPERIMENTAL DATA 

This section describes the two datasets used in this article to 

validate the effectiveness of the proposed method. One is an 

LIB aging dataset obtained after nearly a year of 

experimentation in our Lab, and the other is a publicly 

available dataset from the University of Maryland [37]. 

The LIB used in the experiment is NCR18650GA, which 

makes use of lithium cobalt oxide as the positive electrode and 

a highly-crystallized specialty carbon as the negative 

electrode. The electrolytic fluid used in this LIB is an organic 

solvent, carefully optimized for the specialty carbon material. 

The battery features a spiral structure with four layers, 

including a cobalt acid lithium activated positive electrode, a 

specialty carbon-activated negative electrode, and a separator. 

These components are intricately arranged in a spiral pattern 

and stored in a protective case to ensure the battery's stability 

and integrity. The specifications of the LIB are shown in 

TABLE I and detailed information can be obtained on the 

website [38]. The experimental bench as shown in the Fig. 

3(a) is used to carry out the aging test, which mainly consists 

of a battery tester that performs charging and discharging 

operations on the battery, a controller that sends and receives 

control commands and caches data, and a host computer that 

performs interactive operations and displays data. TABLE II 

outlines the working conditions of the four LIBs, which 

involved a charging process from CC to CV, followed by a 

15-minute rest period. Subsequently, the LIBs were 

discharged at CC and rested for over 1.5 hours before 

repeating the cycle. In order to introduce greater realism to the 

test environment and account for variations in real-world 

conditions, the experiment chooses to expose the LIB to the 

surrounding environment, and the experimental conditions are 

adjusted accordingly to reflect changes in environmental 

conditions. The sampling frequency of the data is 1Hz, and the 

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2025.3554735

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



6 

 

capacity aging curves of the four LIBs are shown in Fig. 3(b). 

TABLE I 

SPECIFICATION OF EXPERIMENTAL LIB 

Parameter Value 

Rated capacity 3.30Ah 

Nominal voltage 3.60V 

Maximum voltage 4.25V 

Discharge cutoff voltage 2.50V 

Maximum discharge current 3.00C 

(c)

(b)

Battery tester

Controller

Host computer

(a)

 
Fig. 3. Battery aging test and trajectory. (a) Test bench. (b) 

NCR18650GA dataset. (c) Maryland dataset. 

In the University of Maryland dataset [37], data from two 

prismatic batteries with a rated capacity of 1.1Ah are selected. 

They are CS2-35 (battery5) and CS2-37 (battery6), and they 

have a charging cutoff current of 0.05 A and a discharging 

cutoff voltage of 2.7 V. The test conditions of these two 

batteries are given in TABLE II. The corresponding capacity 

aging curves are shown in Fig. 3(c). 

As can be seen from Fig. 3(b)-(c), even under the same 

working conditions, the aging rate of the same type of battery 

will be different due to cell-to-cell inconsistency. Under 

different working conditions, the difference in aging rate of 

the same type of battery becomes even more pronounced. In 

addition, the aging trend and rate of different types of batteries 

demonstrate much higher level of deviation. This implies that 

the selection of the HFs may vary according the type of the 

battery. 

TABLE II 

CHARGING AND DISCHARGING WORKING CONDITION OF 

EXPERIMENTAL LIBS 

Battery 
Charge stage Discharge stage 

CC CV Cutoff current  CC Cutoff voltage 

battery1 0.5C 4.2V 0.01C 1.0C 2.5V 

battery2 0.5C 4.2V 0.01C 1.0C 2.5V 

battery3 0.8C 4.2V 0.01C 1.0C 2.5V 

battery4 0.5C 4.2V 0.01C 1.5C 2.5V 

battery5 0.5C 4.2V 0.05A 1.0C 2.7V 

battery6 0.5C 4.2V 0.05A 1.0C 2.7V 

Ⅳ. RESULTS AND ANALYSIS OF DATA PROCESSING 

To achieve accurate SOH estimation based on extracted HF, 

it is crucial to reduce the influence of noise generated in the 

feature extraction process. In this section, experimentally 

measured and available aging data are analyzed and discussed. 

The HF extraction results for different battery models are 

given to investigate the effect of different filtering algorithms 

under non-Gaussian noise with outliers. This section 

corresponds to our proposed SOH estimation framework 

including the 'SG-GCL filtering' and 'HFs extraction' parts as 

shown in Fig. 1. 

A. Data Filtering 

It should be noted that the sampling frequency for battery5 

and battery6 differs from the 1Hz as used for other batteries. 

