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Abstract： 

Accurately predicting the degradation trends of proton exchange membrane fuel cells 

(PEMFCs) can provide a solid basis for optimizing the control of vehicles and stations 

based on PEMFCs. However, most prediction methods do not consider factors such as 

measurement errors from experimental environments and the inherent cognitive 

uncertainty of the model. These methods can only offer point estimates, lacking 

credibility. This paper introduces a deep learning prediction framework that combines 

a bidirectional gated recurrent unit (BiGRU) model with a truncated Bayes by 

backpropagation through time (TB) algorithm. The TB algorithm reconstructs fixed 

parameters in the model into probability density distributions, transforming the output 

from point estimation to interval estimation with probability density distributions. 

Under dynamic conditions, the TB-BiGRU (truncated Bayes-based bidirectional gated 

recurrent unit) improves the mean absolute error (MAE) and root mean square error 

(RMSE) by 37.28% and 36.09%, respectively, compared to the TB-GRU (truncated 

Bayes-based gated recurrent unit). Compared with TB-GRU and B-GRU (Bayesian 

gated recurrent unit), TB-BiGRU has significantly improved uncertainty quantification 

ability. Under different working conditions and noise levels, the prediction accuracy of 

TB-BiGRU is superior to that of the other seven models, and it exhibits better noise 

resistance and stability. This method holds greater practical significance compared to 

other prediction approaches. Additionally, the paper proposes four effective evaluation 
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metrics for uncertainty quantification, providing higher reference value in effectively 

characterizing the model's prediction accuracy and uncertainty quantification capability. 

 

Keywords: 

Uncertainty quantification; Truncated bayes by backprop through time (TB); 

Bidirectional gated recurrent unit (BiGRU); Proton exchange membrane fuel cell 

(PEMFC) 

 

1. Introduction: 

1.1 Background and Literature Review 

Proton exchange membrane fuel cell (PEMFC) is characterized by its high power 

density, light weight, abundant resources, and environmental friendliness [1-2]. It has 

been widely applied in various modes of transportation, including new energy vehicles 

[3], heavy-duty trucks [4], and trains [5], emerging as one of the most promising power 

generation equipment [6]. However, the high cost and limited durability of PEMFC 

have hindered its large-scale commercialization [7-8]. 

In order to enhance durability and save development costs, it is essential to predict 

the degradation trend and monitor the health status of PEMFC [9]. Currently, PEMFC 

degradation prediction methods include model-driven, data-driven, and hybrid models 

[10]. Due to the complex nature of PEMFC systems involving multi-physics, multi-

scale interactions of delayed electrochemical reactions and proton transfer, establishing 

a precise physical model to describe the dynamic behavior of PEMFC is highly 

challenging [11]. For instance, Khan et al. [12] introduced a dynamic semi-empirical 

model designed to forecast the degradation of PEMFC. Kandidayeni et al. [13] 

introduced a technique for estimating time-varying parameters, aiming to enhance the 

predictive precision of the PEMFC semi-empirical model. Xing et al. [14] introduced 

an adaptive estimation approach that incorporates unspecified parameters and 

formulated a nonlinear dynamic model for PEMFC based on this methodology. These 

model-driven prediction methods always rely on complex, high-precision models, 

which are currently unattainable [15]. 

With the progress of computer science, data-driven methods represented by deep 

learning has showcased impressive scalability and the ability to generalize effectively 

when dealing with extensive and intricate datasets [16]. The application of deep 

Jo
urn

al 
Pre-

pro
of



learning in health prediction has garnered growing interest both in academia and 

industry [17-18]. Zuo et al. [10] combines the attention mechanism with the recurrent 

neural network (RNN) to precisely predict the degradation trend of PEMFC output 

voltage through dynamic durability test data. Wang et al. [19] introduced a symbolic 

Long Short-Term Memory network (LSTM), which predicts the performance 

degradation trend of PEMFC by reconstructing the data into a sequence of symbols. In 

[15], a data-driven model for predicting PEMFC performance was obtained using deep 

belief networks, which was trained with data from a 3D PEMFC numerical model. Ma 

et al. [20] developed an online data-driven method based on G-LSTM. By learning 

underlying relationships within degradation data, data-driven methods effectively the 

challenges faced by complex physical models and provide more accurate predictive 

results. 

Due to the complex and diverse operating conditions of fuel cells [21-22], as well 

as the noise contained in the data, which can seriously affect the prediction of fuel cell 

degradation trends, in order to improve the hardness of the prediction results, the above 

deep learning methods will use filtering methods or signal decomposition to filter out 

data noise. However, noise filtering often leads to information loss and a lack of 

credibility in prediction results, which may result in erroneous control decisions and 

potentially pose safety issues, making it difficult to apply in practice. More importantly, 

these prediction methods do not take into account the impact of various uncertainty 

factors in health prediction, such as measurement uncertainty, model uncertainty related 

to deep learning models, and prediction uncertainty caused by the randomness of future 

environmental and operating conditions [23-24], which may lead to unreliable 

prediction results. Addressing the objective reality of uncertainty in health prediction 

and applying scientific methods to predict the performance degradation of fuel cells is 

an urgent problem that needs to be solved. 

In 2015, Ghahramani [25] first categorized uncertainty into epistemic uncertainty 

and aleatoric uncertainty in Nature. Epistemic uncertainty arises from the prediction 

model and is often referred to as model uncertainty. Aleatoric uncertainty measures the 

inherent noise in dataset, stemming from the method of data collection. Ghahramani 

[25] also emphasized the usefulness of Bayesian methods in handling uncertainty in 

machine learning. Since then, machine learning algorithms based on Bayesian methods 

have been employed to address uncertainty quantification problems in various fields. 

Wang et al. [23] introduced a Bayesian Neural Network (BNN) to quantify uncertainty 
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in diesel engines. He delved into the structure and parameters of the BNN model and 

visualized the model parameters to present the probability density distribution they 

follow. This model is only a tentative combination of Bayesian theory and artificial 

neural networks, and its effectiveness in other engineering fields needs further 

exploration. Peng et al. [24] introduced an uncertainty quantification method based on 

Bayesian Deep Learning (BDL), effectively quantifying uncertainty in the prediction 

process in two typical applications: ball bearing and turbocharger scenarios. BDL is a 

deep extension of the BNN model. Although it achieves uncertainty quantification in 

multivariate feature regression, it performs poorly in predicting the degradation trend 

of PEMFC under complex and diverse operating conditions. Zhu et al. [26] combined 

Bayesian theory with Gated Recurrent Unit (GRU) to propose a B-GRU model capable 

of uncertainty quantificatio, which excels in both single-point estimation prediction and 

uncertainty quantification. This model is the first time our team has combined Bayesian 

theory with GRU model and validated its effectiveness under specific PEMFC 

operating conditions, providing a feasible path for us to combine Bayesian theory with 

other deep learning prediction models. Xie et al. [27] combined singular spectrum 

analysis (SSA) and deep Gaussian process (DGP) to predict remaining useful life 

(RUL). The model can accurately predict the nonlinear details of PEMFC performance 

degradation, and quantifies the uncertainty to provide reliable confidence intervals for 

prediction results. But the prediction accuracy and uncertainty quantification ability of 

this model will be greatly affected by the kernel density function. Jia et al. [28] applied 

the multi head self attention mechanism to the BiGRU model to predict the degradation 

trend of PEMFC. Although the model did not consider uncertainty quantification, its 

research results highlighted that the BiGRU model has better predictive performance 

and generalization ability. In addition, Li et al. [29] combined quantile regression with 

