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A B S T R A C T   

Frequency response analysis (FRA) methods are commonly used in the field of State of Health (SOH) estimation 
for Lithium-ion batteries (Libs). However, identifying their appropriate application scenarios can be challenging. 
This paper presents four FRA techniques, including electrochemical impedance spectra (EIS), mid-frequency and 
low-frequency domain equivalent circuit model (MLECM), distribution of relaxation time (DRT) and non-linear 
FRA (NFRA) technique. This paper proposes two estimation frameworks, machine learning and curve fitting, to 
be applied to each of the four techniques. Eight SOH estimation models are developed by linking the extracted 
feature parameters to the battery capacity variations. The paper compares the accuracy of estimation, estimation 
range, and other properties of the eight models. Application scenarios are identified for the techniques by using 
three classification methods: different estimation frameworks, frequency response linearity, and impedance 
technique. The results demonstrate that MLF is recommended for scenarios with a large amount of battery data, 
while CFF is recommended for scenarios with a small amount of data. NFRA could be applied to electric vehicle 
power batteries, while LFRA is recommended to be used for retired batteries. EIS method is recommended for 
complex and dynamic scenarios, while non-EIS method is recommended for scenarios that require high accuracy.   

Nomenclature   

N number of samples   
K number of model 

parameters 
C charge/discharge ratio n the sample length 
IAC applied current S RMSE 
f sampling frequency I variable exponential model 
Hz unit of frequency II exponential model 
Z impedance III power model 
ω angular velocity IV variable power model 
ϕ phase V rational model 
j imaginary unit   
V(t) voltage signal Abbreviation 
I(t) current signal   
VA voltage amplitude Libs lithium-ion batteries 

(continued on next column)  

(continued ) 

IA current amplitude FRA frequency response 
analysis 

ZA impedance amplitude NFRA nonlinear FRA 
ZRe real part of impedance LFRA linear FRA 
ZIm imagine part of impedance SOH state of health 
Hi higher harmonic response SOC state of charge 
L inductor P2D pseudo-two-dimensional 
R0 ohmic resistor ECM equivalent circuit model 
RCT charge transfer resistor TECM traditional ECM 
RSEI SEI film resistor DRT distribution of relaxation 

time 
ZW warburg impedance MLF machine learning 

framework 
RSC incorporating RSEI and RCT CFF curve fitting framework 
ZMLECM MLECM impedance RMSE root mean square error 
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(continued ) 

ZCPE CPE impedance BMS battery management 
system 

TCPE Parameters of the CPE KK Kramers-Kronig 
PCPE Parameters of the CPE HF health factor 
τ time constant GPR gaussian process regression 
Zpol polarization impedance RLS recursive least squares 
R2 goodness of fit value PF particle filter 
ymea the measured value of SOH SEI solid electrolyte interface 
ypre the estimation of SOH CPE constant phase element 
ypre the mean of the ypre ZARC CPE and resistance in 

parallel 
np number of samples between 

two adjacent orders of 
magnitude 

HQ Hannan Quinn 

H root mean square of 2nd and 
3rd harmonics 

EIS electrochemical impedance 
spectroscopy 

ZZARC impedance of CPE and resistor 
in parallel 

MLECM mid-frequency and low- 
frequency domain ECM  

1. Introduction 

Lithium-ion batteries show promise for energy-efficient renewable 
and electric vehicle applications. The battery management system 
(BMS) is responsible for detecting important parameters such as battery 
current, voltage, and temperatures [1,2]. It is crucial for the proper 
functioning of the battery. The detection of state of health (SOH) of the 
battery is a crucial aspect of the BMS. It is calculated to enhance energy 
management and prevent potential hazards [3–5]. 

The estimation of SOH is commonly achieved through direct mea-
surement, model-based, or data-driven based methods [6]. The direct 
measurement methods are rely heavily on sensor accuracy [7]. 
Model-based approaches mainly include those based on equivalent cir-
cuit models (ECM) [8,9], pseudo-two-dimensional (P2D) models [10, 
11], single-particle (SP) models [12], Multiphysics field model [13] and 
so on. The methods generally result in higher estimation accuracy, but 
constructing the models is more challenging and requires more effort. 
Data-driven approaches are easier to implement than the former and 
show great potential [3]. Examples include feedforward neural network 
algorithms [14–19], classification and regression algorithms [20,21], 
probabilistic algorithms [22,23], recurrent neural networks [24–26], 
rule-based algorithms [27,28], and hybrid algorithms [29,30]. 

Electrochemical impedance spectroscopy (EIS) is a crucial method 
for battery diagnosis due to its high accuracy, non-invasive nature, and 
lack of requirement for a complete charge/discharge curve [22,31]. 
Meddings et al. [32] discuss the practical process of applying EIS to 
commercial Libs, focusing on advanced interpretation of EIS and vali-
dation methods. Machine learning prioritises workload reduction by 
automatically selecting the most relevant features. Zhang et al. [22] find 
a strong relation between the impedance at 17.8 Hz and 2.16 Hz. Jones 
et al. [33] use a probabilistic machine learning (PML) approach in 
combination with EIS measurement to predict battery SOH while ac-
counting for calibration uncertainty. However, if the amount of data is 
too large, it can result in excessively long training, times and increased 
dependence on the accuracy of the algorithm. 

Current approaches describe each electrochemical reaction process 
in terms of a specific circuit element or combination of elements. ECM is 
a commonly used model in the electrical field for explaining and simu-
lating EIS. Pietro et al. [31] provide a systematic review of the current 
research on characterising Lib degradation or modelling circuits with 
EIS. They also discuss the existing links between degradation mecha-
nisms and the most reliable modelling approaches. Most of the current 
approaches [34–37] are based on the EIS to construct a traditional ECM 
(TECM). Some scholars have developed alternative ECMs, such as 
second-order Davening ECMs [38], simplified ECMs [39], 
low-frequency domain ECMs [40], and temperature-compensated frac-
tional order models [41]. To ensure accurate analysis of the battery and 
avoid misinterpretation due to over-reliance on the ECM, it is proposed 

to use distribution of relaxation time (DRT) to verify all constants for the 
entire electrochemical system. This technique directly distinguishes the 
time constants of the major electrochemical processes directly. It sim-
plifies impedance analysis, and significantly improves the accuracy of 
kinetic interpretation on time scales [42,43]. He et al. [44] conducted a 
DRT analysis of impedance spectra to determine the impedance distri-
bution characteristics of batteries with different materials during 
cycling. This analysis helped to quickly identify the aging mechanism 
and predict the battery’s remaining life. Zhu et al. [45] proposed a 
method for interpreting and separating battery interfacial processes. The 
method is based on the temperature dependence of battery impedance, 
which is found by the DRT technique. The technology is capable of 
meeting the challenge with ease not only in conventional Libs but also in 
systems with complex battery chemistries [46]. 