This may cause larger errors in the subsequent HF extraction. 

To solve this problem, the two sets of battery data are first 

interpolated. 

Generally, the collected measurement data collected by 

sensors may be contaminated by measurement noise with 

outliers, and this fact is verified by experimentally collected 

data as shown in Fig. 4(a). One can observe from Fig. 4(a) that 

the distribution and magnitude of noise in the current and 

voltage curves for one charging cycle are random. 

Furthermore, the presence of non-Gaussian noise in the 

collected data is also illustrated in [39]. In order to verify the 

effectiveness and advantages of the improved method, 

artificially simulated non-Gaussian noise with outliers is 

added to all the collected data. Comparisons are also made 

with the original SG filter, MA filter and Gaussian filter (GF) 

[41]. 

 
Fig. 4 Noisy data. (a) Experimentally collected data. (b) 

Artificially noisy data. 

The model of the non-Gaussian noise superimposed with 

background noise and a certain percentage of outliers is 

defined as  

 _ _ _noise NG noise B noise O   (12) 

where _noise B  represents background noise, and _noise O  

denotes outlier noise. Both sub-noises are determined by 

setting the mean and variance. The non-Gaussian noise details 

used in the next three cases are displayed in TABLE III. 

TABLE III 

COMPOSITION OF NON-GAUSSIAN NOISE IN EACH CASE 

 Background noise Outlier noise Outlier ratio 

Case1 Uniform Gaussian 1% 

Case2 Gaussian Gaussian 1% 

Case3 Uniform Gaussian 3% 

A group of data processed with added noise is shown in Fig. 

4(b). It should be noted that for all the collected data, the 

noises are generated by randomization. Thus, the noises added 

to each acquired data curve are different. In addition, this 

study increases both the frequency and the magnitude of the 

noise in order to better demonstrate the effectiveness of 

proposed method and the variability of different methods. For 

the setting of parameters, the filter window lengths for SG-

GCL, SG, MA and GF in each case are 2m+1=91. The fitted 
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polynomial order n=2 for SG-GCL and SG. The parameters 

α=1.2 and σ=10 for SG-GCL. Root mean square error 

(RMSE) [40] is used to quantify the filtering effect. 

 
2

1

1
RMSE 100% ( )

N

i

ierror
N 

    (13) 

where error  denotes the absolute error between filtering 

result and actual value for each filtering method. 

 Case1: Mixed uniform and Gaussian noise with 1% 

outliers 

In this case, the mean of the uniform noise is 0 and the 

variance is 3.3333e-7. Usually, the number of outliers might 

be smaller compared to the rest of the data in training set, and 

thus the Gaussian noise has a mean of 0 and a variance of 0.1 

to model the outliers in this case. The filtering results of 

current and voltage are respectively presented in Fig. 5 and 6. 

The widths of the error bars in the relative error plots for 

current and voltage are 0.05 and 0.001, respectively. Taking 

an overall perspective of the two sets of figures, all four 

methods achieve some level of noise reduction. When 

observing the local details in Fig. 5(a)-(d) and 6(a)-(d), one 

can see that the SG-LS exhibits poorer performance compared 

to SG-GCL when outliers are present due to the severe impact 

of outliers on the loss function of SG-LS. As is well known, 

the MA is based on the principle of computing the arithmetic 

mean within the calculation window, therefore the presence of 

outliers causes an overall shift in the numerical values within 

the window. The length of this shifted data sequence is 

influenced by both the window length and the nature of the 

outliers. Analyzing the relative error distribution (RED) 

shown in Fig.5 (e)-(h), one can observe that the filtering 

relative error of SG-GCL is more concentrated around zero. 

This result indicates that the filtering outcomes of SG-GCL 

exhibit a higher number of points in close proximity to the 

actual value, aligning with the desired in data filtering. And 

the filtering results of the GF demonstrate similar local 

properties with the SG-LS. 

Additionally, TABLE IV provides an overview of the 

computational efficiency of the four filtering methods in terms 

of the required filtering time. It is worth noting that the SG-

GCL exhibits the highest time complexity due to the 

incorporation of fixed-point iterations. However, on the one 

hand, the experiments in the article involve filtering of 

complete charging data to better demonstrate the advantages 

of the methods in terms of filtering accuracy and stability. It is 

important to highlight that future work can focus on extracting 

HF from local curves and filtering only the charging data 

corresponding to HF, which may lead to potentially improved 

computational efficiency. On the other hand, the estimation of 

SOH does not require high real-time requirements relative to  

 

State of Charge (SOC), and it only needs to be calculated 

automatically when the device is idle. As mentioned above, 

the time complexity of SG-GCL can be adjusted artificially 

and is deemed acceptable in relation to the performance 

improvement it brings. 

