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A health index-based approach
for fuel cell lifetime estimation

Hangyu Wu," Ruiming Zhang,” Wenchao Zhu,**/-* Changjun Xie,"* Yang Li,” Yang Yang,'* Bingxin Guo,”
Changzhi Li,* and Rui Xiong®

SUMMARY

Efficient health indicators (HI) and prediction methods are crucial for assessing the remaining useful life
(RUL) of fuel cells. However, obtaining Hl under dynamic conditions with frequently changing loads is high-
ly challenging. Therefore, this study proposes a prediction framework based on dynamic conditions. A
method combining complete ensemble empirical mode decomposition with adaptive noise, power spec-
tral density, and energy analysis (CPE) is proposed to extract Hl under dynamic conditions from the per-
spectives of frequency and energy. Furthermore, the time convolution network with adaptive Bayesian
optimization (AB-TCN) is introduced to address parameter optimization and prediction challenges. Effec-
tive feature parameters of the data are identified using random forest and used to train the AB-TCN.
Results show that the extracted HI can effectively determine the end-of-life. The AB-TCN achieves accu-
rate RUL estimation with a prediction error of only 6.825% and shows strong adaptability to various pre-
diction tasks.

INTRODUCTION
Background and literature review

In recent years, escalating global environmental challenges have compelled people to seek sustainable, clean, and efficient energy solutions.’
In this context, Proton Exchange Membrane Fuel Cell (PEMFC) has gained significant attention as a favored energy conversion technology,
offering numerous advantages such as high energy conversion efficiency, low carbon emissions, and silent operation.” However, PEMFC faces
a range of challenges for commercialization, including limited lifespan and high costs.” Prolonged operation of PEMFC leads to component
aging and damage, resulting in a decline in fuel cell performance.” To achieve reliable operation and extend their lifespan, effective prog-
nostics and health management (PHM) strategies are imperative.”

PHM is a monitoring, diagnostic, and predictive technology aimed at enhancing equipment and system reliability and maintenance effi-
ciency.® Among these strategies, accurate prediction plays a critical role.” In the field of fuel cells, prediction methods can be classified into
model-based methods and data-driven methods.® Nevertheless, most mechanistic models of fuel cells struggle to adapt to dynamic condi-
tions, prompting the increasing popularity of data-driven methods.” Data-driven methods employ historical data and statistical techniques to
establish models and predict system behavior. By analyzing and learning patterns and trends within the data, these methods facilitate pre-
diction and decision—making.wO Commonly used algorithms include Artificial Neural Network (ANN), Support Vector Machine (SVM), and
Recurrent Neural Network (RNN)."""'? Among these, RNN has found widespread applications due to its potent memory capabilities, with
Long Short-Term Memory (LSTM) being the most commonly employed.'*'*

However, RNN is susceptible to issues of gradient vanishing and exploding, affecting the parameter updates during backpropagation and
model convergence. Furthermore, RNNs may encounter information leakage during prediction, as they rely on historical observations to up-
date internal states, potentially revealing sensitive information.'” These limitations have prompted researchers to explore deep learning tech-
niques, such as convolutional neural network (CNN), for time series prediction.'® For instance, Xie et al.'’ combined CNN with LSTM to predict
vehicle trajectories, achieving improved accuracy through spatial dilation. Lu et al.'® proposed a CNN model with bidirectional LSTM and
attention mechanism for predicting stock closing prices, achieving enhanced performance. Zhang et al.'” proposed a hybrid prediction
model that combines temporal convolutional network (TCN) for feature extraction and transfer learning. TCN is employed to extract features
from raw voltage data, and then Kernel Principal Component Analysis (KPCA) is applied to select HI. Following this, an LSTM with transfer
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learning capabilities is utilized to estimate the RUL. While CNN is being applied to fuel cell aging prediction, most studies used CNN for
feature extraction to support other RNN-based models, with limited analysis of the predictive characteristics of CNN.?

After selecting the prediction method, researchers determine the health indicator (HI) that characterizes the degradation behavior of the
fuel cell.”" Hlis used to assess the state and performance of the fuel cell system, providing information about its aging degree and remaining
useful life (RUL).? Many studies analyze two datasets obtained under steady-state and quasi-dynamic conditions, using the output voltage as
the HI to assess future performance and RUL of the fuel cell.'*~'® Additionally, some research also extracts the Hl based on the output voltage.
For instance, by combining the output voltage with a semi-empirical voltage degradation model under steady-state conditions, Liu et al.”*
extracted aging indicators associated with total reaction resistance and limiting current, which were subsequently utilized as HI for RUL esti-
mation. Wang et al.”* proposed a method based on the Hilbert-Huang Transform to extract an Hl under dynamic operating conditions. In this
method, the empirical mode decomposition (EMD) is used for decomposition within the Hilbert-Huang Transform, and a frequency threshold
is set to filter the HI. Chen et al.”” proposed a hybrid model combining EMD, Gray Relational Analysis (GRA), and RNN for predicting the RUL
of lithium-ion batteries. EMD is used for data denoising, and the processed data is then evaluated for RUL.