Nonlinear frequency response analysis (NFRA) is found to be an 
effective method for the dynamic analysis of Libs. In contrast to EIS, 
NFRA is not restricted to the linear response of the system. Instead, it 
employs high current excitation signals greater than 1.5C to obtain and 
analyze the higher harmonic response signals represented by Yn(n> 2)
[47,48]. The NFRA can be seen as an extension of the EIS. It provides a 
comprehensive and detailed reflection of the system response and es-
tablishes a link between the model parameters and the experimentally 
observed phenomena [47]. Impedance is only meaningful for funda-
mental frequencies. Higher-order response functions are not defined in 
the same way. Therefore, proposing a highly feasible method for the 
contributing to higher-order responses is a problem to be solved in this 
field. Rafael et al. [49] proposed a method for frequency domain anal-
ysis of nonlinear systems using NFRA functions. This method can be 
applied to nonlinear modal analysis. 

Previous studies have typically validated the feasibility of their 
methods using separate datasets, resulting in a lack of comparability. 
Two frameworks for estimating SOH based on machine learning (ML) 
and curve fitting (CF) are developed. Within these frameworks, four 
technologies for processing fresh battery data and performing estima-
tion are compared: Impedance-based, mid-frequency and low-frequency 
domain ECM (MLECM)-based, DRT-based, and NFRA-based. 

2. Dataset and test conditions 

The paper presents the aging and testing results of commercial 
ternary 18,650 Libs with a nominal capacity of 3Ah from four different 
testing institutions (a total of 12 batteries) [5]. Table 1 shows the battery 
parameters, and Fig. 1 shows the battery capacity degradation curve. All 
batteries are subjected to an aging cycle between 3.0 V and 4.2 V at 
45 ◦C. The battery charging protocol follow a CCCV pattern: 1.33C (4 A) 
CC charging until the cutoff voltage of 4.2 V is reached, followed by 4.2 
V CV charging until 0.1C (0.3 A) is reached. The discharge protocol 
involves 1.33C (4 A) CC discharging until the cutoff voltage of 3.0 V is 
reached. Perform a capacity calibration test at regular cycles intervals, 
such as every 50 or 100 cycles at room temperature (23 ◦C). Use CCCV 
charge and 0.4C (1.25 A) discharge to cutoff voltage. Record the dis-
charged capacity as the current capacity of the battery. Electrochemical 
workstations from four different institutions are used to carry out the EIS 
or NFR tests. The battery is fully charged after the capacity calibration 
test and the state of charge (SOC) is adjusted using a discharge current of 

Table 1 
Battery parameters.  

Category Parameter 

Type 18,650（18 mm*65 mm） 
Anode LiNi0.8Co0.1Mn0.1O2 

Cathode Silicon-Graphite 
Nominal discharge capacity (m⋅Ah) 3000 
Charge cut-off voltage (V) 3.0 
Discharge cut-off voltage (V) 4.2  

S. Wang et al.                                                                                                                                                                                                                                   
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1.25 A to obtain data at different SOCs. EIS measurements should only 
be conducted when the battery’s polarization reaction of the battery is 
relatively weakened. Therefore, the battery should rest for at least 30 
mins after each SOC adjustment before testing. 

Table 2 displays the parameter settings for the EIS and NFR mea-
surements. As previously mentioned, NFR measurements can begin 
before the polarization fully subsides. To obtain harmonic signals with a 
good signal-to-noise ratio for extracting battery aging characteristics, a 
large amplitude current of 5 A is used, which is much larger than the 0.5 
A excitation current required for EIS measurements. The maximum SOC 
parameter for NFR measurement is set at 80 % to prevent overcharging 
of the battery due to high currents. 

3. Methods of analysis 

3.1. Methodology introduction 

A summary of four FRA techniques is shown in Fig. 2. EIS is a non- 
invasive technique used to characterize Libs. It involves applying a 
small-amplitude current or voltage excitation signal to the battery sys-
tem and combining the frequency-domain characteristics to obtain the 
impedance over a wide range of frequencies. This provides information 
on material properties, interfacial phenomena, and electrochemical re-
actions. Furthermore, it is directly linked to the potential battery 
degradation, allowing for the mapping of the battery’s state change 
process. Its broad range of applications enables the identification and 
tracking the evolution of the battery’s decline process in a shorter 
timeframe [31]. The impedance expression for the given excitation, 
I(t) = IA sin (ωt), is: 

Z=
V(t)
I(t)

=
VA sin(ωt + ϕ)

IA sin(ωt)
= ZA

sin(ωt + ϕ)
sin(ωt)

(1)  

wherein the voltage signals V(t) are current-excited response signals, 

shifted in phase ϕ, and having different amplitudes VA. 
The function expressing of impedance is presented in a complex form 

using Euler’s formula. The expression for I(t) is provided below: 

I(t)= IAejωt (2) 

The expression for the response of the system voltage V(t) is: 

V(t)=VAejωt− jϕ (3) 

The complex expression for impedance is: 

Z=
V
I
= ZAejϕ = ZA(cos ϕ+ j sin ϕ) = ZRe + jZIm (4) 

Fig. 3(a) illustrates the changes in EIS as the SOC varies. The 
impedance spectrum between the mid-frequency and high-frequency 
regions (0.187 Hz–10 kHz) is not affected by changes in SOC, but 
once it falls below a critical value, it changes significantly with SOC. To 
ensure minimal impact of SOC, it is important to acquire features within 
this range. Fig. 3(b) illustrates the trend of EIS as the number of cycles 
increases. The mid-frequency and high-frequency regions appear to be 
more sensitive to battery aging. The combined analysis indicates that the 
charge transfer process in the mid-frequency region occurs at the 
intersection favoured by both. The feature parameters representing this 
process can be prioritised. To balance the negative effects of SOC and 
positive effects of SOH on the impedance spectrum, it is necessary to 
build an effective estimation model. This can be achieved by analyzing 
the correlation between changes in the impedance spectrum and po-
tential degradation mechanisms, and extracting characteristic quantities 
that can accurately characterize battery aging. The focus of this work is 
to improve the generalizability and robustness of the estimated model 
while maintaining accuracy. 