BiGRU model and used sparrow optimization algorithm for hyperparameter 

optimization to achieve interval prediction of PEMFC degradation trend. The authors 

compared and analyzed BiGRU with GRU, LSTM and other models in detail, and the 

results showed that BiGRU model has higher prediction accuracy. However, this article 

did not provide a detailed analysis of uncertainty quantification. Although the above-

mentioned researchers have made certain contributions to the quantification of 

uncertainty, there is still a common problem that they have not proposed corresponding 

evaluation indicators for uncertainty quantification. Therefore, how to more intuitively 

evaluate the uncertainty quantification of evaluation models is still an urgent problem 
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to be solved. 

1.2 Research Gap and Contributions 

In summary, applying Bayesian theory to neural networks is a potentially viable 

approach that allows for uncertainty quantification and enhances the credibility of 

model predictions. Crucially, through this improvement, performance predictions along 

with uncertainty quantification can be more effectively applied in practical applications. 

Considering that the BiGRU model is more suitable for solving the degradation 

trend prediction problem of PEMFC, this paper developed a TB algorithm and 

combined it with the BiGRU model to establish the TB-BiGRU model, in order to 

improve the accuracy and credibility of degradation trend prediction. Additionally, four 

uncertainty quantification evaluation metrics are proposed to characterize the model's 

capability in uncertainty quantification. The newly proposed model exhibits higher 

prediction accuracy, and the new evaluation metrics accurately represent the model's 

capability in uncertainty quantification, making it more suitable for handling dynamic 

test sets of PEMFC. The methods presented in this paper bring forth the following novel 

and innovative elements: 

1) Compared with TB-GRU, TB-BiGRU has improved to varying degrees under all 

conditions, and the improvement is more significant under dynamic conditions. 

2) Compared with other deep learning models, the TB BiGRU model exhibits 

superior noise resistance, higher accuracy in qualitative analysis, and more reliable 

uncertainty quantification ability under different working conditions and noise 

levels 

3) Four evaluation metrics are proposed to measure the accuracy and effectiveness of 

the model, which can well characterize the uncertainty quantification ability of the 

model. 

4) The proposed framework is also suitable for other deep learning models, which has 

migration capabilities and scalability. 

The paper proceeds with the following organization: 

In Section 2, the prediction framework based on TB for BiGRU models is 

presented, including the fundamental principles of the TB algorithm and the 

configuration of internal model parameters. Section 3 introduces experiment and 

datasets. Section 4 introduces four uncertainty quantitative evaluation metrics. Section 

5 demonstrates the superiority of the new model from various perspectives and 

validates the reliability of the proposed evaluation metrics. Finally, Section 6 concludes 
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the paper. 

2. Methodology 

In order to enhance the accuracy and credibility of PEMFC degradation trend 

prediction, this section proposes a prediction framework based on truncated bayes by 

backprop through time algorithm， and elucidates the fundamental theory of the related 

models. We construct the TB-BiGRU models based on the bayesian theory. 

2.1 The Prediction Framework Based on TB-GRU 

Combining the TB algorithm with the BiGRU model specifically refers to 

reconstructing the internal parameters of the BiGRU model using this algorithm. In 

other words, the originally fixed parameters in the model are reconstructed to follow a 

probability density distribution of Gaussian distribution. The prediction framework 

mainly consists of the following steps: voltage data preprocessing, TB-BiGRU model 

establishment, TB algorithm, model training based on the TB algorithm, and model 

prediction. 

Figure 1. The Degradation trend prediction framework of PEMFC based on TB-BiGRU model 

Firstly, historical data of the fuel cell is collected and processed through smoothing 

and batching to prepare for model training. Then, the TB algorithm is applied to 
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reconstruct the model parameters, transforming the original fixed parameters into 

probability density distributions. This quantifies uncertainty through probability 

density distributions. Next, the model is trained according to the execution flow of the 

TB algorithm, utilizing the Adam optimization algorithm. Finally, combining historical 

and operational data yields uncertainty-quantified prediction results. 

With this prediction framework, results that incorporate uncertainty quantification 

can offer more insightful decision recommendations. The probability density 

distributions provided by the prediction results serve as crucial reference standards for 

practical applications. Further details about the mathematical model are provided below. 

2.2 BiGRU 

BiGRU consists of forward GRU and reverse GRU. The calculation principle of 

each link in GRU is as follows: 

 1( , )t t t
z

z W h x −= •                         (1) 

 1( , )t t t
r

r W h x −= •                         (2) 

 1
tanh( , )

t h t t t
h W r h x

−
=                      (3) 

1
(1 )

t t t t t
h z h z h

−
= − +                      (4) 

In the formula, z
W , r

W  and h
W  are the network weights for the update gate, 

reset gate, and candidate state.    and tanh   are the activation functions 

corresponding to the update gate and reset gate， t
z , t

r  and t
h  are the outputs of the 

update gate, reset gate, and hidden state，  is the element wise product of a matrix，

•  is a matrix multiplication operation. 

In unidirectional GRU, the reset gate combines the hidden state 1t
h

−   of the 

previous neuron with the input t
x  of the current neuron to obtain the candidate hidden 

state 
t

h . Equation (4) indicates that the update gate controls the ratio of the hidden 

state 1t
h

−   of the previous neuron to the candidate hidden state 
t

h   of the current 

neuron, obtaining a new hidden state t
h   and subsequently obtaining the GRU 

prediction result. In this process, the hidden state always passes from front to back, 

which is not conducive to feature extraction work. In the process of voltage state 

changes in PEMFC, the voltage states before and after are highly correlated, and it is 

necessary to consider this characteristic. 

The hidden state of BiGRU is determined by the combined states of the positive 
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and negative GRUs, as shown in Figure 2(a). At this point, the generation process of 

BiGRU hidden state can be represented as: 

( , )
tBi tF tR

h Bi h h=                         (5) 

In the formula, 
tBi

h  represents the hidden state of BiGRU at the current time, while 

tF
h   and tR

h   represent the hidden states of forward and reverse GRU. This 

bidirectional structure enables BiGRU to better extract voltage variation characteristics 

and improve the prediction performance of nonlinear components. 

Figure 2. Comparison of BiGRU structure based on TB algorithm and original BiGRU 

structure. (a) The original BiGRU structure diagram; (b) The BiGRU Structure based on TB 

Algorithm; (c) Fixed weights replaced with probability density distributions 

2.3 Bayes By Backprop 

Bayes By Backprop (BBB) employs variational inference to estimate the posterior 

distribution of weights 
dR  in a neural network. This posterior distribution is usually 

considered to be a Gaussian distribution, denoted as 
2( | , )N     , where , 

represent the mean and standard deviation of the Gaussian distribution, satisfying 

dR ,
dR  , and d  is the dimensionality of the network parameters. 