The extraction of Hl under dynamic conditions with frequent load changes poses numerous challenges. Firstly, under dynamic loads, the
output voltage exhibits transient fluctuations during load transitions. Consequently, the output voltage cannot directly reflect the aging trend
of the stack due to load changes. Secondly, some parameters in the semi-empirical voltage degradation model require identification based
on polarization curve data during the initial stage. Polarization curves describe the static characteristics of fuel cells and are not suitable for
dynamic loads. Therefore, when extracting HI under dynamic loads, certain prerequisites are established. For instance, Wang et al.? utilized
an electrochemical mechanism model to extract HI and employed multiple cycles of data to identify an Hl value, thereby reducing identifi-
cation distortion through data simplification. Similarly, Xie et al.?” extracted HI from voltage data below 70A within each 24-h measurement
window. Ma et al.”® categorized the data under the same current level for dynamic loads, applied aging parameters to a mechanistic model at
specific current levels to obtain virtual steady-state voltages, and regarded them as HI. The above-mentioned efforts demonstrate that Hl can
only reflect the general aging status of fuel cells but may not effectively determine the specific performance of fuel cells in particular instances.
Thus, under dynamic loads, the output voltage remains the most direct indicator of fuel cell performance, while the extracted Hl can be
focused on determining the end-of-life (EoL) point to predict the RUL.

Research gap and contributions

In the field of time series prediction, RNN has consistently been the preferred choice for most deep learning practitioners. However, CNN has
shown superiority over typical recurrent networks such as LSTM on various tasks and datasets, demonstrating longer effective memory. >’
Furthermore, many existing data-driven methods focus on prediction accuracy but overlook prediction reliability.”” Recent research findings
have demonstrated that temporal convolutional network (TCN), a CNN variant with causal convolutions and residual connections, effectively
eliminates information leakage from the future to the past and addresses the issues of gradient vanishing and exploding.'> However, the chal-
lenge lies in the need to set appropriate hyperparameters for individual TCNs, which has hindered its widespread adoption in time series
prediction tasks.

Therefore, this study introduces a predicting framework under dynamic load. This framework proposes a CPE algorithm combining com-
plete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), power spectral density (PSD), and energy analysis (EA) to
process hierarchical dynamic data and generate a simple Hl that can reflect the EoL time point. In terms of prediction methodology, an adap-
tive Bayesian-optimized TCN (AB-TCN) algorithm is proposed, which combines Bayesian optimization theory with TCN to tune appropriate
model hyperparameters. Furthermore, AB-TCN, trained with effective parameters, achieves more accurate RUL predictions and demon-
strates adaptability across multiple datasets. The contributions of this study are as follows.

(1) AB-TCN exhibits strong data adaptability and delivers accurate prediction performance even with limited training data.
(2) Utilizing CPE for HI extraction accurately characterizes degradation trend and EoL time point.
(3) The adoption of effective feature training can effectively enhance prediction accuracy.

The rest of this article is as follows. Section results outlines the data sources and the process of Hl extraction. Section discussion validates
the estimated RUL results and assesses the adaptability of AB-TCN. The conclusion is elaborated in Section conclusion. Section limitations of
the study discusses the study’s limitations and potential directions for future research. Section STAR Methods introduces the fuel cell predic-
tion management framework.

RESULTS

The proposed fuel cell prognostics framework based on AB-TCN is illustrated in Figure 1. First, the dynamic variable load is categorized based
on current levels to explore the relationship between isolated quasi-dynamic load voltage data and the original dataset. The quasi-dynamic
load data are decomposed using CPE to extract the HI representing the reaction trend. Subsequently, the AB-TCN is employed for RUL pre-
diction. Moreover, the adaptability of AB-TCN is assessed based on two different types of datasets.

The objective of prognostics is to predict the RUL. However, there is no unified standard for the failure threshold (FT) under dynamic loads.”
In certain cases, different FT definitions lead to significantly different RUL estimations.*® For fuel cells used in different applications, a single FT
may not be the most optimal approach. Figure 2 illustrates the definitions of relevant terms related to RUL.
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Figure 2. The remaining useful life estimation

As shown in Figure 2, the predicted trend is further utilized to estimate the RUL. The prediction starting point corresponds to time t,. Given
the FT of the HI, the intersection time between the FT and each predicted trend represents the EoL. The estimated RUL calculated at time t,,
for the prediction is:

RULestimate = tpEOL - tp (Equation 1)

In this process, multiple predictions are made at the expected starting point t,, and the peak of the prediction distribution is selected as the
estimated EoL. t o represents the estimated time of the EoL. RULestimate indicates the estimated RUL.

Figure 3illustrates the predictive scheme adopted in this study. The predictive scheme employs an iterative prediction approach. Taking
the initialization of predictions with 20% of the training set as an example, the first training process involves modeling with 20% of the data. In
the initial prediction, AB-TCN forecasts future data points at a distance of 20% *L with a step size of m. Subsequently, the second prediction is
made based on actual data at 20% *L + m, continuing to forecast future data points with a step size of m. This iterative prediction process is
repeated multiple times, ultimately generating all prediction results.

Aging test under dynamic condition
This study utilized dynamic load cycling (FC-DLC) experimental data specific to commercial PEMFC for vehicles.®' Table 1 presents detailed
information about one FC-DLC cycle of the fuel cell, involving nine different load currents ranging from 0% to 100%.”