 Case2: Mixed Gaussian and Gaussian noise with 1% 

outliers 

In this case, different non-Gaussian noises are further 

considered compared to Case1 to validate the stability of SG-

GCL against different noise distributions. Here Gaussian noise 

with zero mean and variance of 0.001 is used as background 

noise, while Gaussian distribution with zero mean and 

variance of 0.1 is used to model outliers. The filtering results 

of current and voltage are respectively presented in Fig. 7 and 

8. From Fig. 7(a)-(d) and 8(a)-(d), it can be seen that SG-GCL 

still exhibits the best local performance. SG-LS, MA and GF 

still show the same drawbacks as in Case 1. From Fig. 7(e)-(h) 

and 8(e)-(h), it can be observed that compared to SG-LS, the 

relative error of SG-GCL is more concentrated. From the RED 

of MA in Fig.7 (g) and Fig.8 (g), one can see that there is also 

a slight aggregation at non-zero points apart from the 

aggregation at 0. This is because MA is influenced by outliers, 

leading to an overall shift of filtered data away from the actual 

data. Moreover, under the same filtering parameters, the 

proposed SG-GCL still maintains very low filtering error, 

which reflects its stability. 

 Case3: Mixed uniform and Gaussian noise with 3% 

outliers 

In this case, the numerical experiment is performed under 

the same noise conditions as in Case 1 with the difference 

being that the proportion of outlier noise increased to 3% to 

evaluate the robustness of the proposed method. The filtering 

results of current and voltage are respectively shown in Fig. 9 

and 10. One can observe from Fig. 9 and 10 that there is no 

significant change observed in the filtering effect, both overall 

and locally. In addition, comparing the RED plot with Case1, 

it is found that under the condition where non-Gaussian noise 

does not obscure the original signal information, there is no 

clear relationship between filtering error variation and the 

proportion of outliers. The reason behind the aforementioned 

results is that all four methods are local filtering algorithms, 

and their filtering effectiveness is only related to the data 

within the filtering window and their own parameter settings, 

rather than the overall distribution of the data. Moreover, the 

collected charging data is difficult to conform to a specific 

distribution because of the high dependence of battery 

charging and discharging data integrity on user charging 

habits. Therefore, this is one of the reasons why local filtering 

algorithms are chosen in this study. 
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Fig. 5. Comparison of current filtering results for case1. (a)-(d) Current filtering results. (e)-(h) Relative error distribution.
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Fig. 6. Comparison of voltage filtering results for case1. (a)-(d) Voltage filtering results. (e)-(h) Relative error distribution. 

 
Fig. 7. Comparison of current filtering results for case2. (a)-(d) Current filtering results. (e)-(h) Relative error distribution. 
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Fig. 8. Comparison of voltage filtering results for case2. (a)-(d) Voltage filtering results. (e)-(h) Relative error distribution.
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Fig. 9. Comparison of current filtering results for case3. (a)-(d) Current filtering results. (e)-(h) Relative error distribution. 

 
Fig. 10. Comparison of voltage filtering results for case3. (a)-(d) Voltage filtering results. (e)-(h) Relative error distribution. 
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TABLE IV 

TIME COMPLEXITY OF DIFFERENT METHODS 

 SG-GCL SG-LS MA GF 

Filter time 39.53s 0.09s 0.02s 0.01s 

Based on the results of the above three cases, it can be seen 

that no matter how the noise distribution and quantity change, 

the proposed SG-GCL can show satisfactory filtering effect 

under the condition of constant parameters, reflecting good 

stability. Compared with SG-GCL, SG-LS shows obvious 

short-term and significant fluctuations, while MA shows long-

term and smaller fluctuations. The classical GF also exhibits 

more similar characteristics to SG-LS, reflecting the limitation 

of traditional filters when facing non-Gaussian noise. These 

findings demonstrate that the SG-GCL can still effectively 

adapt to different distributions of noise while maintaining 

stable and robust filtering performance even when the 

parameters are not frequently adjusted. 