Let log ( | , )p y x  be the log-likelihood of the model, then train the model by 

minimizing the variational free energy of (6): 

( )

( )
( ) log

( , ) ( )
q

q
L E

p y x p





 

 
=  

 ∣
                       (6) 

Where, ( )p  is the prior distribution of the parameters. 
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Minimizing the variational free energy (6) is equivalent to maximizing the log-

likelihood log ( | , )p y x   of the network parameters with the KL complexity term 

acting as a regularizer: 

( )
( ) [log ( , )] [ ( ) ( )]

q
L E p y x KL q p   = − +∣ ‖                (7) 

In the case of a Gaussian prior with zero mean, the KL can be viewed as a form of 

mean parameter weight decay.  

2.4 BiGRU based on Truncated Bayes By Backprop Through Time (TB-BiGRU) 

Applying TB to reconstruct BiGRU is depicted in Fig. 2(b). Compared to the fixed 

parameters in the original BiGRU structure, the model parameters of TB- BiGRU 

approximately obey a Gaussian distribution, which realizes the quantification of 

uncertainty factors through the form of probability density distribution of parameters 

and the weight matrices of BiGRU are obtained from a distribution learned by TB. The 

variational free energy of BiGRU on a sequence of length T  is: 

( )( ) 1: 1:
( ) log , [ ( ) ( )]

q T T
L E p y x KL q p    = − + ∣ ‖         (8) 

Where, ( )1: 1:
log ,

T T
p y x∣ is the likelihood of the sequence generated when the 

state T
f  is input to an appropriate probability distribution, and  is the distribution 

that the network parameters follow. Due to the length of the time series, in practice, it 

is necessary to use mini-batch training with truncated sequences to train the BiGRU 

model. 

Let B be the batch size andC  be the number of truncated sequences. Then, (6) 

can be written as: 

( , ) ( , )

( )

1 1

( ) log ( , ) [ ( ) ]] ([ )
B C

b c b c

q

b c

L E p y x KL q p   
= =

= − + ∣ ‖            (9) 

Where, b  represents the b th mini-batch and c  represents the c th truncated 

sequence within the mini-batch. Therefore, the variational free energy of the b th 

mini-batch and the c th truncated sequence can be written as: 

( , ) ( , ) ( , ) ( , )

( , ) ( ) prev 
( ) log ( , , ) [ ( ) ( )][ ]b c b c b c b c

b c q KL
L E p y x s w KL q p   = − +∣ ‖       (10) 

Where, ( , )b c

KL
w allocates the KL cost to minibatches and truncated sequences, and 

( , )

1 1

1
B C

b c

KL

b c

w
= =

= . ( , )

prev 

b cs  represents the initial state of the BiGRU for the minibatch. In 

practice, we set ( , ) 1/b c

KL
BCw = , so the KL penalty is evenly distributed across all 

mini-batches and truncated sequences. Each subsequent mini-batch's truncated 

sequence is selected in order, hence ( , )

prev 

b cs is set as the last state of the 
( , 1)b cx −

th 

BiGRU. 
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For the variational posterior ( )q  , it can be strengthened by adding side 

information to make the posterior of parameters more accurate. For the given sample 

data ( , )x y , construct ( | ( , ))q x y : 

( ( , )) ( , ( , )) ( )q x y q x y q d    = ∣ ∣                (11) 

Where ( ) ( | , )q N   = ， , dR   , and ∗  represents element-wise 

product, we have: 

( )2

0
( | , ( , )) | * ,q x y N g I     = −               (12) 

Where, 
dR  is a learnable hyperparameter, 0

  is a scalar hyperparameter, 

and I is the identity matrix. 

During the training process, we optimize the error by obtaining ~ ( | ( , ))q x y   

through ancestral sampling: 

( , ) ( ) ( | ,( , ))
[ ]( , , ) [ ( , , , | , , )]

x y q q x y
L E E L x y         =          (13) 

Where, 

( , , , | , , ) log ( | , ) [ ( | , ( , )) ( | )]

(1/ ) [ ( ) ( )]

L x y p y x KL q x y p

C KL q p

         

 

= − +

+

‖

‖
  (14) 

Where, , ,    represents the d -dimensional model parameters, p  is the 

prior defined by q , and C  is a constant denoting the number of truncated 

sequences. From here, the parameter optimization of the model changes from   to 

, ,   . Fig1. illustrates how Truncated Bayes by Backprop Through Time is 

implemented to quantify uncertainty in practice. 

3. Data and Experimental Preparation 

3.1 Introduction to Experiments and Datasets 

(a) (b) 

Figure 3. The output voltage of the fuel cell 
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The method proposed in this paper focuses on the results of durability test for 

individual automotive PEMFC cells [30], referring to the New European Driving Cycle 

(NEDC) [31] as a reference. The key technical parameters involved in the experiments 

are listed in Table 1. The inlet pressures of the cathode/anode, relative humidity, and 

operating temperature were regulated through external cooling water systems and built-

in humidifiers. The entire aging experiment consisted of 3076 dynamic load cycles (FC-

DLC), totaling approximately 1008 hours, covering nine different load currents as 

shown in Table1. Each FC-DLC cycle comprised 35 current load steps, as illustrated in 

Fig. 3(a). The output voltage of the entire aging test is depicted in Fig. 3(b). 

Table 1. Dynamic aging test conditions 

Relevant parameters value 

Activation Area. /
2cm  25 

Inlet pressure of H2 / kPa  110 

Inlet pressure of air/ kPa  110 

Operating temperature. /
oC  85 

Relative humidity of H2 /% 50 

Relative humidity of air/% 80 

Full load current. / A  35.6 

Load currents involved in the dynamic load 

cycle / A  

0 1.76 4.42 9.48 10.37 

14.81 20.70 29.58 35.53  

3.2 Data Set Preprocessing 

Traditional smoothing methods are inadequate for meeting the preprocessing 

needs of raw data, requiring specialized data processing techniques. Through the 

analysis of raw data within each current load step of the FC-DLC cycle, it is observed 

that the data located in the middle segment of each current load is closer to actual 

working conditions. Therefore, this paper adopts the following data smoothing rule for 

the raw data: for each current load step of the FC-DLC cycle, the count of the fifth-last 

voltage value is chosen as the final value of this step [19]. The data after this specific 

smoothing process is used as the FC-DLC dynamic operating condition dataset. 

This paper separates the voltages under different current loads to serve as the 

steady-state load dataset for performance degradation prediction [32]. Firstly, specific 

voltage data corresponding to a specific current load is selected from the FC-DLC full 

operating condition dataset. Then, we smooth the dataset and use it as the FC-DLC 

steady-state operating condition dataset. 
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3.3 Model Training and Hyperparameter Selection 

Model training and hyperparameter selection are key steps in machine learning 

and deep learning processes [21], which have a crucial impact on the performance and 

practical applications of the final model. On the one hand, appropriate hyperparameter 

configuration can reduce training time, accelerate model convergence speed, and obtain 

high-performance models in a shorter period of time, which is particularly important 

for scenarios that require processing large-scale datasets or real-time applications; On 

the other hand, reasonable selection of hyperparameters can improve the stability and 

robustness of the model, avoid training instability or model performance fluctuations 

caused by improper hyperparameter settings, and ensure consistent performance of the 

model in different datasets and application environments. Therefore, this article 

explores the two hyperparameters that can most affect the performance of the model, 

namely the number of hidden layers and the number of neurons corresponding to the 

hidden layers. 