As shown in Figure 4, each cycle consists of 35 testing steps, with a total duration of 1181 s per cycle. Figure 5 illustrates the overall data of
voltage variation with current loads. However, from the total data, it is challenging to clearly discern the aging trend of the PEMFC, making it
unsuitable as a dataset for studying the RUL.

End-of-life validation

Under dynamic load operating conditions, the voltage response process of the PEMFC exhibits transient phenomena, leading to significant
fluctuations in the raw data.*” Additionally, operating the fuel cell in the Ohmic loss region represents high efficiency.” Taking all factors into
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Table 1. Detailed information about FC-DLC

Load (%) 0 5 12.5 26.7 29.2 41.7 58.3 83.3 100
Duration (s) 81 409 52 140 100 162 143 50 44

consideration, three loads are selected for classification near the Ohmic loss region, with the longest working time (Load = 26.7%, 41.7%,
58.3%).%* The acquired quasi-dynamic load data are smoothed using a moving average method and uniformly sampled at 3076 points
with equal time intervals. The preprocessed quasi-dynamic load data are shown in Figure 6.

In the purple-shaded region, three quasi-dynamic load data experience a voltage drop phenomenon around 622 h and reach their min-
imum values around 640 h. Wang et al.”® investigated the same dataset, and they identified system dynamics using an electrochemical mech-
anism model and extracted HI. The HI also reached their highest or lowest values around 640 h. This indicates that analyzing quasi-dynamic
load data can provide insights into the RUL of dynamic variable loads.

Due to the extensive amount of testing data in this dynamic load, it is not feasible to clearly present the prediction results of the algo-
rithm.>" Therefore, the analysis is performed on the first 16 FC-DLC data, which is defined as dataset 1. As the three quasi-dynamic loads
exhibit similar variation trends, the load of 26.7% is selected as dataset 2 for further analysis.

Extraction result of health indicators

To further extract HI from dataset 2, this section would utilize CPE for decomposition. To reduce uncertainty during the decomposition pro-
cess, the original data are subjected to 20 repetitions of decomposition, and the average values are taken. The resulting IMF sequences are
illustrated in Figure 7.

After CPE decomposition, ten IMF sequences are obtained. Each sequence represents the aging condition at different time scales and
exhibits distinct trends and ranges. The high-frequency components of these IMF sequences are believed to have a potential relationship
with stack operating conditions.’ To further analyze the IMF sequences that characterize irreversible aging trends, the PSD and EA are utilized
to calculate the contribution of each IMF to the overall data. By applying specific criteria, the aging trend can be identified and filtered out.

Figure 8 shows the main flowchart of the CPE for extracting HI. After decomposing dataset 2, the resulting IMF sequences are subjected to
collaborative screening using EA and PSD. IMF sequences with an EA value less than 0.1 are removed. When using PSD for screening, IMF
sequences with a frequency f greater than 5 X 107> Hz and a PSD value greater than 0.1 are also removed. Table 2 shows the EA values of each
IMF as a percentage of the original data.

After the EA calculation, only IMF10 has an energy ratio greater than 0.05. Additionally, the maximum value of the PSD for IMF10 is
21.87, which is much greater than 0.1. Therefore, IMF10 is designated as the HI trend of dataset 2. Through the analysis in Section 3.2,
it is found that the extracted quasi-dynamic load (dataset 2) effectively reflects the aging trend of the dynamic variable load. The trend
of the HI extracted through CPE is shown in Figure 9. Dataset 2 reflects a certain performance degradation trend of PEMFC, but it
also includes voltage recovery phenomena caused by start-stop operations and voltage fluctuations during operation. These transient ef-
fects, induced by human operations and changes in operating conditions, do not directly reflect the long-term aging state of the fuel cell.
As marked in red, the HI accurately identifies the EoL point. Therefore, the study of RUL for dynamic variable loads can be simplified by
analyzing the changes in the HI.

Furthermore, the voltage drop phenomenon observed at 622h is different from the voltage drop after start-stop operations, and it reaches
the lowest voltage value at 640h. Therefore, in this study, the Hl at 622h is set as the time warning line for dynamic variable load, and the actual
voltage value (0.7265V) at 622h is defined as the failure threshold.
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Figure 4. Current load and voltage values for a single cycle
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1 T T T T T Figure 5. Total dynamic voltage for all cycles
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Evaluation criteria of prediction performance

To determine the predicting performance, this article evaluates and compares the forecasting performance of each method based on mul-
tiple indicators: root-mean-square Error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R}, and relative er-
ror (RE).

(Equation 2)

(Equation 3)

(Equation 4)

(Equation 5)
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Figure 6. The quasi-dynamic load
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Figure 7. The results of IMF sequences

where Nis the number of test data, y;is the real value, and y;is the predicted value, tgy, is the real RUL at time t and teyr is the estimated RUL at

time t.
The trust area (TA) establishes a range for a predicted value with a specific confidence level, within which there is a probability of encom-
passing the actual unknown value. The formula is as follows:

RULestimate — TpEOL " Xlow <TAL RULest[mate + tpEOL “Oyp (Equation 6)

where ajo,, and a, are the lower and upper limits of the TA, respectively. When the predicted RUL has a bias, a smaller value compared to the
actual RUL indicates a more sufficient time for control and maintenance. Therefore, upper and lower bounds are set at 10% and 5%, respec-
tively. If the predicted RUL falls within the trust area TA, it is considered to be a reliable prognosis.

