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Abstract—A prognostics and health management (PHM) 

system with prediction at its core optimizes the durability of the 

proton exchange membrane fuel cell (PEMFC). However, the 

aging behavior model has some uncertainty due to limited 

knowledge, affecting the predictive performance in remaining 

useful life (RUL) prediction. To address this issue, an RUL 

prediction method based on the Bayesian framework considering 

uncertainty quantification on the full-time scale is proposed. 

Firstly, the state of health (SOH) of the PEMFC is estimated, and 

the behavior of uncertainty is quantified. Afterwards, a long 

short-term memory (LSTM) neural network is employed to make 

a prediction for its behavior. Finally, the RUL of PEMFC is 

predicted based on historical SOH and the predicted behavior of 

uncertainty. Validation indicates that the proposed method can 

make a long-term prediction and provide RUL prediction with 

high accuracy. Under the dynamic operating condition, in terms 

of long-term prediction, compared to unscented Kalman filter, 

adaptive unscented Kalman filter, double-input-echo-state-

network and bidirectional LSTM, the proposed method decreases 

the error by 88.12%, 41.99%, 13.82% and 3.21%, 

respectively. And under the dynamic operating condition, the 

proposed method shows good stability. Moreover, the robustness 

of this method has also been verified. 

 
Index Terms—Bayesian framework, full-time scale, proton 

exchange membrane fuel cell (PEMFC), prediction of remaining 

useful life, uncertainty quantification. 

I. INTRODUCTION 

N recent decades, traditional energy has faced the problems 

of depletion and environmental pollution, which have made 

the search for alternative energy become a hotspot [1]. 

Among kinds of technology of alternative energy, proton 

exchange membrane fuel cell (PEMFC) has gotten much 

research attention and is widely used due to its advantages of 

zero pollution, silent operation, and high energy conversion 

efficiency, becoming an excellent application in fields such as 

military, power, and transportation [2]. However, the short 

lifetime and expensive maintenance of PEMFC currently 

present significant challenges for its large-scale application [3]. 

Predicting the remaining useful life (RUL) of PEMFC can 

provide the necessary reference for operation, life extension, 

and maintenance strategies, which is crucial for promoting the 

commercial demonstration of PEMFC [4]. 

Currently, available methods include three types: model-

based method, data-driven method and hybrid method [5]. 

Model-based method involves establishing a mathematical 

equation that comprehensively reflects the electrochemical 

mechanism of PEMFC based on the information of internal 

reaction. The equation is combined with specific algorithms to 

obtain accurate prediction. Model-based methods mainly 

involve the Kalman filter (KF), Particle filter (PF), mechanism 

model, and empirical model [6]. In [7], the extended Kalman 

filter (EKF) is applied to the heap test to estimate RUL, and 

the validation shows that EKF can give good RUL estimation 

for a parameter error of ±6%. However, the nonlinearity that 

EKF can handle is limited, and the Jacobian matrix is difficult 

to compute. Chen et al. utilized the unscented Kalman filter 

(UKF) and a voltage model to predict the aging of a PEMFC 

carried by a fuel cell electric vehicle (FCEV) under the actual 

operating condition. The experiment shows that this method 

has good robustness [8]. The computational efficiency can be 

greatly improved by processing data in batches. A good 

example is the frequency domain Kalman filter (FDKF) in [9]. 

FDKF processes the data by group in the frequency domain, 

improving computational efficiency while ensuring accuracy. 

PF can estimate errors, including systematic and random 

errors [10]. Its variants are also widely used [11], [12]. 

However, it faces problems of computational complexity and 

time consumption [8]. Obtaining comprehensive 

understanding of the aging mechanism of PEMFC is also a 

current research hotspot. Jouin et al. analyzed the factors 

affecting the power and lifetime of PEMFC [13]. They found 

that, the aging of electrodes and exchange membrane, is most 

closely related to the overall aging of the stack. They proposed 

a new mechanistic model and validated it on different datasets. 