The NFRA method is similar to the EIS acquisition method. However, 
it differs in that it applies a large current amplitude IAC at a certain 
frequency range to the battery and detects the higher harmonic response 
Hi with i＞1, in addition to acquiring a voltage signal at the same fre-
quency as the input current. Although the intensity of the harmonics 
decreases as the number of times i increases, typically only the first two 
harmonics are considered to reduce the workload and computational 
load. Therefore, this work focuses solely on the root mean square of the 
first two harmonics rather than the harmonics themselves. Research has 
demonstrated that the root mean square is commonly utilised in elec-
trical and energy storage applications. It is considered more reasonable 
than the sum or square root of the higher harmonics in terms of the 
overall nonlinearity of the system [48]. 

H=

̅̅̅̅̅̅̅̅̅̅̅̅
∑3

i=2
H2

i

2

√
√
√
√
√

(5) 

Fig. 3(c) and (d) illustrate the variation of H with SOC and SOH, 
respectively. As the cell ages, H exhibits a strong regularity in the low- 
frequency range (0.1Hz–2.03 Hz), consistent with the patterns of 
change observed in the second and third harmonics [5]. This passage 
discusses the validation of the feasibility of H. The nonlinear response is 
limited to nonlinear processes of the system, such as the charge transfer 
process. The high-frequency counterpart of the battery impedance is 
transferred from inductive to capacitive behavior [31]. This can result in 
additional nonlinearities, which can negatively impact the study. 
Designing a high-precision and strong applicability model based on 
NFRA data to estimate SOH and reduce the influence of SOC on the 
selected features is a focus of this paper. 

The traditional analysis approach involves incorporating both EIS 
and NFR full frequency band data into the model for training and testing. 
However, this can overload the workload and impede the progress of 
machine learning in the field of Libs. The variability of information 
across frequency points differs significantly, and some frequency points 
may contain duplicated information. To accelerate industry 

Fig. 1. Battery capacity decline in four institutions (for the sake of simplicity, 
the average decline curves of the four institutions are used as the unit of 
calculation, rather than individual batteries). 

Table 2 
Measurement details for EIS and NFR.  

Parameters EIS NFR 

Temperature (◦C) 23 23 
IAC (A) 0.5 (0.17C) 5 (1.7C) 
f-rage (Hz) 0.01–10 k 0.1–337 
np for f >66 Hz 10 10 
np for f < 66 Hz 10 5 
SOC (%) 20,35,50,65,80,100 20,35,50,65,80  
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development, this paper proposes extracting a feature to characterize 
the richness of information across the entire frequency band or accu-
rately within a small frequency range. The method used in this paper 
streamlines the data to some extent. 

3.2. Validity of impedance data 

To demonstrate the validity of impedance spectral data, it is crucial 
to verify that the source of the data, namely the battery system, is linear, 
stable, and provides finite impedance values within a specific frequency 
range [50]. This section introduces the Kramers-Kronig (KK) relation, 
which is used to assess the validity of impedance data by comparing the 
deviation of the real and imaginary parts of the obtained impedance 
data to the measured values [51]. The KK relation calculates the real and 
imaginary parts of the impedance spectrum of a linear, time-invariant, 
and causal system using the following equation [52]: 

ZRe(ω)=
2
π⋅

∫ ∞

0

ωʹ⋅ZIm(ωʹ)
ω2 − ωʹ2 dωʹ (6)  

ZIm(ω)=
− 2
π ⋅

∫ ∞

0

ωʹ⋅ZRe(ωʹ)
ω2 − ωʹ2 dωʹ (7)  

where, ω = 2πf , f is frequency. Therefore, the frequency f can be used to 
express the value of KK. 

The KK residual is the difference between the computed real and 
imaginary parts’ KK values and the measured KK value. Fig. 4(a) and (b) 
display the KK residuals of the real and imaginary components of the 
impedance of a lithium-ion battery. The KK residuals are generally 
accepted as valid impedance data within a 3 % margin. The plots of both 
are enlarged and found to have KK residuals of less than 3 % at fre-
quencies greater than or equal to 1.4744 Hz for both the imaginary and 
real parts. The impedance data for the mid-frequency and high- 
frequency range are suitable for further calculations. 

3.3. Modeling MLECM 

To deeply investigate the differences in the impedance spectra of 
different SOC and SOH, an equivalent circuit model is used to fit the EIS. 

Fig. 2. Summary of FRA techniques.  

Fig. 3. EIS curve under different variables: (a) SOC; (b) Cycle number. H curve under different variables: (c) SOC; (d) Cycle number.  
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Energy 304 (2024) 132077

5

The fitted parameters’ values are obtained using ZView software. The 
original Randles model comprised four components: inductor L, ohmic 
resistor R0, charge transfer resistor RCT and a double layer capacitor in 
parallel, as well as Warburg impedance ZW [53]. TECM, which has a 
wide range of applications, has evolved through development, as shown 
in Fig. 5(a). In a previous study [54], MLECM is proposed as shown in 
Fig. 5 (b). In contrast to TECM, MLECM eliminates the stray inductance 
caused by analogue collectors and conductors, which affects the 
high-frequency region. According to literature [35], TECM typically 
selects the charge transfer resistance RCT as the aging characteristic, 
which represents the mid-frequency. This verifies the inference made in 
Section 3.1. However, the contribution of the SEI film resistance RSEI to 
battery capacity degradation is often overlooked by RCT. Therefore, the 
two ZARC elements in the mid-frequency region have been optimized 
into one ZARC. Additionally, an RSC that incorporates both RSEI and RCT 
has been proposed. In the mid-frequency region of the EIS, the main 
processes represented are the transfer of battery charge and the diffusive 

migration of lithium ions [55]. To summarize, RSC is the circuit element 
parameter with the greatest potential for characterising battery aging. 

ECMs are always generated theoretically, so deviations from the 
actual operating performance of Libs are unavoidable. This is especially 
true at low frequency, where accuracy is more difficult to achieve. 
Although the electrochemical significance of the ECM is not fully char-
acterized, a more complete ECM can still provide sufficient state esti-
mation information [43]. Thus, a relatively complete model is 
developed in this section. 