Feature contribution analysis

In this section, Random Forest is employed to calculate the importance of different datasets separately, and the selected effective features are
input into AB-TCN for model training. To mitigate randomness in the process of assessing contributions under quasi-dynamic loads, calcu-
lations are performed on the raw data of dataset 2(13), I5, and 16, respectively. Voltage is set as the label, and all feature parameters are input
into a random forest to compute their importance scores relative to the label. The importance score for each feature is presented in Table 3.
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According to the analysis, features with scores greater than 0.01 are considered effective features. For dataset 1, the effective features are
Current (0.04) and Power (0.95). For dataset 2, the effective feature is Power (0.99). As for the HI, the effective feature is Power (0.99). It is evident
that the effective features for dataset 1 differ from those under quasi-dynamic loads (I3, I5, 16).

This distinction arises from the fact that dataset 1 is obtained under a continuously varying current, whereas dataset 2, extracted during
constant operating condition classification, contains time intervals within the same current level. Consequently, these two datasets exhibit
significant structural differences. Additionally, Zhu et al.,” when analyzing feature importance in other quasi-dynamics similar to dataset 2,
observed lower importance of current. This may be attributed to the fact that, under pseudo-dynamic conditions, the current under constant
load settings fluctuate only within the specified numerical range, rendering it insufficient to qualify as a high-contributing feature influencing
voltage. Furthermore, the feature contributions under the three loads of I3, I5, and 16 are essentially consistent, providing additional confir-
mation of the accuracy of power as an effective feature under quasi-dynamic loads.

Table 2. Energy ratio values

IMF1 IMF2 IMF3 IMF4 IMF5
EA 2.71E-6 3.84E-6 4.79E-6 4.08E-6 1.21E-5

IMFé6 IMF7 IMF8 IMF9 IMF10
EA 2.23E-5 3.81E-5 2.67E-5 3.93E-5 0.99

8 iScience 27, 110979, November 15, 2024
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Long-term prediction
Remaining useful life estimation results

Based on the HI obtained from Section 3.3, this section will validate the RUL estimation performance of AB-TCN through long-term predict-
ing, with a step size of 100 steps. Additionally, Section 3.3 established 622 h as the actual EoL time point for the fuel cell. Considering that the
data from 0 to 622 h roughly accounts for about 60% of the HI, the training set proportions of 10%, 15%, 20%, 25%, 30%, 35%, and 40% are set
for model training.

During various prediction tasks using AB-TCN, Bayesian optimization is applied during the training phase. We conducted 200 iterations for
optimization, which took only 37.5s. This approach not only significantly saves time compared to manual parameter tuning but also ensures
the accuracy of parameters. Table 4 presents the optimal hyperparameters obtained through this optimization process.

In fuel cell prognostics, a slight deviation in the estimated RUL, which is slightly smaller than the actual RUL, is generally considered more
acceptable.” Conversely, an overestimation of RUL may lead to delayed maintenance planning and potentially premature occurrence of crit-
ical failures. Therefore, the RUL estimation by AB-TCN is deemed reasonable. In contrast, the RNN series of neural networks (BIGRU, BIGRU-
Att) struggle to accurately predict voltage. Both BIGRU and BIGRU-Att consistently produce predicted values that exceed the FT value, pla-
teauing around 460h, making it impossible to calculate the estimated RUL (Figure 10). This limitation is likely attributed to the limited size of
the training set, hindering BIGRU and BIGRU-Att from forming effective models. Despite the improvement observed in the 40% training set,
they still failed to reach the end-of-life point during the prediction process.

The results demonstrate that AB-TCN can accurately predict multiple future voltage values under different training set proportions. More-
over, the estimated RUL is consistently smaller than the true RUL, ensuring sufficient time to address the faults.

Table 3. Importance score

Importance value

Feature dataset 1 dataset 2(13) 15 16 HI

Current 4.39e-02 9.72e-05 4.37e-05 2.37e-05 1.23e-05
Power 9.52e-01 9.95e-01 9.99e-01 9.99e-01 9.99e-01
Pressure anode inlet 1.48e-06 2.56e-03 6.78e-06 4.88e-04 9.38e-06
Pressure anode outlet 3.56e-06 1.80e-03 7.35e-06 2.02e-04 2.92e-05
Pressure cathode inlet 1.08e-05 2.92e-05 4.37e-06 1.70e-05 4.54e-05
Pressure cathode outlet 9.22e-06 4.86e-05 5.96e-06 3.68e-06 5.70e-05
Temp anode inlet 1.74e-05 8.17e-05 1.09e-05 7.91e-06 2.51e-04
Temp anode outlet 1.79e-05 6.03e-05 1.16e-05 1.13e-05 1.09e-05
Temp cathode inlet 1.18e-05 7.88e-05 1.17e-05 7.08e-06 1.82e-05
Temp cathode outlet 5.47e-05 6.67e-05 1.29e-05 1.02e-05 3.56e-05
Temp anode dewpoint water 2.30e-05 7.76e-05 1.15e-05 2.98e-05 2.05e-05
Temp cathode dewpoint water 2.29e-05 5.82e-05 1.17e-05 1.90e-05 1.37e-05
Total anode stack flow 3.27e-05 1.11e-04 1.12e-05 7.42e-06 5.08e-05
Total cathode stack flow 1.04e-03 4.02e-06 2.41e-07 3.80e-07 6.11e-06
Temp anode endplate 2.69e-03 1.90e-06 1.17e-06 0.00 2.12e-05
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Table 4. Parameters after Bayesian optimization