B. HF Extraction and Correlation Analysis 

The charging time of different charging stages at different 

aging levels has been shown to be highly correlated with 

battery aging [41]. Therefore, in this article, the time-

dependent HF is extracted directly from the current and 

voltage curves of the filtered charge. For the CC stage, on the 

one hand, the [3.75V, 4.2V] interval of the voltage curve is 

divided into multiple voltage segments, and the charging 

duration of each voltage interval is taken as the HF. On the 

other hand, different starting voltages and charging time 

intervals are set, and the value of the voltage increase within 

this time interval is taken as the HF. At the same time, the 

current curve of CV stage also follows this idea. The current 

curve of CV stage is firstly divided into several current 

segments in the interval of [0.55A, 0.15A], and the charging 

time of each segment is taken as HF, and then different 

starting currents and charging time intervals are set, and the 

current reduction value in a certain time interval at a specific 

starting current is taken as HF. Based on this approach, 82 

different HFs are extracted. A screening processing is needed 

to reduce the number of HFs for the use of SOH estimation. 

To evaluate the compatibility of the extracted HFs, all HFs 

are subjected to Pearson correlation analysis (PCA) [42] with 

the capacity separately. The PCA between sample pairs 

1
{( , )}

n

i i i
x y
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where X  and Y  denote the mean of the two samples, 

respectively. 

After performing the correlation analysis, it is interesting to 

find that it is possible that the correlation of the same HF with 

capacity varies significantly for the same type of cell under 

different operating conditions. Specifically, a HF showing a 

very high correlation with capacity in one battery can have a 

very low correlation with capacity in another battery. This 

phenomenon is even more pronounced between different types 

of batteries. Based on the results of PCA, seven HFs are 

chosen for each battery. The absolute values of the PCA 

between these HFs and SOH are all greater than 0.97, with 

four positive correlations and three negative correlations. The 

HFs under the two datasets are shown in Fig. 11. They 

characterize the charging duration and the current drop or 

voltage rise over a certain period of time in the current or 

voltage interval, respectively. Another representation of the 

extracted HFs is provided in TABLE V. In this study, 

measures have been taken to ensure the consistency of the HFs 

within the same dataset. However, it is difficult to maintain 

the consistency of the HFs extracted from different datasets. 

The used HFs and capacities are normalized before the SOH 

estimation experiments. 

 
Fig. 11. HF extracted for each battery. 

TABLE V 

BATTERY HFS 

HF 
battery1-4 battery5-6 

Start value Interval Start value Interval 

HF1 3.75V 0.025V 3.80V 0.20V 

HF2 3.75V 0.050V 3.85V 0.15V 

HF3 3.75V 0.075V 3.85V 0.20V 

HF4 0.25A 1000s 3.85V 0.25V 

HF5 0.35A 0.20A 3.80V 2000s 

HF6 0.45A 0.30A 3.85V 1500s 

HF7 0.55A 0.40A 3.85V 2000s 

 

Illustrating with battery1 as a case study, Fig.12 depicts the 

extracted HF1 obtained from filtering the measurement data 

using various filtering. Considering the similarity of the GF 

and SG-LS filtering results and the observability of the 

figures, the comparison of the GF method is subsequently 

cancelled. Notably, the HF extracted from the measurement 

data filtered by SG-GCL exhibits superior stability, with 

relatively small fluctuations over cycle. Comparatively, the 

SG-GCL shows a significant enhancement in feature 

extraction when compared to SG-LS. And the feature 

extraction results produced by MA are generally satisfactory 

in this specific instance. However, a significant deviation 

occurs at the 482nd point, which is attributed to the limitations 

of MA discussed in section IV.A. The presence of a certain 

offset in MA filtering within a specific interval can lead to 

substantial deviations between the extracted HF points and the 

actual values, particularly when the sampling points of HF fall 

within this interval. Additionally, extracting HF data without 
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filtering the measurements containing noise will significantly 

reduce the amount of aging information captured. This can be 

illustrated by the 'None' curve in Fig. 12, which displays 

numerous offset points that obscure the actual data 

information. The correlation between the HF extracted by the 

four methods after processing and the SOH is provided in 

TABLE VI. Numerically, it is more evident that the HF 

extracted from the measurement data processed by SG-GCL 

exhibits the highest correlation with SOH, whose PCA result 

is higher than that of SG-LS, MA and None by 0.0834, 0.0305 

and 0.4963, respectively, indicating the superior performance. 

These results further underscore the advantages of employing 

the SG-GCL filtering algorithm. 

 
Fig. 12. HF1 extraction results of battery1 after processing by 

different filtering methods. 