In Fig. 5(b), battery impedance of MLECM expression is given by: 

ZMLECM =R0 + ZZARC + ZCPE2 = R0 +
Rsc

1 + RscTCPE1(jω)PCPE1
+

1
TCPE2(jω)

PCPE2

(8)  

where T and P are parameters of the CPE, respectively. j is the imaginary 
units, and ω is the angular frequency. 

3.4. DRT fitting 

Due to the aggregate nature of the battery system, the ECM approach 
may be somewhat dependent and can result in analytical errors on the 
battery. The time constants can be effectively distinguished by the DRT 
obtained through quantitative back-convolution of the EIS. Different 
time constants represent various relaxation properties that distinguish 
between kinetic processes in the battery. These processes include 
lithium-ion conduction, adsorption and release at the interface. This 
property can effectively improve the accuracy of kinetic interpretations 
on various time scales [42]. 

The DRT plot displays five local maxima (i.e., peaks), each repre-
senting the resistance contribution of one of the battery’s internal ki-
netic processes to the total polarization resistance of the battery [46]. 
The time constant τ characterises each polarization process horizontally, 
with the relationship between τ and frequency f shown as follows [42]: 

τ=RC =
1

2πf
(9) 

During the construction of the equivalent circuit, it is commonly 
assumed that the ohmic impedance R0 and the polarization impedance 
Rpol are connected in series to simulate the convergence impedance of 
the electrochemical system [42]. In DRT technology, Rpol is commonly 
interpreted as the series form of several RC parallel circuits. When 
considering the inductance L, the total circuit impedance can be 
expressed as follows: 

Z(f)=R0 + 2πfLi + Zpol(f) (10) 

The impedance of each RC parallel circuit can be expressed as R
1+jωτ. If 

each R is described by a relaxation distribution function g(τ), after 
extracting the polarization impedance Rpol, the total circuit impedance 
is denoted as: 

Fig. 4. Relative Kramers-Kronig residuals of two impedance coordinates: (a) real part; (b) imaginary part.  

Fig. 5. Typical EIS and the correspondence to ECMs: (a)TECM; (b)MLECM.  
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Z(f)=R0 + 2πfLi + Rp

∫ ∞

0

g(τ)
1 + 2πfτi dτ (11)  

∫ ∞

0
g(τ)dτ=1 (12) 

Ignoring the impurity inductance L, the final expression is: 

Z(f)=R0 + Rp

∫ ∞

0

g(τ)
1 + 2πfτi dτ (13)  

3.5. Machine learning frameworks (MLF) 

The Impedance HFs-based model’s aging parameters is the certain 
frequency point or range. MLECM HFs-based model’s parameter is the 
certain circuit element. DRT HFs-based model’s parameter for the peak 
parameter at some time constant. NFRA HFs-based model’s parameter is 
the H. The Gaussian Process Regression (GPR) algorithm is used to build 
an MLF for estimating capacity. The corresponding flowchart is shown 
in light red in Fig. 6. 

First, given n pairs of training sets D =
{(

xi, yi
)
, i= 1, 2,…, n

}
con-

sisting of input xi and output yi. The predictive distribution for calcu-
lating the unknown observation ŷ is provided based on the test metric x̂. 
X = [x1, x2,…, xn] is defined as the training set and Y =

[
y1, y2,…, yn

]
as 

the test set. Both methods use xi as the aging parameter, while yi rep-
resents the SOH of the battery in its current aging state. The model is 
trained using normalized inputs, which are adjusted for mean and 
standard deviation. This eliminates the potential impact of magnitude 
on the results. 

Second, the GPR model performs nonparametric regression using a 
gaussian process. It defines an independent and identically distributed 
gaussian noise yi = f(xi +εi, where εi ∼ N

(
0,σ2). The output F = (f(x1),

f(x2),…, f(xN)) is defined as a gaussian random field F ∼ N(0,K), where 
Kij = k

(
xi, xj

)
is the covariance kernel. The kernel indicates the prox-

imity between the points xi and xj. 
The joint distribution of the training set 

{(
xi, yi

)
, i= 1,2, .., n

}
and 

the output of the test set is: 

[
Y
ŷ

]

=N
(

0,
[

K(X,X) + σ2I K(X, x̂)
K(x̂,X) K(x̂, x̂)

])

(14) 

Finally, the predicted mean is generated by adjusting the training set 
over x̂: 

ŷ mean=K(x̂,X)
(
K(X,X) + σ2I

)− 1Y (15) 

Meanwhile, its predicted variance is: 

Δ2 =K(x̂, x̂) − K(x̂,X)
(
K(X,X) + σ2I

)− 1K(X, x̂) (16) 

This is a unit of measurement that includes uncertainty. A confidence 
range is provided based on the prediction variance, typically with a 95 % 
range for guaranteed accuracy. 

After obtaining the test results, the training dataset is used to develop 
an empirical model. A suitable polynomial model is then selected based 
on the principle of minimizing the fitting error [56,57]： 

SOH= a +
∑n

i=1
bxi +

∑n

i=1
cx2

i + ... (17) 

To improve enhance the credibility of the results, we applied the “1/ 
5″ principle during the model building and validation phase. The dataset 
is divided randomly into five parts. One part is used as a test set, and the 
remaining four parts are used as a training set to train the model. This 
ensures that all the data are used as an over-test set. The four models 
discussed in this section adhere to this principle. The paper provides the 
mean of the estimation result and RMSE for a randomized set of 5 testing 
data. 

3.6. Curve fitting framework (CFF) 

This section describes the methodology for extracting aging param-
eters using the four techniques under CFF. The methodology involves 
using the CF of EIS and NFR work in MATLAB R2020b and the CF 
toolbox. 

The aging characteristics selected for each of the four CF-based 
methods are identical to the aging parameters mentioned in the previ-
ous section. The empirical model is determined based on the high sim-

Fig. 6. SOH estimation framework based on FRA.  
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ilarity of the normal aging of the battery, according to the principle of 
minimizing the fitting error of the aging characteristics with the life 
decay rule [56,57]. Overfitting should be avoided. The following 
equation shows commonly used empirical models, including the vari-
able exponential model, exponential model, power model, variable 
power model and rational model [58]. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = ae− bx + c

y2 = aebx + cedx

y3 = axb

y4 = axb + c

y5 =
a

x + b

(18)  

where x is the battery capacity decline characterization quantity, y is the 
battery SOH, and a, b, … are the parameters of the empirical model. The 
empirical model characterises the variation of aging parameters and 
validates its applicability. 