Additionally, by building an empirical model with identified 

parameters, the relationships between aging parameters and 

operating conditions can be obtained [6]. The researchers 
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developed an empirical model of cathode aging for a PEMFC 

carried by an FCEV [14]. Kneer's team developed an 

electrochemically active surface area loss model which was 

used to predict the extent of Pt dissolution and estimate the 

aging state of the catalyst layer. Validation showed it could 

achieve high accuracy [15]. When PEMFC is considering as a 

whole device, internal parameters closely related to SOH, 

should change gradually, unlike external parameters which 

change drastically. It is easy to obtain the degradation law 

from these internal parameters, which is conducive to RUL 

prediction [16]. Therefore, it is necessary for RUL prediction 

to establish an aging behavior model. 

Data-driven method involves directly learning the change of 

the target and automatically giving the required information 

based on currently sampled data and a large amount of 

historical data [17], mainly including echo state network (ESN) 

[18], adaptive neuro-fuzzy inference system (ANFIS) [19], 

nonlinear autoregressive exogenous neural (NARX) network 

[20], relevance vector machine (RVM) [21], gaussian process 

regressor (GPR) [22], and long-short-term memory (LSTM) 

neuro network [23]. It is useful to apply data-driven methods 

into RUL prediction of PEMFC [24]. Improved versions have 

been available. Due to the computational inefficiency of ESN 

with fixed output weights, a new ESN is developed, whose 

connective model between neurons are changed [25]. Its linear 

fitting process is faster. According to [26], the prediction 

horizon (PH) is an essential indicator of prediction, which is 

defined as the time from the start of the forecast to the end of 

the forecast. And long-term prediction requires PH greater 

than 168h. It provides sufficient time for strategy, so it has 

practical application value. To achieve long-term prediction, 

reference [27] utilizes an improved ESN to make long-term 

forecast for stack voltage. And the optimal combination of 

input parameters for operating conditions is studied. Wang et 

al. developed an LSTM driven by a navigation sequence, 

which generates a sequence to guide the LSTM’s long-term 

forecast, making it more suitable for this task [28]. Data-

driven methods require much data and have a long 

computational time. It is difficult to obtain relevant parameters 

for stable expression of SOH because only external parameters 

with poor robustness can be used. 

Data-driven method relies on the quantity and quality of 

training data, while model-based method captures the changes 

of internal parameter but depends on the quality of the model. 

Therefore, hybrid method is proposed to combine the 

advantages of both methods. Multiple hybrid strategies exist. 

Some first decompose the voltage data into stable and unstable 

parts [29] or irreversible and reversible aging parts [30]. 

Different parts are handled by different algorithms, like the 

adaptive extended Kalman filter (AEKF) and NARX. To 

predict RUL, Liu et al. first used the particle optimization 

algorithm to optimize ANFIS to predict the trend of voltage, 

and then used the adaptive unscented Kalman filter (AUKF) to 

estimate RUL [31]. In [32], the model-based method which 

combines PF with an empirical model, and a NARX are used 

to make a prediction for the voltage separately, and then the 

results are weighted to be fused. [16] proposes EKF-LSTM to 

make a long-term forecast for both voltage and internal 

parameters. In most scenarios, the performance of the hybrid 

method is limited by the accuracy of the aging behavior model 

[26]. The model-based method is chosen in this paper. 

Due to the limited availability of data on the aging 

mechanism of PEMFC, the established aging behavior models 

are partial [33]. Furthermore, the internal parameters of 

PEMFC are difficult to be directly measured during operation. 

They can be estimated indirectly, which introduces uncertainty. 

Uncertainty may arise from perturbation signals or dynamic 

model drift [34]. The measurement noise caused by 

perturbation signals needs to be considered [35]. The presence 

of undetected faults in PEMFC during operation can introduce 

uncertainty in the data, which is worth considering. For 

example, the water management state is affected by various 

operating conditions [36]. Inadequate water management 

measures can lead to failures. Membrane dry-out failure can 

reduce the conductivity of the membrane, and hinder the 

migration of protons to the catalyst layer. This results in a 

higher degree of activation polarization and irreversible 

membrane aging [37]. In addition, fuel shortage, low gas 

pressure, and excessive pressure in the back-pressure valve 

can also result in similar phenomena [2]. Issues, like the 

parameter identification algorithm getting trapped in the 

locally optimal solution, can lead to inaccuracy in model 

parameters. These facts indicate that the impact of uncertainty 

in PEFMC’s RUL prediction is objective. 