ksize levels nhid dropout
Optimal value 5 7 75 0.21

To appropriately evaluate the RUL estimation performance of AB-TCN under different failure thresholds, three additional failure thresh-
olds are set, ranging from 0.7265V to 0.7280V with an interval of 0.0005V. Figure 11 displays the RUL evaluation performance under different
thresholds. In all test points, the predicted RUL falls within the trust area, indicating that even with a small training set, the result of RUL pre-
dictions is considerable. Furthermore, Figure 12 visually illustrates the variation of RE in long-term predictions across different dimensions. Itis
evident that regardless of changes in training set length or feature types (FT), the relative error of RUL consistently remains stable. The average
of RE is only 6.825%.

Long-term prediction under different step lengths

To further validate the significance of effective features in model training, this section will analyze the prediction results under different step
lengths. The comparison is conducted with the same number of model training iterations to ensure fairness.

Table 5 presents comparative results for step lengths of 10 and 50. AB-TCN denotes a model trained with single-input voltage, while AB-
TCN(m) signifies a model trained with both voltage and power as inputs.

When the step length is set to 10, AB-TCN(m) demonstrates slightly lower predictive performance than AB-TCN for the case with a 30%
training dataset. In contrast, AB-TCN(m) consistently maintains higher accuracy than AB-TCN in other scenarios. Additionally, both AB-TCN
and AB-TCN(m) exhibit a common trend in prediction accuracy: an initial increase followed by a decrease. The highest errors for both models
occur when the training set is at 20%. As the training set size continues to increase, the prediction errors decrease.

These results indicate that incorporating power as an effective feature for model training significantly enhances the predictive perfor-
mance of AB-TCN. To further elaborate on the benefits of effective features in model training, the subsequent sections will comprehensively
analyze the predictive performance of AB-TCN(m) from multiple perspectives.

Adaptability analysis of adaptive Bayesian-temporal convolutional network

In this section, the predictive performance of AB-TCN will be further validated through single-step forecasting. We will analyze the adapt-
ability of the AB-TCN model to the data from multiple perspectives: a. Different types of datasets (dataset 1 and dataset 2). b. Different
training set lengths. c. Model training with and without other effective features. d. Comparison with other algorithms. Specifically, the
following sections primarily focus on the performance analysis under dynamic conditions (dataset 1), while the performance analysis under
pseudo-dynamic conditions (dataset 2) is addressed in method comparison under dataset 2.

— - — Residual Invalid data AB-TCN ----- BIGRU BIGRU-Att
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0.728 0728} .
0.727 RRRTRPIE
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Figure 10. The long-term prediction results (20% training data and 40% training data)
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Figure 13 illustrates the single-step prediction results of AB-TCN under dataset 1 with 50% training data. AB-TCN represents only voltage
as the training input, and AB-TCN(m) denotes that all effective features are included in the model training.

Compared to the regular TCN, the AB-TCN achieved a reduction in RMSE of 30.7% and a decrease in MAPE of 19.4%. Moreover, the AB-
TCN(m) demonstrated even more remarkable improvements over the AB-TCN. Specifically, the AB-TCN(m) exhibited an increase in RMSE by
59.1% and an elevation in MAPE by 53.6% compared to the AB-TCN model.

As shown in enlarged view of Figure 13, the TCN (orange curve) exhibits noticeable fluctuations during the prediction process, possibly due
to insufficiently optimized model parameters. AB-TCN (purple curve) demonstrates lower and fewer amplitude fluctuations compared to TCN.
Notably, AB-TCN(m) accurately predicts the transient voltage fluctuations at the load switching inflection point. During a stable load operation,
both AB-TCN and TCN show less stable prediction performance, while AB-TCN(m) overcomes this drawback. This is attributed to the inclusion
of relevant features associated with voltage in the neural network training, enhancing the model’s robustness in the prediction process.

Table 6 compares the prediction performance of AB-TCN and other algorithms under different training lengths to analyze the impact on
model performance.

In the comparison results for dataset 1, AB-TCN(m) achieves the best performance across all training lengths, followed by AB-TCN. More-
over, AB-TCN(m) exhibits smaller fluctuations in RMSE and MAPE, with ranges of only 2.8%-8.3% and 4.7%-30.6%, respectively, using the 50%
training set as the baseline. Notably, the R? of AB-TCN(m) remains consistently at 0.998. For dataset 2 validation, AB-TCN(m) continues to
demonstrate the best predictive performance. With a 50% training set, AB-TCN(m) achieves the lowest RMSE and MAPE, reaching only
0.0013 and 0.107, respectively. Additionally, except for R? of 0.892 at the 30% training set, the R? of AB-TCN(m) is not below 0.920 for other
cases.