Battery capacity changes dynamically and can impact the system, 
leading to noise interference and other issues [59–62]. The introduction 
of the particle filter (PF) in this section reduces the overall impact of 
large deviations of individual particles. If a small range of particles ex-
hibits dispersion when in the dataset, the PF will not have much impact 
on the results. The desired result is achieved only when there is an excess 
of dispersed particles, which is nearly impossible to achieve in practice 
[9]. Introducing PF in the SOH estimation framework based on the CF 
can effectively improve the stability and robustness of the system. 

The algorithm for estimating the SOH of the battery using the aging 
parameters and the PF algorithm consists of the following steps. The 
corresponding flowchart is shown in the light green part of Fig. 6. The 
first step is to obtain battery aging parameters. Then, a recursive least 
squares (RLS) algorithm is used to fit the data from the initial cycle and 
the Lth cycle to determine the initial parameters of the model, such as a, 
b, and so on. Next, the PF algorithm incorporates the initial parameters 
of the empirical model and aging parameters from the initial cycle to the 

Lth cycle through the particle set 
{

xj
l =

(
ai

l, b
i
l,…

)T
,wj

l

}

and the output- 

filtered aging parameters M(l), l = 1, 2,3,…, L for real-time updating 
and adjustment. Finally, the SOH value, also known as the individual 
particle y values, is calculated iteratively from the particle set of the Lth 
cycle using the above equation. 

Battery data from various institutions exhibit variability depending 
on the cycling equipment, EIS and NFRA measurement tools used. The 
inconsistency in battery aging rates and measurement data between 
institutions is evident. Thus, the CFF used to estimate SOH in this section 
is categorized by institution in the results, which differs from the pre-
sentation of the results in the previous section. 

4. SOH estimation model based on FRA 

Using on the data presented in Chapter 2, two SOH estimation 
frameworks based on ML and CF are developed. Eight estimation models 
are evaluated, and their respective strengths and weaknesses are 
compared. 

4.1. ML-based SOH estimation framework 

4.1.1. Impedance HFs-based model 
This section presents the development of the Impedance HFs-based 

model using EIS raw data. To reduce the workload, the HFs are extrac-
ted from the EIS diagram to represent the impedance spectrum infor-
mation across the full frequency band. Section 3.1 summarises that the 
variation in SOC does not significantly affect the impedance at mid- 
frequency and high-frequency. At 15.8489 Hz, significant differences 
in EIS occur at different SOCs. This section extracts HFs from EIS regions 

with frequencies greater than the threshold, in combination with the KK 
relationship. A schematic diagram of the HFs as shown in Fig. 7 is made 
based on past contributions [63]. 

To identify the seven HFs with the strongest correlation to the bat-
tery. Fig. 8 displays the Spearman rank correlation coefficients for each 
of the seven battery aging factors at various SOCs. The shade of colour 
indicates the absolute value of the correlation coefficient’s proximity to 
1, implying a close relationship between the health factor in the area and 
battery capacity degradation. Conversely, the lighter the colour, the 
weaker the correlation. The results indicate that the negative imaginary 
part value of the critical point corresponding to HF2 has the highest 
correlation of 0.99133 at SOC = 20 %. This is in line with the conclusion 
in section 3.1 that the features extracted from the mid-frequency region 
are assumed to effectively balance SOC and SOH. The impedance HFs- 
based model uses HF2 at 20 % SOC as the characteristic parameter 
due to workload reduction. 

The MLF is trained and tested using HFs. The results are presented in 
Fig. 9(a), which shows that the model’s RMSE is 1.25 % under the 
principle of “1/5″, meeting the accuracy requirement for real vehicle 
operation. 

4.1.2. MLECM HFs-based model 
The circuit elements in the MLECM presented in Section 3.3 are 

chosen as the parameters to characterize aging in this section. To pre-
vent any impact on the overall estimation results, we will exclude data 
with a normalized residual greater than 5 × 10− 3 during the fitting 
process as well as data from cycles where the fit fails. Other techniques 
also follow a similar approach to data handling, but will not be discussed 
further. Fig. 10(a) shows Spearman’s rank correlation coefficient, which 
characterises the relationship between six circuit element parameters 
and battery ageing. The absolute value of the coefficient is used for the 
vertical axis. Among the different institutions, only the RSC coefficient 
consistently maintains a high level, while the other circuit elements 
show mixed performance and cannot be used to characterize the aging of 
the batteries. The coefficient for the RSC as a whole is 95.87 %, which is 
higher than the coefficients for any other circuit element parameters. 
The calculated value is not a simple average of the four institutions, but 
rather the result of an overall analysis. The performance aligns with the 
expected results. Section 3.3 presents the RSC, which combines SEI film 
resistance and charge transfer resistance as characterization parameters 
for battery aging [31,34]. It represents the process of charge transfer 
from the electrolyte to the electrode surface and from the electrode 

Fig. 7. Schematic diagram of the selected HFs for the impedance HFs- 
based model. 
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surface to the active substance of the electrode body [64]. 
The SOH is estimated by the MLF and the results are presented in 

Fig. 9(b). Although the SOH estimation cannot be lower than 0.6, the 
estimation error is significantly reduced, and the RMSE is always less 
than 0.85 %. These results demonstrate that proposed MLECM HFs- 
based model has consistently good prediction performance. 

4.1.3. DRT HFs-based model 
DRT is a novel technique based on impedance spectroscopy that 

characterises the chemical reaction process within a battery. Fig. 11 
shows the relationship between the DRT diagram and the EIS diagram. 

The DRT diagram is divided into high-frequency, mid-frequency and 
low-frequency regions by the red dashed line, which corresponds to the 
Nyquist diagram. Peak P1 represents the polarization in the high- 
frequency region. Peaks P2 and P3 represent the reaction in the mid- 
frequency double arc. The remaining peaks represent the diffusion 
process [46]. However, the correspondence between regions is not exact 
with the frequency of the impedance spectrum. As per the KK relation in 
Section 3.2, only the mid-frequency and high-frequency regions are 
considered, where τ <1 (f > 1/2 π). 