 

Figure 4. The variation of losses corresponding to different hidden layers of TB-BiGRU with 

iteration times 

For neural networks and deep learning, the more layers built, the better the effect. 

Too many hidden layers will greatly reduce the convergence speed of the model and 

affect its prediction accuracy. In this section, while ensuring that the number of neurons 

in each hidden layer is consistent, the number of TB-BiGRU hidden layers is set to 1, 

2, 3, and 4, respectively, and the down sampling loss during the model training process 

is calculated according to equation (14) to characterize the convergence effect of the 

model. The model training process uses an ADAM optimizer to update and iterate the 

internal parameters of the model. It calculates the gradient of the objective function (14) 

and corrects, updates, and iterates the first-order and second-order moments of the 
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gradient to optimize the model parameters. The parameter settings of the ADAM 

optimizer are shown in Table 3. The convergence of the losses corresponding to 

different hidden layers with the number of iterations is shown in the figure 4: 

From the figure, it can be seen that the TB-BiGRU model has a fast convergence 

speed, and the model has basically reached convergence at 5 iterations. As the number 

of iterations increases, the convergence results of the loss corresponding to different 

hidden layers vary. When the hidden layer is 2, its convergence result is the smallest. 

When the hidden layers are set to 3, 4, or even more, the corresponding convergence 

results actually increase. On the one hand, this indicates that the more complex the 

model structure, the better. On the other hand, choosing the appropriate number of 

hidden layers can help improve the convergence accuracy of the model. For the 

prediction of voltage degradation in PEMFC, this paper sets the number of hidden 

layers in the TB-BiGRU model to 2. After determining the number of hidden layers, it 

is still necessary to further determine the number of neurons in each layer. In this paper, 

a grid search method is adopted to calculate the convergence results of the model 

corresponding to different combinations of neurons. The three-dimensional 

convergence diagram is shown in the figure 5: 

 

Figure 5. Three dimensional convergence diagram of TB-BiGRU under different 

combinations of neurons 

According to the color mapping of the three-dimensional convergence graph, it 

can be seen that when the number of neurons in hidden layer 1 and hidden layer 2 is set 

to (100, 80) respectively, the convergence result of the TB-BiGRU model is optimal. 

Therefore, the number of neurons in the two hidden layers is set to 100 and 80 

Jo
urn

al 
Pre-

pro
of



respectively. For the input layer of the model, the number of neurons is generally related 

to the shape of the input data, which will not be discussed here. At the same time, in 

order to facilitate comparison with the GRU and TB-GRU models, the hyperparameters 

of the GRU and TB-GRU models were kept consistent with those of the TB BiGRU 

model, and the model parameter settings are shown in Table 2. Here, "50/100/100" 

indicates that this layer has 50 neurons, with each neuron having 100 weight parameters 

and 100 bias parameters. 

Table 2. Internal structure parameter settings of the model 

Model Sampling times Input layer Hidden layer Hidden layer Output layer 

GRU - 50/100/100 100/80/80 80/10/10 10/1/1 

TB-GRU 50 50/100/100 100/80/80 80/10/10 10/1/1 

TB-BiGRU 50 50/100/100 100/80/80 80/10/10 10/1/1 

Table 3. ADAM optimization algorithm parameter settings 

Parameters Physical meaning Value 

0
m  Initial valu0e of first moment estimate 0 

0
v  Initial value of second moment estimate 0 

1
  Exponential decay rate for the first moment 

estimate 

0.9 

2
  Exponential decay rate for the second moment 

estimate 

0.999 

  Learning rate 0.1 

  A positive constant 10-8 

3.4 Visualization of Network Parameters 

According to the model introduction in Chapter 2, the parameters of the TB-

BiGRU model exhibit an approximate Gaussian distribution compared to the BiGRU 

model. This is achieved by replacing the weight parameter , ,
hx yh hh

w w w  of the BiGRU 

model, which exists in point form, with a Gaussian distribution controlled by , ,   . 

In order to highlight the unique features of the TB-BiGRU model compared to the 

BiGRU model, this section visualizes some parameters of the TB-BiGRU model to 

facilitate understanding of the parameter form of the new model proposed in this article. 

The parameter visualization results are shown in figure 6: 

The visualization results in figure 6 show that after the model training is completed, 

the GRU model parameters are fixed values, while the TB BiGRU model parameters 

exhibit a probability density distribution. For weight 
34

w  in the graph, it is 

34
0.486w =  in the GRU model. In the TB-BiGRU model, 

34
w  follows a Gaussian 
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distribution controlled by three parameters, namely 
34

0.481 = , 
2

34
0.642 = , and 

34
0.831 = . During the model prediction process, since the parameters of the GRU 

model are fixed, the corresponding prediction results are theoretically determined. 

However, the parameters of the TB-BiGRU model are approximately Gaussian 

distributed, and their corresponding prediction results should follow a probability 

density distribution. The special structure of the TB-BiGRU model can not only 

improve the model's anti-interference ability and stability, but also provide important 

reference for practical control decisions due to its inherent uncertainty quantification 

ability. 

Figure 6. Visualization results of some parameters of GRU and TB-BiGRU models 

3.5 The mechanism for quantifying uncertainty 

The uncertainty quantification ability of the TB-BiGRU model mainly comes from 

its internal parameter structure. In section 3.4, we visualized some parameters of the 

TB-BiGRU model, and the visualization results showed that the model parameters of 

TB-BiGRU follow an approximate Gaussian distribution rather than fixed point form 

parameters. After the data is input into the model, the model will perform parallel 

sampling on the probability density distribution followed by the parameters to 

determine the model weights, in order to achieve the propagation process from input 

data to output results. The specific implementation process is shown in Figure 7: 

Figure 7 divides the uncertainty quantification process of the model into three 

steps: inputting historical data, parallel parameter sampling, and outputting prediction 

results. Specifically, a sliding window is used to divide historical data containing 

uncertain factors according to the length of the time window (Figure B shows the 

principle of uncertainty quantification, which only divides eight time windows A, B, C, 

D, E, F, G, and H, each containing data from 10 historical moments); Secondly, the 

internal parameters of the TB-BiGRU model are sampled multiple times through 

parallel sampling to obtain multiple sets of parameter matrices, each corresponding to 
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a fixed model; Finally, when inputting time window A, the data within the time window 

will be subjected to matrix operations with the sampled parameter matrix to obtain the 

output result. Each set of parameter matrices corresponds to an output result, and when 

the number of samples is sufficient, the output result will present a probability density 

distribution, thereby achieving uncertainty quantification. 