Since predictive outcomes may occasionally be unreliable, 

the absence of uncertainty quantification could render the 

method unable to provide confidence and assess the usability 

of the prediction [38]. Furthermore, reference [22] indicates 

that quantitative analysis of uncertainty aids in extracting 

aging-related information, and the uncertainty quantification 

in RUL prediction is currently an emerging research trend. 

Currently, limited methods for quantifying uncertainty exist. 

Zhu et al. proposed a data-driven approach using a Bayesian 

Gated Recurrent Unit for short-term voltage prediction, taking 

into account the uncertainty of the neural network model. The 

algorithm demonstrates good robustness [39]. Reference [11] 

combines SVM with regularized particle filtering, adopting a 

similar framework as [16] to provide uncertainty 

characterization of RUL estimation in the form of probability 

distribution. The research mentioned above analyzes the 

uncertainty from the perspective of probability distributions. 

From the viewpoint of state-space equation, uncertainty can be 

considered as an external input to the system and can be 

estimated [40], [41]. Uncertainty sources include external 

disturbance, measurement noise, estimation algorithm 

characteristics, internal system dynamics and aging behavior 

models. These require further research.  

To address uncertainty in RUL prediction and its challenges 

in mathematical modelling, specific matrices and parameters 

can be introduced into the process equation to account for 

state drift caused by uncertainty. This drift can be estimated in 

the historical stage, and it can be predicted in the prediction 

stage. 
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A Bayesian RUL prediction method for PEMFC, 

incorporating uncertainty quantification on the full-time scale, 

is proposed. Historical SOH is estimated, and uncertainty is 

quantified based on the Bayesian framework from the 

perspective of state drift caused by uncertainty. The direction 

of state drift is determined and its degree is quantified. Based 

on the established direction and quantified degree in the 

historical stage, the degree of state drift caused by uncertainty 

is predicted by means of an LSTM optimized by dung beetle 

optimization algorithm (DBO-LSTM) in the prediction stage, 

so that the uncertainty is quantified on the full-time scale. 

RUL is predicted by combining quantified uncertainty, 

historical SOH, and the state-space model. Different from [39] 

and [11], uncertainty from aging behavior model is considered 

instead of the uncertainty from the algorithm. Different from 

[40] and [41], the form of uncertainty is considered unknown 

and is quantified from the state drift caused by uncertainty. 

The main contributions of this paper can be summarized as 

follows:  

(1) In the historical stage, the Bayesian method is provided 

to assess the uncertainty behavior on the SOH estimation of 

PEMFC from the novel perspective, that is the state drift 

caused by uncertainty. The direction and degree of state drift 

are quantified, 

(2) In the prediction stage, based on the historical 

uncertainty, uncertainty behavior is predicted by predicting the 

degree of state drift on the determined direction, and then is 

added to the process of SOH estimation, so that a model-based 

RUL prediction method considering uncertainty quantification 

on the full-time scale is constructed. 

(3) Data from the static, quasi-dynamic, and dynamic 

operating conditions are used to verify the performance of the 

proposed method, and it is compared with UKF, AUKF, 

bidirectional LSTM (Bi-LSTM) and so on. Results show that 

it can make good RUL prediction under these operating 

conditions. Its robustness is also validated. 

The organization of this paper is as follows: Section II 

presents the experimental setup. The specific details of the 

method are described in Section III. Section IV discusses the 

performance of the proposed method in long-term prediction 

and RUL prediction. Finally, Section V summarizes the article. 

II. EXPERIMENTAL SETUP 

Experimental data for verifying the proposed method comes 

from 2 datasets: Dataset 1 and Dataset 2. 