The horizontal and vertical coordinates of P1, P2 and P3 in the DRT 
diagrams serve as aging characteristics for Spearman correlation anal-
ysis. The results are presented in Fig. 10(b). The Spearman rank corre-
lation coefficients for y (P3) have values greater than 90 % at all four 
institutions, even reaching 99 % at institutions 1 and 2. The coefficient 
of y (P3) is 91.87 %, which is significantly higher than the remaining five 
features. It has been demonstrated that the vertical coordinate of point 
P3 in the DRT plot is closely linked to battery aging. Additionally, since 
P3 corresponds to RCT, which is highly correlated with battery aging, it 
can be concluded battery aging is indeed related to RCT, which is 
consistent with the findings of ref [35]. 

The feature parameter y (P3) is selected and inputted into the MLF 
for training, testing the data, and drawing conclusions, as illustrated in 
Fig. 9(c). The DRT HFs-based model shows high feasibility, with an 
average RMSE of 1.04 % across the four institutions. 

4.1.4. NFRA HFs-based model 
The calculations that follow are based on the H parameter proposed 

in Section 3.1 for characterization. Fig. 12 presents the Spearman’s rank 
correlation coefficients of H at different SOCs. The maximum value of 
0.98411 is observed at a frequency of 0.604 Hz and 50 % SOC. This 
frequency point also happens to be in the low-frequency region (0.1 
Hz–2.03 Hz) where it was concluded in section 3.1 that H exhibits a 
strong regularity. Thus, in this section, we have chosen H at 50 % SOC at 

Fig. 8. The absolute value of the Spearman rank correlation coefficient be-
tween battery aging and Impedance HFs. 

Fig. 9. Average RMSE under the ML-based SOH estimation framework: (a) Impedance HFs-based model; (b) MLECM HFs-based model; (c) DRT HFs-based model; (d) 
NFR HFs-based model. Each model includes five shapes (circle, square, star, triangle, ball) and five colours (black, orange, green, light blue, blue) that represent the 
RMSEs of a random 20 % of the dataset as the testing data. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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this frequency point as the characteristic vector. 
The MLF is used to train and test the data, as shown in Fig. 9(d). The 

test set consisted of 20 % of the data randomly selected on five occa-
sions. The average RMSE of the NFRA HFs-based model estimation re-
sults is 1.13 %, indicating that this method is feasible for estimating 
SOH. 

4.2. CF-based SOH estimation framework 

4.2.1. Impedance CF-based model 
This section includes the same features (HF2 at 20 % SOC) as those in 

section 4.1.1 to fit the objective function. CF is performed using each 
empirical model presented in Equation (18). The goodness of fit value R2 

and RMSE are used to evaluate the accuracy of the empirical model in 
fitting the experimental data. The value of R2 ranges from 0 to 1. A value 
closer to 1 indicates a better fitting effect, while a value closer to 0 in-
dicates a worse fitting effect. Similarly, a smaller RMSE value indicates a 
better model fitting effect. The formulas for R2 and RMSE are as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
ymea − ypre(i)

)2/
N

√
√
√
√ (19)  

R2 =1 −

∑N
i=1

[
ymea(i) − ypre(i)

]2

∑N
i=1[ymea(i) − ymea(i)]2

(20)  

where ymea(i) represents the measured value of SOH, ypre(i) represents 
the model estimation of SOH, ypre(i) represents the mean of the model 
estimation of SOH, and N represents the number of samples. 

To avoid function fitting failures and unify the magnitude of feature 
parameters, we normalize them within the range of 1–10. Fig. 13 shows 
the fitting results for a certain institution under different empirical 
models. 

Fig. 14(a) shows the distribution of the average fitting result index 
for the Impedance CF-based model. It is evident that all models, except 
for model I, fit the SOH decline track well. The model II, with the most 

Fig. 10. Spearman’s rank correlation coefficients between different parameters and battery aging: (a) MLECM elements; (b) coordinates of the three characteristic 
points of the DRT. x represents the horizontal coordinates of certain points, y represents the vertical coordinates; bar represents the institution, and line analyzes 
them as a whole. 

Fig. 11. Correspondence between DRT and EIS diagrams.  

Fig. 12. The absolute value of the Spearman rank correlation coefficient be-
tween battery aging and H.. 
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parameters, fits the track the best. However, if there are too many pa-
rameters overfitting may occur, which can result in the noise charac-
teristics of the measurement data being display. Additionally, an 
increase in parameters can lead to a significant computational load, 
which is undesirable. Thus, it is important to balance and quantify the 
relationship between model complexity and fitting accuracy. This can be 
achieved by incorporating the Hannan-Quinn (HQ) criterion for a 
comprehensive analysis of each empirical model. 

The HQ criterion considers the impact of sample data length based 
on the Akaike Information Criterion. This prevents the issue of dis-
regarding model complexity in the pursuit of model fitting accuracy 
when the data amount is excessive. Based on the Bayesian Information 
Criterion, this phenomenon of poor fitting accuracy but optimal results 
can be avoided by reducing the length of sample data. The formula for 
the HQ calculation is as follows： 

HQ=K ln(ln(n)) + 2 ln(S) (21)  

where K represents the number of model parameters and n represents 
the sample length and S=RMSE. The equation’s right-hand side has two 
terms. The first term is a function of the number of model parameters 
and sample length, while the second term is a function of RMSE. The 
objective is to obtain an empirical model with high fitting accuracy and 
low parameters. The HQ value is an indicator of the model’s quality, 
with lower value indicating better performance. Fig. 14 (b), (d), (f) and 
(h) display the average HQ values for four institutions. 

Fig. 14(b) displays the high-quality performance of the Impedance 
CF-based model. The minimum HQ is achieved by the model IV, while 
the model I has the maximum value. The HQ value is determined by the 
number of model parameters and the RMSE when the sample lengths are 
all the same. Despite having four parameters, the model II performs 

Fig. 13. Fitting results for a certain institution under 5 empirical models: (a) Variable exponential model; (b) Exponential model; (c) Power model; (d) Variable 
power model; (e) Rational model. The horizontal coordinate ‘Overline(H)’ represents H. 
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poorly on a combination of different institutions. The prominence of the 
HQ values is reduced because four parameters excessively weight HQ. 
Although the model III has only two model parameters, its RMSE is also 
larger. Therefore, its HQ value be minimized. The model I has a signif-
icantly larger RMSE than the other models, despite having only 3 pa-
rameters. This result in it has the highest HQ values. The model IV has 
the smallest RMSE due to three model parameters, resulting in the 
smallest HQ value. Thus, the Impedance CF-based model is fitted 
through model IV using HF2 at 20 % SOC. 