 

Figure 7 The principle diagram of uncertainty quantification 

The quantification of uncertainty is characterized by the probability density 

distribution of the predicted results. When there are fewer uncertain factors such as 

noise and measurement errors in the data, the probability density distribution 

corresponding to the parameters of the TB-BiGRU model will become tighter after 

training, and the probability density distribution corresponding to the predicted results 

of the model will also become denser; When the uncertainty factors in the data increase 

significantly, the probability density distribution corresponding to the trained 

parameters of the model will become sparse, and the probability density distribution of 

the predicted results will also become sparse. This article comprehensively analyzes the 

stability, accuracy, and uncertainty quantification ability of the proposed TB-BiGRU 

model in Chapter 5. Compared with other models, TB-BiGRU has a wider range of 

application scenarios and value. 

4. Degradation trend prediction evaluation metrics 

Evaluation metrics can effectively and intuitively measure the quality of model 

predictions, and good evaluation metrics are essential for practical applications. This 

section introduces the evaluation metrics used in this paper, including commonly used 

point estimation metrics and the proposed evaluation metrics for quantifying 

uncertainty representation. 

…

…
……

Enter historical data
Step1

Historical data A

Historical data B

Historical data C

Historical data D

Historical data E

Historical data F

Historical data G

Historical data H

Parallel parameter sampling
Step2

The distribution followed 

by the model parameters

Parameters after sampling

Result output
Step3

The distribution followed by the model 

parameters

Probability density distribution map of 

output results

Jo
urn

al 
Pre-

pro
of



4.1 Point Estimation Evaluation Metrics 

Point estimation evaluation metrics are one of the most commonly used standards 

for measuring model accuracy. In this paper, we introduce the mean absolute error 

(MAE) and the root mean square error (RMSE) as evaluation metrics. For these metrics, 

smaller values indicate higher prediction accuracy. The relevant calculation expressions 

are as follows: 

1

1
| |

n

i i

i

MAE y y
n =

= −                           (15) 

2

1

1
( )

n

i i

i

RMSE y y
n =

= −                        (16) 

Where, i
y represents the actual result, 

i
y is the predicted result, and n is the total 

number of predicted results. 

4.2 Uncertainty Quantification Evaluation Metrics 

As this paper involves uncertainty quantification research, the above-mentioned 

evaluation metrics may not fully meet the comparison requirements. Thus, we introduce 

four more practical uncertainty quantification evaluation metrics: Gaussian Negative 

Log Likelihood (G-NLL), Continuous Ranked Probability Score (CRPS), 

_check score  and _Interval score . The descriptions of these evaluation metrics can 

be found in Table 4, and their corresponding calculation expressions are as follows: 

Table 4. The related descriptions of uncertainty quantification evaluation metrics. 

G-NLL CRPS 

  

G-NLL characterizes the accuracy of the model 

by calculating the cumulative error between the 

model parameter distribution and the real 

sample data distribution. The smaller the value, 

the more accurate the model is. 

CRPS characterizes the accuracy of the 

prediction results by calculating the area 

between the cumulative distribution function 

of the prediction results and the cumulative 

distribution function of the actual samples. 

_check score  _Interval score  
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_check score  represents the probability that 

the actual result falls outside the confidence 

interval by calculating the sum of the differences 

between the cumulative distribution function 

and the actual result at different quantiles. 

_Interval score   represents the accuracy 

of the confidence interval of the prediction 

result by calculating the sum of the differences 

between the upper and lower quantiles of the 

cumulative distribution function and the 

actual results. The smaller the value, the more 

accurate and credible the confidence interval. 

1) G-NLL 

Assuming at time step i , the distribution followed by the predicted results of the 

model is 2 21/ 2 exp[ ( ) / 2 ]
i i i i

y  − − .The NLL   of predicted result can be 

expressed as： 

2 2

1

2 2 2

1

log{1/ 2 exp[ ( ) / 2 ]}

1
[log log 2 ( ) / ]

2

n

i i i i

i

n

i i i i

i

NLL y

y

  

   

=

=

= − − −

= + + −




               (17) 

Where n  is the total number of predicted results, i
y  is the actual result 

corresponding to the time step i  , ,
i i

    are the mean and standard deviation 

corresponding to the probability distribution of the predicted results at the time step i . 

2) CRPS 

The purpose of CRPS is to measure the difference between the probability density 

distribution of the predicted results and the actual observed values. When the 

distribution of the predicted results follows a Gaussian distribution, CRPS can be 

expressed as: 

1

1
( (2 ( ) 1) 2 ( ) )

n

i i i i i i

i

i i i i

y y y
CRPS

  
 

   =

− − −
=  − + −           (18) 

Normally, the distribution of predicted results is not a standard normal distribution, 

and it is necessary to standardize the difference between the actual value i
y  and the 

predicted mean i
  to obtain the standardized difference ( ) /

i i i
y  − . At the same 

time, it is also necessary to standardize the cumulative distribution function (CDF) and 
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probability density function (PDF) of the prediction results. The standardized CDF and 

PDF are 2 (( ) / ) 1
i i i

y   − −  and 2 (( ) / )
i i i

y  − .Where ( ) • is the cumulative 

distribution function of the standard normal distribution corresponding to the time step 

i , and ( ) •  represents the standard normal distribution at the time step i . The 

purpose of constant term 1/   is to adjust the value of CRPS to better meet the 

evaluation criteria in practical applications. 

3) _check score  

_check score  is used to evaluate the predictive accuracy of the model at different 

quantiles. By calculating the errors at each quantile and combining them with mask 

values, the performance of the model can be more comprehensively measured. The 

calculation formula is as follows: 

99

/100

1 1

1 1
_ [ ( ( ) )* ]

99

n

i i

q i iq

i q i

y
check score y mask

n




= =

−
= −          (19) 

For the convenience of calculation, this formula also needs to standardize the 

difference between the actual value i
y  and the predicted mean i

  to obtain the 

standardized difference ( ) /
i i i

y  − . 
/100

(( ) / )
q i i i

y  −  is the standard normal 

distribution function value at quantile /100q  at the time step i . Where /100q is the 

quantile, 0 /100 1q  , 
q

mask is the coefficient corresponding to the q -th quantile at 

the time step i。The function of the mask is to selectively weight the error of each 

observation value, and they satisfy the following equation: 

/100
1, ( ) 0

,
100

0,

i i

q i

iiq

y
yq

mask Q Q

others






−
− 

= − = 



             (20) 

 

4) _Interval score  

_Interval score  is mainly used to evaluate the accuracy and coverage of the 

model's prediction interval, measuring the quality of the prediction interval by 

considering errors within and outside the interval. The calculation formula is as follows: 
99

1 1

1 1
_ { ( ) ( )

99

2
[ ( ) ]* _

1 /100

2
[ ( )]* _ }

1 /100

n

i i i i

hq lq

i q i i

i i

lq i q

i

i i

i hq q

i

y y
Interval score

n

y
y below l

q

y
y above u

q

 
 

 











= =

− −
= −

−
+ −

−

−
+ −

−

 

       (21) 