TABLE VI 

PCA FOR HF1 OF BATTERY1 

 SG-GCL SG-LS MA None 

HF1 0.9829 0.8995 0.9524 0.4866 

Ⅴ. EXPERIMENTAL RESULTS FOR SOH ESTIMATION 

In this section, the proposed method is verified using three 

illustrative cases in following subsections. The data used in 

each of the three subsections are given in TABLE VII. The 

experiment consists of three main sections, each comprising 

two sub-experiments. In each sub-experiment, the model 

undergoes training and testing stage. All battery current and 

voltage data are processed in Section IV. The processing of 

battery SOH label values in the training data will be presented 

in the subsequent experiments. The SOH label values of the 

test data are used to calculate the model evaluation metrics 

and to assess the model estimation accuracy. During the 

training phase, the battery data is comprised of HFs-label 

value pairs, with data from multiple batteries concatenated if 

multiple batteries are used for training. Conversely, only the 

battery's HFs are inputted during the testing phase. This 

section corresponds to the proposed SOH estimation including 

'GELM training' and 'SOH estimation with GELM' parts as 

shown in Fig. 1. 

TABLE VII 

EXPERIMENTAL DATA 

Section Training data Test data 

Ⅴ.A 
battery1, battery3, battery4 battery2 

battery1, battery2, battery3 battery4 

Ⅴ.B 
battery6 battery5 

battery5 battery6 

Ⅴ.C battery2, battery3, battery4 battery1 

battery1, battery2, battery4 battery3 

 

In the following experiments, the RMSE of (13) and mean 

absolute percentage error (MAPE) [40] are mainly used to 

evaluate the SOH estimation accuracy of the model, and the 

MAPE is defined as 
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where 
1 2

[ , , , ]y
N

y y y  and 
1 2
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N

y y y  denote the 

actual and estimated values of SOH with N sample points, 

respectively. 

A. Validation of Filtering Algorithm 

Section Ⅳ compares the filtering effects of different 

algorithms and their impact on the extracted HFs. This 

subsection further validates the necessity and effectiveness of 

filtering measurement data for SOH estimation. HF is 

extracted from the measurement data after filtering with three 

different filtering methods and from unfiltered data. The 

extracted HFs by using four processing methods including 

SG-GCL, SG-LS, MA and None are used to train and test the 

models. The corresponding four SOH estimation models are 

denoted as ELM-SG-GCL, ELM-SG-LS, ELM-MA, and 

ELM-None. To ensure a fair comparison, the number of nodes 

in the hidden layer of ELM is consistently set to 5 for both sets 

of experiments. The results of the two experiments are 

respectively shown in Fig. 13 and 14. In Fig. 13(a), the model 

trained from HF extracted directly from the noise-laden 

measurement data exhibits considerable estimation 

inaccuracies, with notable deviation from the true SOH value. 

This further emphasizes the crucial importance of applying 

suitable filtering techniques on measurement data. And the 

relative error number distribution plots in Fig. 13(b)-(e) show 

that ELM-SG-GCL exhibits concentrated error results, with a 

prominent concentration of errors close to zero. Compared 

with ELM-SG-GCL, the relative errors of the other three 

model estimation results are more dispersed, which indicates 

the larger deviation of their estimation results relative to the 

real SOH. The estimation results shown in Fig. 14 are more 

pronounced. In Fig. 14(a), the estimation results of ELM-None 

fluctuate significantly above and below the actual value, 

which is still due to the influence of the HF extracted from the 

measurement data affected by unknown distribution noise. 

Furthermore, it is evident that the estimation results of ELM-

MA display small fluctuations but gradually deviate from the 

actual value over cycle. This discrepancy arises due to the 

presence of a relatively prominent outlier in the HF extracted 

after MA filtering, similar to the one depicted in Fig. 12. 

Consequently, ELM-MA is adversely affected during the 

training process, leading to the generation of an inaccurate 

model. In addition, the more apparent advantages of ELM-SG-

GCL are demonstrated in Fig. 14(b)-(e). Substantiated by the 

centered errors approaching zero and narrower error 

distributions, it unmistakably showcases the superiority of SG-

GCL in effectively handling measurement data characterized 
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by unknown distribution noise. For a comprehensive analysis, 

TABLE VIII provides a more detailed comparison of RMSE 

and MAPE under various methods. Notably, ELM-SG-GCL 

outperforms others by consistently demonstrating the smallest 

estimation error, thus establishing its commendable accuracy 

in estimating target outcomes. More specifically, the estimated 

RMSE of ELM-SG-GCL for battery2 is found to be 0.49%, 

0.28% and 51.99% lower than that of ELM-SG-LS, ELM-MA 

and ELM-None, respectively. Similarly, for battery4, the 

estimated RMSE of ELM-SG-GCL is 0.54%, 1.79% and 

43.69% lower than that of ELM-SG-LS, ELM-MA and ELM-

None, respectively. These results unequivocally demonstrate 

both the importance of filtering noisy measurement data and 

the effectiveness of the SG-GCL filtering method when it 

comes to accurate SOH estimation results. 