These results demonstrate that AB-TCN can achieve a more stable model with a smaller training dataset. Incorporating effective features
during the training process allows the AB-TCN model to better adapt to the target data, resulting in more accurate predictions. Notably, the
underperformance of BILSTM-Att in dataset 1 improves significantly in dataset 2 (method comparison under dataset 2). This discrepancy is
attributed to BILSTM-Att's inability to cope with frequent switches in dynamic load data, leading to decreased predictive accuracy.

To further validate the superiority of AB-TCN, this section compares it with other methods from past literature that also use the same dy-
namic dataset. Before the comparison, the dataset is standardized according to the standards used in the selected literature to eliminate

potential biases caused by inconsistent experimental setups. Table 7 lists the error results of each method. Zuo et al.* proposed a GRU

T T Figure 12. Relative error of RUL
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Table 5. Predictions with the different step sizes

Train data (%) Metric AB-TCN AB-TCN(m)
Step = 10
10 RMSE 0.00090 0.00059
MAPE 0.1090 0.0731
20 RMSE 0.00146 0.00126
MAPE 0.1887 0.1558
30 RMSE 0.00078 0.00080
MAPE 0.0843 0.0985
40 RMSE 0.00075 0.00059
MAPE 0.0880 0.0631
Step = 50
10 RMSE 0.00100 0.00079
MAPE 0.1032 0.0920
20 RMSE 0.00324 0.00246
MAPE 0.4068 0.3026
30 RMSE 0.00281 0.00150
MAPE 0.3516 0.1613
40 RMSE 0.00129 0.00106
MAPE 0.1434 0.1275

network with the attention mechanism to predict the voltage variation trend of fuel cells. He et al.*® proposed a method combining auto-
encoder (AE) and LSTM, and compared it with the Polarization model-LSTM. Compared to AE-LSTM, AB-TCN achieves similar performance
in the MAPE. In terms of RMSE, AB-TCN reduces the error by 6.25% compared to AE-LSTM. In general, the error index of AB-TCN is smaller
than that of other methods, which represents a higher prediction accuracy.

Conclusion

This article introduces a prognostic framework for fuel cells under dynamic variable loads. CPE is employed to extract a straightforward HI
from the graded dynamic data. The utilized AB-TCN algorithm in the prediction process demonstrates robust data adaptability and accurate
RUL estimation. To validate the proposed prognostic framework and the advantages of AB-TCN, extensive performance studies are conduct-
ed, leading to the following conclusions.

(1) By utilizing Bayesian theory to optimize model parameters, AB-TCN can adapt to different data types and prediction modes. More-
over, the predictive performance of AB-TCN is minimally affected by the length of the training dataset.

(2) Employing CPE for dynamic load data decomposition to extract HI, the obtained HI accurately reflects the genuine Eol time point of
the original data. The mean relative error of RUL is only 6.825%.

(3) effective feature training models is validated in the adaptability analysis. In comparison to AB-TCN, AB-TCN(m) exhibits RMSE and
MAPE increases of 10.3%-43.3% and 34.6%-49.5% in dataset 1, respectively. In dataset 2, RMSE and MAPE rise by 12.5%-35.0%
and 19.0%-60%, respectively.

Limitations of the study

The proposed prognostic framework effectively determines the EoL time point, and the adopted prediction methodology yields predictions
with high reliability. However, degradation behavior within fuel cell systems is exceedingly intricate. While accurately indicating the endpoint
of the lifetime, HI should also be capable of characterizing major failures occurring during PEMFC operation. In future work, we will devote
efforts to proposing HI that better reflects the aging mechanisms of PEMFC through model-based methods.
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Figure 13. The single-step prediction results under dataset 1 (50% training data)

Data and code availability

e This article analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
e All original code has also been deposited at ScienceDB https://www.scidb.cn/s/nyAnQf.
e Any additional information required to reanalyze the data reported in this article is available from the lead contact upon request.

Table 6. Comparison of methods under dataset 1

Train data (%) Metric BILSTM BILSTM-Att TCN AB-TCN AB-TCN(m)
30 RMSE 0.0067 0.0188 0.0089 0.0057 0.0038
MAPE 0.450 0.666 0.529 0.381 0.205
R? 0.994 0.952 0.989 0.996 0.998
40 RMSE 0.0056 0.0189 0.0076 0.0049 0.0039
MAPE 0.344 0.721 0.458 0.311 0.218
R? 0.986 0.951 0.992 0.997 0.998
50 RMSE 0.0052 0.0188 0.0073 0.0049 0.0036
MAPE 0.365 0.657 0.514 0.303 0.193
R? 0.996 0.951 0.992 0.997 0.998
60 RMSE 0.0047 0.0191 0.0065 0.0067 0.0038
MAPE 0.296 0.685 0.485 0.364 0.184
R? 0.996 0.952 0.994 0.994 0.998
70 RMSE 0.0041 0.0187 0.0054 0.003¢9 0.0035
MAPE 0.260 0.732 0.369 0.205 0.134
R? 0.998 0.953 0.996 0.998 0.998
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Table 7. Comparison with different methods

The training set proportion is 60%

Method RMSE MAPE
AB-TCN 0.0075 0.7323
Attention-based GRU®' 0.0155 -
AE-LSTM*® 0.0080 0.7314
Polarization model-LSTM™ 0.0134 1.4585
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REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
PEMFC data Zuo et al.* https://doi.org/10.1016/j.apenergy.2020.115937

Software and algorithms

Python

Origin 2021

MATLAB R2021b

Temporal convolutional network
Random forest

AB-TCN

CPE

PEMFC data (Dataset 1)
Datasets 2 and 3

Python Software Foundation
OriginLab

MathWorks

Zhang et al."’
Zhu et al.*
This paper
This paper
Zuo et al.”