The different parts of the formula handle error within and outside the interval 
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separately, and adjust the coefficients to ensure the rationality and accuracy of the 

scoring. The error calculation within the interval is represented as 

(( ) / ) (( ) / )
hq i i i lq i i i

y y     − − − , which is the difference between the standard 

normal distribution function value corresponding to the right percentile and the 

standard normal distribution function value corresponding to the left percentile. For 

actual values outside the lower and upper limits of the prediction interval, calculate the 

relative error adjustment terms separately and multiply them by the adjustment 

coefficient 2 / (1 /100)q− . Where, /100q is the quantile, 0.5 / 200lq q= − and 

0.5 / 200hq q= + are symmetric left and right quantiles, and they satisfy 

0 1lq hq   . _ , _
q q

below l above u  are the left and right quantile coefficients 

corresponding to the q -th quantile at the time step i ,and they satisfy the following 

equation: 

/99
1. ( ) 0

_

0,

i i

lq i

iq

y
y

below l

others






−
− 

= 



                 (22) 

/99
1, ( ) 0

_

0,

i i

i hq

iq

y
y

above u

others






−
− 

= 



                (23) 

5. Performance Analysis of TB-BiGRU Model 

This section provides an in-depth analysis of the prediction outcomes generated 

by the proposed model. Two different models, TB-BiGRU and TB-GRU, were 

developed using the dataset from the dynamic durability test of fuel cells introduced in 

Section 2. This section includes the performance comparison between TB-GRU and 

TB-BiGRU, the uncertainty quantification performance analysis of TB-BiGRU, 

efficiency and reliability analysis of TB-BiGRU model, and comparison of multiple 

uncertainty quantification models. 

5.1 Performance Comparison between TB-GRU and TB-BiGRU 

In this section, we developed the TB-BiGRU and TB-GRU models and applied 

them to predict the degradation trend of PEMFCs. The parameter settings for the 

models are shown in Tables 2 and 3. The dynamic and steady-state datasets in this study 

were divided in a 5:5 ratio. The input feature is the stack voltage, and the output is also 

voltage. The prediction results of TB-GRU and TB-BiGRU based on dynamic and 

steady-state conditions are shown in Table 5. 
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Table 5. The prediction results of TB-GRU and TB-BiGRU 

Model TB-GRU TB-BiGRU 

Working conditions MAE RMSE MAE RMSE 

dynamic 0.032017 0.040528 0.020081 0.025903 

0A 0.001563 0.004106 0.001523 0.003961 

1.76A 0.003155 0.00366 0.002653 0.003322 

4.42A 0.003899 0.00527 0.003353 0.004565 

9.48A 0.003034 0.005307 0.002716 0.005098 

10.37A 0.002383 0.005457 0.002363 0.004765 

14.81A 0.004821 0.007083 0.00268 0.005274 

20.70A 0.003769 0.006023 0.003433 0.005906 

29.58A 0.003743 0.006851 0.002468 0.005303 

35.53A 0.003688 0.006545 0.002105 0.004926 

Table 5 shows the errors in the prediction results of TB-GRU and TB-BiGRU 

models under dynamic and nine different steady-state conditions, in order to more 

comprehensively analyze the advantages and disadvantages of the TB-BiGRU model 

compared to the TB-GRU model. From the prediction results in Table 5, it can be seen 

that compared with the TB-GRU model, the TB-BiGRU model has improved in terms 

of MAE and RMSE. Under dynamic conditions, the MAE and RMSE of the TB-BiGRU 

model are 0.020081 and 0.025903, respectively, which are 37.28% and 36.09% higher 

than those of the TB-GRU model. This is mainly due to its bidirectional access to data 

information model structure and robust data processing capabilities, making the TB-

BiGRU model more suitable for dynamic condition prediction. Under steady-state 

conditions, the TB-BiGRU model showed the most significant improvement in 

prediction accuracy at 14.81A. Compared with the TB-GRU model, the MAE and 

RMSE increased by 44.41% and 25.54%, respectively. For other operating conditions, 

the prediction accuracy of the TB-BiGRU model has also been improved to varying 

degrees. For ease of observation, we use a bar chart to visualize the prediction error of 

the model under different operating conditions, as shown in Figure 8. 

Figure 8 shows ten operating conditions of PEMFC, each of which was predicted 

using eight models including TB-GRU and TB-BiGRU models (the other six models 

are TB-LSTM, MLP, LSTM, GRU, TCN, and BiGRU). The model with the best 

prediction results for each operating condition is labeled in the figure. From the 

annotation results, both MAE and RMSE show that the TB-BiGRU model proposed in 
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this article performs the best. In addition, based on the prediction results of each 

operating condition, there is basically a pattern of model prediction accuracy, namely 

TB-BiGRU>TB-GRU>TB-LSTM>BiGRU>GRU>TCN>MLP. From this, it can be 

seen that the three models combined with the TB algorithm have all improved compared 

to their original models, mainly due to the TB algorithm's ability to reconstruct the 

model parameters and quantify the uncertainty obtained by the model, thereby 

improving the model's ability to handle noisy data. 

(a) 

(b) 

 Figure 8. Comparison of prediction errors of multiple learning models under different operating 

conditions of PEMFC 
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In order to further demonstrate the performance improvement brought by 

uncertainty quantification to the model, this section uses exponential weighted 

averaging to perform varying degrees of noise reduction on the data collected from 

dynamic and partially static operating conditions. Exponential weighted average 

achieves data smoothing by controlling the weighting coefficient. The smaller the 

coefficient, the smoother the processed data and the less uncertainty factors it contains. 

In order to preserve some uncertain factors in the data, the weighting coefficients should 

not be set very small. During the experiment, five groups were set, namely 0.5, 0.6, 0.7, 

0.8, and 0.9. After sending the corresponding smoothed data for each group to different 

models for training, calculate the MAE and RMSE of each model's prediction results, 

and plot the calculation results as Figure 9. 

Figure 9 shows the variation trend of prediction errors of eight models under dynamic 

conditions, 0A, 9.46A, and 35.53A 

Figure 9 provides a detailed comparison of the prediction results of eight models 

under four different operating conditions. As the MAE and RMSE increase, both show 

a significant upward trend. This is because the larger the MAE, the more noise factors 

are included in the data, which can interfere with the prediction process of the model 

and lead to a decrease in the accuracy of the prediction results. Although uncertain 

factors such as data noise have a significant impact on the prediction accuracy of deep 

learning models, the TB-BiGRU model proposed in this paper demonstrates better 

noise resistance performance compared to the other seven models. Under the dynamic 

operating conditions of PEMFC, with the increase of noise factors, the upward trend of 

MAE and RMSE predicted by TB-BiGRU is significantly slower than other models; 

Under the operating conditions of load currents of 0A, 9.46A, and 34.43A, the error of 

the predicted results also shows the same trend, which is particularly evident under the 

35.53A condition. This experimental result indicates that the TB-BiGRU model 
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proposed in this paper has better noise resistance performance under various PEMFC 

operating conditions. This is due to its bidirectional access to data information model 

structure and robust data processing capabilities. On the other hand, the model 

parameters that follow Gaussian distribution can greatly improve the model's ability to 

process noisy data compared to point based model parameters. 