 

 
Fig. 13. Results of battery2. (a) Estimated result. (b)-(e) 

Relative error distribution. 

B. Model Validation 

In order to demonstrate the benefits of the proposed stable 

estimation model, this subsection further introduces non-

Gaussian noise containing outliers to the labeled values of all 

the training data. The non-Gaussian noise is denoted as (12), 

with the background noise chosen as uniform noise with a 

mean of 0 and a variance of 3.3333e-5, and the outlier noise as 

Gaussian noise with zero mean and a variance of 2. The input 

data for all models are HFs extracted from the data filtered by 

SG-GCL, and the training outputs are labeled SOH with noise. 

In this case, a comparative analysis between the proposed 

GELM proposed in section II.C and ELM to verify the 

effectiveness of the enhanced approach. Through a series of 

controlled experiments, specific parameter values are selected 

to ensure that each method achieves its optimum performance. 

For the GELM, the α is set to 5, σ is set to 0.05, and the 

number of hidden layer nodes is set to 5, all informed by 

comprehensive iterations. Likewise, the number of hidden 

layer nodes for ELM is also established as 5 based on similar 

considerations for harmonized evaluations. 

 

  

 
Fig. 14. Results of battery4. (a) Estimated result. (b)-(e) 

Relative error distribution. 

TABLE VIII 

ESTIMATION ERRORS OF HF IN DIFFERENT METHODS (%) 

  battery2 battery4 

ELM-SG-GCL 
RMSE 0.60 0.65 

MAPE 0.91 0.92 

ELM-SG-LS 
RMSE 1.09 1.19 

MAPE 1.72 1.64 

ELM-MA 
RMSE 0.88 2.44 

MAPE 1.24 2.59 

ELM-None 
RMSE 52.59 44.34 

MAPE 64.19 47.72 

The experiment results for battery5 and battery6 are 

represented in Fig. 15 and Fig. 16, respectively. One can see 

from the results that the GELM outperforms ELM when the 

training labeled values contain non-Gaussian noise. 

Specifically, for battery5 in Fig. 15(a), both models yield 

considerable estimate errors, but the GELM exhibits 

significantly smaller deviation. In Fig. 15(b), the estimation 

error of GELM mainly falls within the range between -2% and 

0.5%, with the mean error of approximately -0.6%. In 

contrast, the estimation error of ELM spans from -3.5% to 0%, 

with the its mean around -2%. In Fig. 16(a), the GELM again 

shows a superior fit compared to the base model ELM. 

Examining the error distribution of Fig. 16(b), the error center 

of GELM stays around 0.6%, which demonstrates a more 

centralized error compared to ELM. The error of ELM is 

dispersed almost evenly between -2% and 3%, indicating a 

high degree of variability. Comparing Fig. 15 with Fig. 16, 
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there are significant differences in the estimation results when 

the data from two batteries are used as training sets for each 

other. The estimation result of battery5 is oversized, while the 

estimation result of battery6 is undersized. This phenomenon 

stems from the different distribution of HFs versus labeled 

values for the two batteries. TABLE IX also provides a 

comparison of the estimation evaluation of battery5 and 

battery6 under different models, where GELM shows a 

considerable advantage over ELM, with a numerical reduction 

of 0.7% in RMSE and 0.9% in MAPE for battery5, and a 

numerical reduction of 0.66% in RMSE and 0.74% in MAPE 

for battery6. Therefore, when the training label values contain 

outliers, the proposed GELM model demonstrates a more 

substantial improvement in estimation accuracy compared to 

the basic ELM model. 

 
Fig. 15. Results of battery5. (a) Estimated result. (b) Relative 

error distribution. 

 
Fig. 16. Results of battery6. (a) Estimated result. (b) Relative 

error distribution. 