This paper

https://www.python.org/
https://www.originlab.com/
https://ww2.mathworks.cn/?s_tid=gn_logo
https://doi.org/10.1109/TTE.2023.3262588
https://doi.org/10.1016/j.etran.2023.100230
https://www.scidb.cn/s/nyAnQf
https://www.scidb.cn/s/nyAnQf
https://doi.org/10.1016/j.apenergy.2020.115937
https://www.scidb.cn/en/s/QR3QN;j

METHOD DETAILS

Method comparison under dataset 2

Figure A1 presents the prediction results under dataset 2. AB-TCN (purple curve) shows more accurate voltage predictions and closer prox-
imity to the true voltage values compared to TCN. AB-TCN(m) trained with power as an effective feature outperforms other neural networks,
which achieves the best performance. Compared to single-input AB-TCN, AB-TCN (m) exhibits an increase of 35.0% in RMSE and 19.2%
in MAPE.

In Figure A1B, it is evident that the TCN (orange curve) without Bayesian optimization exhibits the poorest prediction results, with predic-
tions deviating from the true voltage values between 625h and 650h. Furthermore, in the time interval between 620h and 625h, AB-TCN
(m) accurately predicts voltage drops and achieves stable prediction trends in a shorter time.

The results from dataset 2 demonstrate that AB-TCN has the ability to accurately predict voltage under both dynamic and constant loads.
Moreover, AB-TCN, trained with multiple effective features, further enhances the ability to accurately predict transient voltage fluctuations
and stabilize predictions in a shorter time.

Table. A.1. Comparison of methods under dataset 2

Train data (%) Metric BILSTM BILSTM-Att TCN AB-TCN AB-TCN(m)
30 RMSE 0.0044 0.0043 0.0034 0.0032 0.0028
MAPE 0.437 0.313 0.293 0.268 0.217
R2 0.791 0.806 0.823 0.843 0.892
40 RMSE 0.0029 0.0025 0.0032 0.0027 0.0021
MAPE 0.295 0.204 0.261 0.207 0.153
R? 0.902 0.926 0.824 0.884 0.936
50 RMSE 0.0021 0.0019 0.0026 0.0020 0.0013
MAPE 0.168 0.129 0.167 0.132 0.107
R? 0.951 0.958 0.924 0.956 0.980
60 RMSE 0.0025 0.0027 0.0026 0.0022 0.0018
MAPE 0.186 0.183 0.201 0.172 0.139
R? 0.938 0.926 0.911 0.937 0.960

(Continued on next page)
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Continued
Train data (%) Metric BILSTM BILSTM-Att TCN AB-TCN AB-TCN(m)
70 RMSE 0.0023 0.0018 0.0022 0.0020 0.0013
MAPE 0.132 0.103 0.199 0.160 0.100
R? 0.916 0.954 0.917 0.938 0.975

Table A.1 presents a comparative analysis for different training ratios under dataset 2.

AB-TCN(m), trained using effective features, maintains remarkably high predictive accuracy in dataset 2. The predictive performance of
AB-TCN(m) is significantly improved compared to AB-TCN, with RMSE, MAPE, and R? values increasing by 12.5%-35.0%, 19.0%-60%, and
2.5%-5.9%, respectively. At a training ratio of 50%, AB-TCN(m) achieves the lowest RMSE and MAPE indicators, reaching only 0.0013 and
0.107, respectively. Moreover, except for a case where R? is 0.892 with a 30% training ratio, AB-TCN(m) maintains R? values no less than
0.920 across other scenarios.

The results demonstrate that other algorithms fail to achieve satisfactory predictive performance with fewer training samples. Enhanced
predictive capabilities are achieved with longer training sets. This enhancement is likely attributed to the model’s improved ability to capture
data variability and trends with more training data, thus enhancing prediction accuracy. Notably, AB-TCN(m) overcomes these limitations,
consistently maintaining stability in evaluation metrics across various training set lengths. In summary, these findings validate the significance
of training models with effective features.
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Figure A1. The single-step prediction results under dataset 2 (50% training data)

Random forest
Random forest is an ensemble learning algorithm widely used in machine learning and data mining for measuring feature importance. The

main steps of random forest are outlined below.”

(1) Feature importance scores (VIM) and Gini coefficient (Gl) are used as measures of contribution. First, denote the features as Xy, X5, ...,
X.. The average change in node impurity caused by splitting on the j-th feature in all decision trees of the random forest is represented
as X;.
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Gl, =1 - pik (Equation 7)

where krepresents the number of classes, ppi is the score of the k-th class at node m. 2) The importance of feature X; at node m can be calcu-
lated as follows:

VIMZ" = Gl — Gl — G, (Equation 8)
where Gl;and GlI, are the Gini indices of the corresponding nodes before and after the split.