Impedance CF-based model begin with PF to estimate the parameters 
of IV in real-time. SOH estimation is then performed, and the results are 
displayed in Fig. 15(a). The average RMSE of 1.14 % indicates that the 
model can effectively estimate the SOH of batteries. 

4.2.2. MLECM CF-based SOH model 
The characterization parameter used is the same as in Section 4.1.2: 

the RSC at 20 % SOC. Following In the same steps as outlined in Section 
4.2.1, the RSC curves are fitted using five empirical models. The fit 

Fig. 14. RMSE, R2 and HQ values for the four models under different empirical models. The four left-hand side plots show the RMSE and R2, and the four right-hand 
side plots show the average HQ values. Empirical models I: Variable exponential model; II: Exponential model; III: Power model; IV: Variable power model; V: 
Rational model. 
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performance is displayed in Fig. 14(c). All five empirical models are 
found to fit the RSC trend better, indicating that the RSC trend aligns 
more closely with the characteristics of the empirical models. When 
examining Fig. 14(d), it is evident that the lowest HQ value of − 6.9668 
is associated with IV. The reason for the model II and III struggling to 
show good results in HQ is due to having too many parameters and a 
slightly higher RMSE, respectively. On the other hand, the model IV 
achieves the smallest HQ value with a slightly smaller RMSE compared 
to the remaining three models, all of which have three parameters. 

Fig. 15(b) displays the estimation results of the MLECM CF-based 
model under the MLF, which maintains the same SOH estimation 
range as Fig. 9(b). However, the estimation error is only 0.72 %, which is 
0.13 % smaller than the previous estimate. This is because RSC per-
formed better than MLF on the CFF. This is further demonstrated by the 
fit of the RSC to the five empirical models. In cases where there is 
insufficient data to support the training of models in ML, CFF is often a 
better choice. This greatly advances the development of research in this 
field. 

4.2.3. DRT CF-based model 
This section uses the same feature parameters as described in Section 

4.1.3. Specifically, it focuses on the vertical coordinates of the P3 point 
within the DRT plot. The feature is fitted using various empirical models, 
and the performance index of the fit is displayed in Fig. 14(e). Although 
The model II has the most parameters, it provides the best fit for this 
section. Fig. 14(f) displays the HQ values for all empirical models. The 
value of − 8.44 for model II is inferior to that of model III, which is 
− 8.69. Additionally, the excess parameters of model II lead to increased 
complexity. Therefore, in this section, model III is selected to fit the 
feature parameter. 

The DRT CF-based model uses the PF algorithm to estimate the pa-
rameters of the model III in real-time for SOH estimation. The results are 
presented in Fig. 15(c). The RMSE average across the four institutions is 
1.12 %, which is inferior to the estimation of the DRT HFs-based SOH 

model in section 4.1.3. The results indicate that the features extracted 
using DRT in this section are not as effective on CFF as on MLF. 

4.2.4. NFRA CF-based model 
The same characterization parameter as described in Section 4.1.4 

has been chosen for this section. Specifically, H at 50 % SOC in 0.604 Hz 
is used. Fig. 14(g) shows the fitting results of the RSC curves using five 
empirical models. From Fig. 14(h), it is evident model III with two pa-
rameters has the smallest HQ value of − 4.565. However, model II has 
the smallest RMSE but a combined HQ value of − 4.3696. The reason for 
the difference in the percentage of the model parameter K in HQ is due to 
the difference in data length, specifically the value of n in Eq. (14). 

The NFRA CF-based model uses the PF algorithm to estimate the 
parameters of the model III in real-time, which in turn performs SOH 
estimation. The results are displayed in Fig. 15(d). The estimated SOH 
range from 0.7 to 0.95, with an average RMSE of 1.35 % across the four 
institutions. This is higher than the NFRA HFs-based model, as the 
feature parameters used in this section do not perform as well as the MLF 
in the CFF. 

4.3. Comparison of methods 

Table 3 shows a comparison of the performance of eight models. The 
RMSE performance of all eight models, consisting of two frameworks 
summarized concerning FRA, on the dataset is less than 1.35 %. This 
suggests that the models have good estimation performance. The se-
lection of SOC for EIS and NFR measurements is based on the Spearman 
rank correlation coefficient. The battery can be measured with 20 % and 
50 % SOC, which means that a full charge or discharge is not necessary. 
This is in line with the driver’s charging and discharging habits. 

Table 3 shows that Impedance had the highest average RMSE among 
the linear FRA techniques, with a value of 1.195 %. However, when 
comparing the estimation range of SOH% under global conditions, it is 
evident that Impedance has the largest range, reaching as low as 45 %. 

Fig. 15. Average RMSE under the CF-based SOH estimation framework: (a) Impedance CF-based model; (b) MLECM CF-based model; (c) DRT CF-based model; (d) 
NFR CF-based model. Each model includes four shapes (circle, square, star, triangle) and four colours (black, orange, green, light blue) that represent the RMSE for 
each of the four institutions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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MLECM has the next largest range while DRT and NFRA have the nar-
rowest range. The combination of the above findings leads to the 
conclusion that both MLECM and DRT, which are secondary technolo-
gies based on EIS, have experienced some degree of information loss 
during their development. NFRA, as an extension of EIS to the nonlinear 
domain, provides less information about battery degradation compared 
to the impedance spectrum. Impedance and MLECM accuracy perform 
worse when using MLF compared to CFF. DRT and NFRA follow the 
opposite. The results indicate that the parameter choices of DRT and 
NFRA are better suited to the properties of the CFF. The selection of 
estimation methods is not completely fixed. Combining all methods with 
good estimation accuracy leads to the conclusion that it is difficult to 
recommend any one technology or estimation framework in isolation 
due to a certain performance. This finding aligns Chan et al.‘s research 
[5]. 

The Impedance and NFRA can be estimated solely from raw data. The 
primary advantage of utilising raw data is that it enables early analysis 
of frequency points with high feature correlation. This allows for later 
stage analysis to focus solely on these specific frequency points, thereby 
reducing workload and improving efficiency. There is no need for pre-
processing. The four methods corresponding to MLECM and DRT require 
transforming the raw data into their respective feature parameters 
before subsequent calculations can be performed. This reduces the 
amount of raw data to a certain extent. However, the small improvement 
in accuracy at the expense of the estimation range does not provide a 
significant advantage for such methods in this study. 