 

TABLE IX 

COMPARISON OF ERRORS (%) 

 GELM ELM 

 RMSE MAPE RMSE MAPE 

battery5 1.00 0.91 1.70 1.81 

battery6 0.94 0.92 1.60 1.66 

C. Comparison Between Different Types of Models 

In this subsection, a comparative analysis is further 

conducted to evaluate the performance of the proposed GELM 

model compared with two widely used existing models, 

namely LSTM [25] and GPR [27]. Considering the data 

volume of SOH is relatively small in this case, resembling 

small sample sizes, too many deep network layers in LSTM 

could potentially lead to model overfitting. To address this, 

after multiple experiments, here the LSTM is configured with 

a single hidden layer comprising 15 nodes, limited to a 

maximum of 100 iterations. In the case of GPR, the parameter 

‘sigma’, which significantly influences noise deviation, is set 

to 0.2, in line with the focus on noise related aspects in this 

study. The remaining parameters of both models are set to 

their default values. The non-Gaussian noise settings for the 

SOH labelled align with those in section V.B, as do the 

experimental conditions. It should be noted that while the 

noise parameter settings are consistent with section V.B, the 

specific noise added varies due to the random nature of noise 

generation and variations in in data points between sections 

V.B and V.C. The results are presented in Fig. 17 and Fig. 18. 

The comparison depicted in Fig. 17(a)-(c) showcases has 

the superior goodness of fit achieved by the proposed GELM 

method in comparison to the traditional LSTM and GPR 

models. The estimated SOH value from GELM aligns more 

closely with the actual value. In contrast, the GPR model 

exhibits greater deviation from the actual value, particularly at 

the early and the middle age of the batteries. This discrepancy 

is even more pronounced in the case of LSTM. It is 

demonstrated that the two traditional models are susceptible to 

outliers during training, while GELM eliminates this effect to 

some extent. This can be more directly observed in the error 

from the box diagram in Fig. 17(d), where the estimation error 

interval of GELM is significantly smaller than that of LSTM 

and GPR, with the error center closer to zero and fewer 

outliers. Compared to the estimation results of battery1, the 

estimation results of battery3 in Fig. 18(a)-(c) all significantly 

deviate from the actual value. However, the GELM model 

exhibits comparatively smaller deviations than the other two 

models. Fig. 18(d) further illustrates a much narrower upper 

and lower interquartile range with no outliers beyond the 

upper and lower margins. The error center of the GELM is 

within an acceptable 1.1%. The RMSE and MAPE results for 

both batteries are displayed in Fig. 19. The advantage of 

resisting outliers GELM is also reflected in the bar results. 

From the estimation results in Fig. 17(a) and Fig. 18(a), the 

error of battery3 increases significantly. This is attributed in 

part to the different noise distribution of the training data. 
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More importantly, the absence of a dataset with the same 

charging and discharging conditions as battery3 in the training 

set contributes to a significant difference in aging 

distributions, resulting in a larger estimation error. However, 

the charging and discharging working conditions of battery4 

in Section V.A are also not the same as the training set. The 

difference between the results of battery2 and battery4 under 

the same estimation model is also not as large as the difference 

between the estimation results of battery1 and battery3. 

Comparing the four charging and discharging conditions in 

TABLE II, it can be seen that battery3 conditions differ in the 

current value of CC in the charging stage, while battery4 

conditions differ in the current value of CC in the discharging 

stage. This infers that the battery data with different charging 

conditions in the training and test sets have a more significant 

impact on the estimation accuracy, while the battery data sets 

with different discharging conditions have a smaller influence. 

In contrast to the aforementioned DD method, here an 

outstanding MD method, called MCC extended Kalman filter 

(MCCEKF), is further introduced into the comparison 

experiment to test the superior performance of the proposed 

method. This evaluation focuses solely on the final estimation 

performance of the models. Drawing inspiration from [30] and 

[43], the SOH to be estimated is fitted using a bi-exponential 

function with the function parameters serving as state 

variables. A linear function is fitted to the HF as the measured 

quantity. The estimation results are depicted in Fig. 17(d)-(e), 

18(d)-(e), and 19. One can see that the estimation of the 

MCCEKF is still notable due to the robustness of the MCC, 

displaying resistance against outlier disturbances. However, it 

should be recognized that there is no fixed expression for the 

physical equations governing SOH. Furthermore, all the fitted 

parameters are only relevant to the specific cell being 

analyzed. Consequently, the estimation of SOH requires the 

parameters to be specifically adjusted for each individual cell, 

resulting in a paradoxical situation. This predicament is one of 

the contributing factors contributing to the complexities 

associated with applying MD methods. 

In addition, the GELMs of Sections V.B and V.C both show 

good estimation results under different datasets and the same 

parameters, responding to the more stable performance of the 

GELM than the ELM. 

 

 
Fig. 17. Results of battery1. (a)-(d). SOH estimation results. (e) Statistical patterns of relative errors in the estimates. 