It is worth mentioning that the TB-BiGRU model has lower prediction errors than 

the other seven models under different noise levels in different operating conditions, 

further demonstrating the stability and accuracy of the TB-BiGRU model. In practical 

application scenarios, the collected data inevitably contains uncertain factors such as 

noise. However, the TB-BiGRU model has better noise resistance and good uncertainty 

quantification ability, and has greater application value compared to other deep learning 

models. 

5.2 Interval estimation performance analysis of TB-BiGRU 

Interval estimation is an important aspect of uncertainty quantification. This 

section analyzes the interval estimation performance of the TB-BiGRU model based on 

various operating conditions, and verifies the effectiveness of four proposed uncertainty 

quantification indicators. The interval estimation of the TB-BiGRU model is shown in 

Fig. 10 and 11. 
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Figure 10. Predictive effect diagram of TB-BiGRU under dynamic operating conditions. 10(a) 

Overall effect prediction diagram of TB-BiGRU based on dynamic operating conditions; 10(b) 

Partial enlargement of 11(a); 10(c) Partial enlargement of 10(b); 10(d) Probability density 

distribution diagram of predicted results at points A-H in 10(a) 

Due to the dynamic operating conditions encompassing the operational data of all  

conditions in FC-DLC, this paper zooms in on Fig. 10(a) twice to obtain Fig. 10(c). 

From Fig. 10(c), it can be observed that the mean of TB-BiGRU prediction results 

closely follows the actual results, and the actual results mainly fall within the 95% 

confidence interval of the TB-BiGRU predictions. This indicates that the TB-BiGRU 

model possesses good interval estimation capabilities. In order to visually demonstrate 

the interval estimation capabilities of the TB-BiGRU model, this paper performs 

equidistant sampling on the predicted results and presents the probability distribution 

of the sampled prediction results, as shown in Fig. 10(d). A-H represent the positions 

of the sampled points, with each sampled point corresponding to a probability 

distribution. It can be observed from the figure that the probability distribution of the 

predicted results basically follows a Gaussian distribution, which corresponds to the 

structure of the model. Through the probability density, one can more intuitively see 

the distribution of the predicted results and the deviation between the actual results and 

the predicted mean. The results in Fig. 10(d) demonstrate that the TB-BiGRU model 

exhibits excellent interval estimation capabilities under dynamic operating conditions. 

Fig. 11 includes predictive results for various individual operating conditions. 

From the Fig. 6, it can be observed that for most operating conditions, the confidence 

intervals of TB-BiGRU model predictions cover the actual results, such as conditions 

0A, 14.81A, and 20.70A. This result aligns with the evaluation metrics in Table 6, 

where smaller values of NLL, CRPS, _check score  and _Interval score   indicate 

better uncertainty quantification. When the condition is 0A, the smallest values for NLL, 

CRPS, _check score  and _Interval score   are 3.484554, 0.001279, 0.000643, and 

0.009593, respectively. Conversely, when the condition is 29.58A, the largest values 

for NLL, CRPS, _check score  and _Interval score   are 13.88969, 0.004294, 

0.002157, and 0.036082, respectively. Based on the evaluation metrics, the uncertainty 

quantification performance for condition 0A is significantly superior to that of 

condition 29.58A. Looking at Fig. 11(a) and 11(d), it can be observed that the coverage 

of the confidence intervals in Fig. 11(a) is better than that in Figure 11(d), indicating 

that the uncertainty quantification performance for condition 0A is better. 
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Figure 11. Predictive effect diagram of TB-BiGRU based on different steady-state operating 

conditions 

(a)0A                                                         (b)14.81A                                                           

(c)20.70A                                                 (d)29.58A                                                           
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Simultaneously, the predictive effect diagrams for other operating conditions 

correspond to their respective evaluation metric results. This further demonstrates that 

the proposed model in this paper exhibits excellent uncertainty quantification 

capabilities under both dynamic and various steady-state operating conditions. It is 

more suitable for practical applications with a high degree of uncertainty. Additionally, 

the uncertainty quantification evaluation metrics proposed in this paper can effectively 

capture the differences in predictive performance under different operating conditions, 

providing a good representation of the model's uncertainty quantification capabilities. 

Table 6. The uncertainty quantification results of TB-BiGRU 

Working conditions NLL CRPS _check score  _Interval score  

All 18.3282 0.101696 0.051055 0.883734 

0A 3.484554 0.001279 0.000643 0.009593 

1.76A 9.221416 0.002362 0.001186 0.019859 

4.42A 13.51943 0.003553 0.001783 0.031383 

9.48A 4.244665 0.002226 0.00112 0.016078 

10.37A 4.093864 0.002014 0.001013 0.015698 

14.81A 4.350689 0.003094 0.001556 0.022578 

20.70A 6.525078 0.002886 0.001451 0.021872 

29.58A 13.88969 0.004294 0.002157 0.036082 

35.53A 4.920571 0.003033 0.001526 0.021706 

5.3 Efficiency and Reliability analysis of TB-BiGRU model 

Based on the findings presented in Section 5.1 and 5.2, it is clear that the TB-

BiGRU model demonstrates a notable enhancement in performance when compared to 

the initial TB-GRU model, and it demonstrates good uncertainty quantification 

performance. This section discusses the computational efficiency of the TB-BiGRU 

model under different sampling times and the reliability of the model prediction results. 

For most uncertainty quantification models, setting the number of samples is 

essential. The more samples taken, the more accurate the probability density 

distribution of the prediction results becomes, and the more reliable the confidence 

intervals for the uncertainty quantification results are. However, this significantly 

increases the model’s reasoning time, which is detrimental to real-time predictions of 

fuel cell degradation trends. To enhance the real-time performance and practical 

significance of the TB-BiGRU model, we utilized the multithreading capabilities of 

multi-core CPUs and GPUs to switch the model from sequential sampling to parallel 
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sampling without changing the hardware. This greatly improved the reasoning time 

during the model's prediction process. The relationship between reasoning time and the 

number of samples for sequential and parallel sampling under dynamic operating 

conditions of fuel cells is shown in Fig. 12(a). Additionally, we plotted the relationship 

between the RMSE of the prediction results and the reasoning time as the number of 

samples increases, as shown in Fig. 12(b). 

  

（a）                               （b） 

 
（c） 

Figure 12 Analysis of the computational efficiency of the TB-BiGRU model under dynamic 

operating conditions 

As shown in Fig. 12(a), when the number of samples exceeds five, the reasoning 

time of sequential sampling increases exponentially with the number of samples, 

significantly higher than that of parallel sampling. This indicates that parallel sampling 

has a clear advantage in reducing the reasoning time of the TB-BiGRU model, thereby 

effectively enhancing the model's real-time performance in predicting fuel cell 

degradation trends. Meanwhile, Fig. 12(b) shows that as the number of samples 

increases, the RMSE of the prediction results exhibits a noticeable downward trend. 