Among the four models corresponding to CFF, only two empirical 
models are selected. This indicates that fitting the trend of characteristic 
parameters for different methods with a fixed curve is difficult due to the 
length of the data and the degree of CF fitting. 

Table 4 presents a comparison of the above models using to three 
different classification methods. For various frameworks, there is not a 
significant difference in estimation accuracy between MLF and CCF. The 
former has an average accuracy of 0.015 % higher than the latter Both 
frameworks are capable of estimating SOH accurately. Combined with 
Table 3, the CFF controls the RMSE from 0.72 % to 1.35 %. The CFF is 
largely influenced by how well the empirical model fits the battery 
characteristic parameters fit. Feature parameters that fit the trend of the 
empirical model perform better on the CFF, while those that do not 

perform better on the MLF. It is important to note that this is an objective 
evaluation based on empirical data. The RMSE for the MLF has a high 
lower bound and a low upper bound when compared to the CFF. In 
summary, the MLF is generally more accurate and stable; while the CFF 
may be less stable but can provide higher estimation accuracy in specific 
cases. Additionally, the CFF has a lower computational load and requires 
less data. It is important to note that these evaluations are objective and 
based on specific criteria. 

Table 4 presents the mean values of the estimated RMSE for both 
linear and nonlinear methods. The study find that the linear technique 
had an average RMSE 0.22 % lower than the nonlinear technique, 
indicating slightly better accuracy. Since the former is measured by 
small amplitude signals, it presupposes the need for sufficient rest pe-
riods. Due to the limitations of space, weight, and volume in electric 
vehicles, it is challenging to conduct online measurements using LRFA 
methods (i.e., the first three techniques) from the integrated and sys-
tematic BMS. Therefore, there is limited potential for the development of 
LRFA-based techniques in the electric vehicle field. The NFRA technol-
ogy bridges the industry gap by measuring signals emitted by BMS with 
a much larger amplitude than before (10 times larger in this paper). This 
drastically shortens rest time, or even allows for direct discarding, 
enabling online measurements. In practical applications, it is necessary 
to achieve a higher level of estimation accuracy, while considering the 
costs of safety and economy. The technique’s estimation accuracy is 
within the acceptable range, with a deviation of only 1.35 %. Electric 
vehicle power batteries typically use 80 % SOH as the threshold for 
battery safety, meaning that the battery needs to be replaced at this 
point. This technology happens to cover the vast majority of power 
battery health variations. Batteries that fall below this threshold are 
referred to as retired batteries. They can be utilised in scenarios where 
the demand for electricity is not high, such as home energy manage-
ment, urban clean vehicles, urban traffic lighting systems, and even 
energy storage power stations. Ensuring a long battery life under the 
given scenarios places high demands on the SOH estimation range based 
on economic considerations. The Impedance technology SOH estimation 
range threshold can be as low as 45 %. In summary, NFRA technology is 
chosen for areas such as electric vehicles, which are difficult to measure 
online and have high power requirements. LFR technologies, such as 
Impedance, are considered for areas such as home energy management, 
which require long-term operation. 

According to Table 3, the impedance technique has the lowest ac-
curacy among the LFRA techniques. However, the estimation range for 
its SOH is the widest, reaching as low as 45 %, whereas other methods 
only reach as low as 60 % or 70 %. Impedance can achieve heights that 
are difficult to reach with other methods, even when accuracy is limited. 
Therefore, to achieve greater accuracy in estimation, methods other 
than Impedance should be considered. If the goal is to widen the range of 
SOH estimation, the Impedance technique can be the best choice. 

5. Conclusions and outlook 

Spearman’s rank correlation coefficient is used to screen potential 
characterization parameters with the highest correlation between SOC 

Table 3 
Performance comparison of the eight methods.  

Method Impedance MLECM DRT NFRA 

HFs-based CF-based HFs-based CF-based HFs-based CF-based HFs-based CF-based 

Measurement SOC% 20 20 20 20 20 20 50 50 
SOH% estimation range 45–100 45–100 60–95 60–95 70–95 70–95 70–95 70–95 
SOH% estimation accuracy 1.25 1.14 0.85 0.72 1.04 1.12 1.13 1.35 
Fresh data required ✓ ✓ × × × × ✓ ✓ 
Data preprocessing required × × ✓ ✓ ✓ ✓ × ×

Full frequency spectrum required × × × × ✓ ✓ × ×

Empirical model – Variable power model – Variable power model – Power model – Power model  

Table 4 
Comparison of methods under three classification conditions for estimation 
accuracy and application scenarios.  

Categorization Method Average- 
RMSE (%) 

Application Scenarios 

Framework (Classification 
1) 

MLF 1.0675 a large amount of data 
CFF 1.0825 a small amount of data 

Frequency response 
analysis (Classification 2) 

LFRA 1.02 electric vehicle power 
battery 

NFRA 1.24 retired battery 
Impedance (Classification 

3) 
EIS 1.195 scenes with complex 

and dynamic 
Non- 
EIS 

1.035 scenes with high 
accuracy requirements  
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and battery aging in order to validate the feasibility of all SOH models 
for predicting battery aging. The SOH estimation framework based on 
ML is formed by placing the battery data in the GPR model for data 
training and testing, according to the “1/5” principle in the model 
training and testing process. The selected empirical model balances 
model complexity and fitting accuracy by using the smallest HQ value. 
The initial model parameters are determined by RLS. Then PF is used for 
real-time updating and adjusting, and the final SOH estimate is output to 
form a SOH estimation model for lithium-ion batteries based on CF. 

The main contributions of this paper are as follows:  

1. Impedance-based, MLECM-based and DRT-based methods in the 
linear range have been integrated, improved, and extended to the 
nonlinear domain. Additionally, an NFRA-based method has been 
developed.  

2. Four technologies are used to form eight models, which were 
developed and applied using MLF and CFF. The feasibility of these 
model is verified using data from four institutions. 

3. By applying the same data, the four techniques are effectively ana-
lysed for their advantages and disadvantages through side-by-side 
comparisons.  

4. Application scenarios are identified for the techniques by using three 
classification methods: different estimation frameworks, frequency 
response linearity, and impedance technique. 

The paper’s insights based on the existing dataset are limited. In the 
future development of the industry, a more practical SOH model that 
applies to a wider range of conditions will be necessary. This will require 
a higher level of accuracy and robustness from the model. 
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