 
Fig. 18. Results of battery3. (a)-(d). SOH estimation results. (e). Statistical patterns of relative errors in the estimates. 

 
Fig. 19. Comparison of model RMSE (%) and MAPE (%). (a) 

Battery1. (b) Battery3. 

Ⅵ. DISCUSSION 

In this section, the SOH estimation framework for LIB 

developed in this article is further discussed. The general tone 

of the framework is a data-driven approach. Firstly, the 

unknown distributed noise in the measurement data (current, 

voltage) is filtered using SG-GCL. Then, the HF 

characterizing battery aging is extracted from the processed 

data. After that, the extracted HF and SOH label values are 

used to form a training data pair for training the introduced 

GELM as an estimation model. Finally, the SOH can be 

estimated using the newly extracted HF and the trained 

GELM. The strength of the proposed framework lies in its 

ability to suppress unknown distributional noise in the 

measurement data, especially the non-Gaussian noise in it, 

which is attributed to the good performance of GCL. Another 

advantage is the simplicity of the framework's structure, 

thanks to the SG-GCL, which is based on polynomial fitting 

only, and GELM, a neural network with only one hidden 

layer, so that the computational complexity of the framework 

is mainly affected by the amount of data and less by its own 

structure. 

However, the proposed framework still has some technical 

challenges listed as 

1) Hyperparameter tuning within the proposed framework 

presents a challenge. While leveraging the strong performance 

of GCL and human expertise allows for the relatively easy 

identification of satisfactory parameters, achieving globally 

optimal parameters proves more difficult. This necessitates the 

exploration of alternative approaches to determine optimal 

parameters. Since the individual hyperparameters also interact 

with each other, optimization can only be performed for all 

used hyperparameters together. Iterative optimization of the 

hyperparameters can be carried out in the feasible domain, 
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e.g., by bionic optimization algorithms or grid search 

algorithms. Or it can be attempted using novel methods such 

as transfer learning and reinforcement learning. 

2) Computational overhead (CO). Since the CO of the SG-

GCL filter considering the fixed-point iteration is highly 

influenced by the amount of data, several faster optimization 

algorithms (e.g. quasi-newton method and adaptive iteration 

strategies) or approximation and reduced precision techniques 

(including approximate GCL and lower-precision fixed-pint) 

may be utilized to address the CO issue to meet the demands 

of practical applications, which will be a major research 

direction for in-depth investigation in our future work. 

3) Validation in practical applications. As an initial 

stemming from Contribution 2 of this article, the limited 

volume of SOH data restricts current validation to the dataset 

collected within our laboratory. Furthermore, recognizing that 

the aging patterns of LIB are influenced by user behavior and 

various unforeseen factors, and thus the applicability of the 

proposed framework under more complex conditions warrants 

further investigation. Specifically, we will continue to collect 

data under different operating conditions in our labs to achieve 

data that is more in line with users' real-world usage habits 

and to expand the data set. In addition, we are looking forward 

to working with manufacturers of electric vehicles etc. to 

validate the framework under real data. 

The above challenges are exactly the direction of our next 

research and the problems that need to be solved. 

Ⅶ. CONCLUSION 

Measurement noise or outliers may be introduced during 

LIB data acquisition, which can affect the state estimation 

results of the BMS. In this article, a filter is combined with a 

data-driven approach to address the challenge of unknown 

distribution noise in the measurement data and labelled values. 

The SG-GCL filter with GCL is developed to filter out the 

noise from the measurement data. Compared to the HF 

extracted from unfiltered data, the Pearson correlation 

between the filtered extracted HF and SOH is improved by 

0.4963, which demonstrates that this measure greatly 

improves the validity of the extracted HF. Meanwhile, this 

result leads to a 43.69% reduction in the RMSE metric of the 

ELM estimation of SOH, which indicates that the data 

filtering process also contributes to the improvement of the 

accuracy of the SOH estimation. For the noise in the training 

labelled values, an ELM model with GCL based estimation 

model is introduced in this study. The validation results on 

laboratory data and public datasets show that it can alleviate 

the influence of noise in the labelled values on the model 

training process to a certain extent, which in turn improves the 

SOH estimation accuracy. Employing the proposed GELM 

model yields a notable reduction in RMSE of 0.66% compared 

to the standard ELM. In addition, the GELM also 

demonstrates significant advantages over several existing 

classical methods. In all, the proposed SOH estimation 

framework since the combination of SG-GCL and GELM in 

this article can performs a stable and effective performance. 
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