When the number of samples exceeds 40, this downward trend slows down, as the 

probability density distribution of the prediction results becomes more complete and 

the corresponding mean stabilizes. However, as the number of samples increases, the 
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model’s reasoning time also grows accordingly. To balance real-time performance and 

prediction accuracy, the number of samples must be selected carefully. The intersection 

region of the RMSE bar chart and the reasoning time curve in Fig. 12(b) represents an 

optimal choice, with the number of samples set to 40 or 50. Fig. 12(c) further compares 

the reasoning time of the TB-BiGRU model with other data-driven models at 40 and 50 

samples. The results show that the reasoning times of the TB-BiGRU model at these 

two sample sizes are 27.4 seconds and 28 seconds, respectively, which are significantly 

lower than those of the TB-LSTM and TB-GRU models, and comparable to the 

reasoning times of traditional LSTM and GRU models. This further demonstrates that 

the TB-BiGRU model not only maintains strong real-time performance but also ensures 

prediction accuracy, making it highly promising for practical applications. 

While balancing real-time performance and accuracy, the reliability of the model 

should also be a key consideration. Therefore, we evaluated the uncertainty 

quantification performance of the TB-BiGRU model using reliability diagrams and 

compared it with the TB-GRU model. In a short, reliability curves indicate the ability 

of a machine learning model to quantify uncertainty on a relevant data set. A model that 

provides precise predictions of uncertainty at every confidence level will exhibit a 

reliability curve nearing y x=  . To better assess the uncertainty quantification 

performance of TB-GRU and TB-BiGRU models, this section continues to make 

predictions based on dynamic and different steady-state operating conditions. In order 

to take into account the accuracy and real-time performance of the TB-BiGRU model, 

the calculated reliability curves are obtained by averaging the predictions from 50 

samples in the prediction process. For enhanced comparative analysis, this paper 

calculates the area enclosed between the reliability curve and the diagonal line, referred 

to as the Miscalibration Area (MA), as shown in Fig. 13. 

In Fig. 13, the orange curve represents the reliability curve for TB-BiGRU, while 

the blue curve represents the reliability curve for TB-GRU. The figure illustrates a 

consistent trend where the reliability curve of the TB-GRU model consistently lags 

behind that of the TB-BiGRU model, and its MA results are consistently higher than 

those of TB-BiGRU. Overall, whether in the full operating conditions or in individual 

operating conditions, TB-GRU model's metrics such as MAE, RMSE, NLL, CRPS, 

_check score  and _Interval score  are almost always smaller than those of the TB-

BiGRU model. This result indicates that the TB BiGRU model with bidirectional 

structure is more suitable for quantifying the uncertainty in the degradation trend of 
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PEMFC; On the other hand, the reliability curve and the results of MA further validate 

the effectiveness of the proposed uncertainty quantification evaluation metrics. 

Figure 13. Reliability curves and miscalibration area of TB-BiGRU and TB-GRU 

5.4 Comparison of multiple uncertainty quantification models 

The results of Section 5.2 validate the effectiveness of the uncertainty 

quantification indicators proposed in this article. In this section, we calculated the 

uncertainty quantification indicators for four models: TB-BiGRU, TB-LSTM, TB-

GRU, and B-GRU, under PEMFC no-load (0 A), light load (9.38 A), and heavy load 

(35.53 A) operating conditions. These results are shown in Fig. 13 for comparison. 

From Fig.14, it can be observed that the uncertainty quantification index of the 

TB-BiGRU model is smaller than that of the other three models under three different 

operating conditions, followed by the B-GRU model. Further observation reveals that 

the uncertainty quantification metrics of the PEMFC are smaller under no-load and 

heavy-load conditions compared to light-load operation. This is primarily due to the 

accidental uncertainty during PEMFC operation. Accidental uncertainty and cognitive 

uncertainty are the main sources of uncertainty in uncertainty quantification work. 

Under the same model structure, cognitive uncertainty factors remain unchanged, but 

(a)All working conditions                                      (b)0A                                                           (c)9.48A                                       

(d)20.70A                                                    (e)29.58A                                                    (f)Miscalibration Area 
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the accidental uncertainty factors present in data collected under different working 

conditions vary. When the accidental uncertainty factors in the operating conditions are 

reduced, the uncertainty quantification index of the prediction results will be smaller, 

resulting in a more compact interval estimation. Conversely, when there are more 

accidental uncertainty factors in the data, the uncertainty quantification index of the 

prediction results increases, leading to a sparser interval estimation and more 

uncertainty in the prediction results. 

(a) 0 A 

(b) 9.38 A  
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(c) 35.53 A 

Figure 14 Comparison of uncertainty quantification capabilities of various uncertainty 

quantification models under different operating conditions 

6. Conclusion 

To address the performance degradation of fuel cells under dynamic operating 

conditions, this paper proposes a performance prediction method that implements 

uncertainty quantification based on TB algorithm. This method combines TB with 

BiGRU models, modifying the internal parameter structure of the model by replacing 

fixed internal parameters with random variables following a Gaussian distribution. This 

achieves uncertainty quantification of the prediction results, enhancing the credibility 

of the predictions, and demonstrating practical application value. The proposed 

approach's efficacy has been confirmed through the utilization of a dynamic load 

cycling dataset. Based on a comparative analysis of the prediction outcomes, the 

following deductions can be made: 

1) The accuracy of the TB-BiGRU model shows a significant improvement 

compared to the TB-GRU. Under dynamic operating conditions, TB-BiGRU's MAE 

and RMSE are enhanced by 37.28% and 36.09%, compared to TB-GRU. Under 

different steady-state operating conditions, compared with other deep learning models, 

TB-BiGRU exhibits better noise performance and stability under different operating 

conditions and noise levels. 

2) Interval estimation represents the range of prediction results through probability 

density distribution, which not only improves the accuracy of point estimation, but also 

improves the confidence of the results.  

3) The four proposed evaluation indicators can accurately capture the uncertainty 

quantification ability of the TB-BiGRU model under different working conditions, and 
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have more practical application value. 

4) Compared with other uncertainty quantification models, TB-BiGRU performs 

well under different operating conditions of PEMFC. And the proposed prediction 

framework has scalability and is suitable for other deep models. 

Although the TB-BiGRU model can provide more accurate and reliable 

uncertainty quantification results for predicting the degradation trend of fuel cells, the 

model structure is more complex compared to the original BiGRU, and the 

establishment process involves variational inference, which may increase the 

computational resources consumed in model training and prediction. To achieve this, it 

is necessary to minimize the complexity of the model as much as possible without 

affecting its prediction accuracy and credibility. Based on the research in this paper, we 

will further study a more lightweight uncertainty quantification model to achieve 

accuracy, credibility, and real-time prediction of fuel cell degradation trends. In 

addition, most deep learning models currently lack interpretability, and the TB-BiGRU 

model is no exception. We are currently researching an interpretable uncertainty 

quantification model to expand its interpretability. 
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⚫ A framework for predicting fuel cell degradation trends incorporating uncertainty 

quantification. 

⚫ Application of a Bayesian theory-based TB algorithm to a BiGRU model to 

achieve probability density distribution of model structural parameters. 

⚫ Introduction of four indicators to measure the model's uncertainty quantification 

capability. 

⚫ Provision of both point estimates and interval estimates with probability density 

distribution. 

⚫ The proposed model has better noise resistance, stability, and uncertainty 

quantification ability 
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