(2) Forthe case where feature X;is present in different nodes of decision tree I, and considering m belongs to the set M (me M), the impor-
tance of feature X; in the first tree i can be expressed as follows:

V[Mﬁ"‘" - Z VlMﬁL”i (Equation 9)

meM

(3) By dividing the contribution of feature Gl by the total number of features, we can obtain the contribution of feature X; in the random
forest.

100

Z VIMgini

U]

e — (Equation 10)

Z ZVIM?W
j=1i=1

CPE

This part proposes a CPE algorithm for extracting Hl under dynamic operating conditions. Based on CEEMDAN, PSD, and EA are incorpo-
rated to collaboratively screen HI. CEEMDAN is a method used for signal processing and analysis. ™ It is capable of decomposing non-sta-
tionary and non-linear signals into multiple intrinsic mode function (IMF) sequences and a residual component. In traditional EMD, due to the
presence of mode mixing, the decomposed IMF may contain multiple frequency components. However, CEEMDAN addresses this issue by
introducing adaptive noise, which enhances the stochasticity of the IMFs and effectively alleviates the problem of mode mixing. As a result,
CEEMDAN can better separate the different frequency components of the signal.

EMD decomposition process

The EMD decomposition decomposes the signal x(t) into a series of IMFs and a residual component r(t). For each IMF, it can be calculated
using the following equation:

x(t) = IMF;+r(t) (Equation 11)

Introduction of adaptive noise

For each IMF;, after introducing adaptive noise, the IMF; with noise can be calculated using the following equation:

IMF] = IMF; + n;(t) (Equation 12)
where IMF] is the IMF with introduced noise, IMF; is the original IMF, and n(t) is the adaptively generated Gaussian white noise.
Stopping criteria
The stopping criteria are used to determine whether the decomposition has reached its termination condition. It can be determined by reach-

ing a preset energy threshold or reaching the maximum number of decomposition layers N.

Adding PSD and EA calculations for each IMF to screen out low-frequency data reflecting the aging trend. PSD is a metric that
describes the energy distribution of a signal in the frequency domain and can be expressed as

PSD(f) = lim7_«[1/@2T)] = |X(f; T) (Equation 13)
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where PSD(f) represents the Power Spectral Density of the signal at frequency f. X(;T) is the Fourier transform of the signal x(i) within the time
window T.

The EA determines the relative energy proportions of signal components. Its equation can be expressed as follows

E(i) = Zx(i)z/sz (Equation 14)

where E(i) represents the energy ratio of the i-th signal component, x(i) is the i-th signal component, and x is the original signal.

Temporal convolutional network

Temporal Convolutional Network (TCN) is a deep learning model designed for time-series data.'” It uses dilated convolutions to cap-
ture longer-term temporal dependencies by expanding the receptive field. Causal convolutions prevent information leakage from the
future during prediction. Residual connections mitigate information loss and vanishing gradients, aiding better information flow in the
network.

The TCN is composed of a one-dimensional fully convolutional network (1-D FCN), causal convolutions, dilated convolutions, and residual
modules. By stacking multiple layers of convolutional units, TCN can capture long-range dependencies within sequences, facilitating effective
time series modeling and prediction. In contrast to RNNs, TCN offers advantages like parallel computation and stable gradient propagation,
making it suitable for various time series tasks.

For asequence X = (x4, X2, ..., X,) and introducing a filter F, the unfolded dilated convolution F(s) with dilation factor d at position x, can be
computed as follows:

k=1
F(s) = (xxdf)(s) = Zf(i)'xs—di (Equation 15)
i=0

where *dis the dilated convolution operator, dis the dilation factor, and k is the filter size. The s-direpresents the causal direction in the past.

Bayesian optimization
Bayesian optimization is used to optimize four model parameters in TCN: kernel size, levels, nhid, and dropout. The main steps of Bayesian
optimization are as follows.

(1) Adopt the Gaussian Process to model the underlying distribution of the objective function. The Gaussian Process regression model
can be represented as follows:

f(x) ~ GP(m(x), k(x,x)) (Equation 16)

where f(x) is the objective function, x is the input variable, m(x) is the mean function of the Gaussian process, and k(x, x’) is the covariance
function of the Gaussian process.

(2) By utilizing prior information and existing observed data, we can estimate the latent distribution of the objective function. Bayesian
inference is employed to obtain the posterior distribution:

p(f(x)IX,y) (Equation 17)
where X is the observed values of the input variables, and y is the corresponding values of the objective function.

(3) To select the next point for evaluation, a sampling strategy is used to balance exploration and exploitation. One commonly used strat-
egy is Expected Improvement (El). The El represents the expected improvement in the objective function value over the current
observed minimum value x*. It can be expressed as follows:

El(x) = E[max(f(x") — f(x),0)] (Equation 18)

By maximizing the Expected Improvement, the next point for evaluation can be selected. The Gaussian process model is updated based
on the observed results, and the optimization process continues iteratively.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted with Python 3.9 and MATLAB R2021b. We utilized a random forest algorithm to assess the significance
of features, the results of which were presented in Table 3. Figures 6 and 7 displayed the long-term forecasting outcomes achieved by the
AB-TCN model. Table 5 delineated the predictive performance of the AB-TCN across different time steps and training lengths. Figure 8 illus-
trated the forecasting performance of the AB-TCN on dataset1, with detailed predictive results tabulated in Table 6.
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