A. Dataset 1 

Dataset 1 is from IEEE PHM 2014 [42]. Two ZSW BZ-

100-13-5 PEMFCs are operated with auxiliary equipment, 

such as air supply device, sensor power unit and hydrogen 

supply device. Each stack is a 5-cell stack and its nominal 

operating current density is 0.7 A/cm2. Each cell has an active 

aera of 100 cm2. The maximum air flow rate is 100 L/min and 

the maximum hydrogen flow rate is 30 L/min. The first stack 

operates under the static condition with a constant current of 

70A, called FC1. The other stack operates under the quasi-

dynamic condition with a triangular ripple of ±10% added to 

the constant current of 70A at a frequency of 5kHz, called 

FC2. Feature tests, including polarization test and 

electrochemical impedance spectroscopy measurement, are 

conducted weekly. For FC1 and FC2, feature tests are 

conducted at different times. The fuel cell stacks need to be 

shut down during testing. A total of 24-dimensional data, 

including fuel cell voltage, current, and operating time, are 

recorded during the experiment. To optimize data complexity, 

fuel cell voltage and current density data are extracted every 1 

hour of operation, as shown in Fig.1. 

 
(a)                                                         (b) 

Fig.1 Experimental data of Dataset 1. (a) stack voltage of FC1 and FC2. (b) 

current density of FC1 and FC2. 

From Fig.1, it is found that the voltage gradually decreases. 

Although the fuel cell voltage may recover to some extent 

after the feature tests, it ultimately converges into a declining 

trend [43]. The phenomena of voltage rising may be attributed 

to the recovery of water management and other reversible 

aging effects. FC2 experienced two failures during the 

operation process [16], which are shown in Fig.1(a). 

B. Dataset 2 

Dynamic operating condition is normal in real world, so a 

long-term dynamic aging experiment on a vehicle-oriental 

PEMFC single cell is designed with reference to the New 

European Driving Cycle [44]. The test station with internal 

controller is used to deploy the test. The experimental system 

includes the necessary equipment. The fuel cell is called FC3. 

It has an active aera of 25cm2 and the operating temperature is 

85℃. Its full load current is 35.6A. Both of the inlet-pressure 

of air and hydrogen gas are 110Kpa. The experiment can be 

considered as an In-situ accelerated stress test [4]. The 

experiment consists of 3076 cycles, accounting for 

approximately 1008 hours. Data is collected at a frequency of 

1 Hz. The entire experimental voltage is shown in Fig.2(a) and 

the voltage and current in a single cycle are shown in Fig.2(b). 

 
(a) (b) 

Fig.2 The experimental voltage of dynamic aging test. (a) The entire 

experimental voltage. (b) voltage and current in a single cycle 

Its load current exhibits a clear hierarchical pattern, 

encompassing current level of 0A, 1.78A, 4.45A, 9.51A, 
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10.4A, 14.85A, 20.75A, 29.65A and 35.6A [45]. A pseudo-

steady condition can be obtained by extracting the voltage at a 

current level [46]. Under this condition, the voltage shows an 

obvious decreasing trend which is easy to be captured by 

prediction algorithm [45]. Since the polarization curve model 

is applicable for estimating the SOH of PEMFC under the 

steady conditions, and PEMFC exhibits noticeable voltage 

degradation [45], the data of current level 1.78A is extracted 

from the experimental data, like reference [46]. Then, the 

sampling interval is fixed with 1h. Moreover, the data closest 

to the sampling time is extracted from the data of current level 

1.78A to build Dataset 2, because the sampling frequency is so 

high that the actual sampling time is very close to the expected 

sampling time. It is a pseudo-steady condition selected from 

the dynamic condition, which encompasses aging information 

for PEMFC under the dynamic condition [46]. And its data 

complexity is optimized to make it suitable for the aging 

behavior model to be used. The experimental data of Dataset 2 

is shown in Fig.3. 

The voltage shows a clear downward trend for about 750 

hours, The phenomena of voltage rising between 750h and 

1008h can be attributed to improvement in the internal water 

management state of the fuel cell resulting from the 

implemented power reduction strategy which leads to changes 

in air pressure and flow rate [30], as well as a reduction in 

equivalent impedance [45]. 

 
(a)                                                         (b) 

Fig.3 Experimental data of Dataset 2. (a) voltage. (b) current density 

III. METHODOLOGY 

The overall framework is shown in Fig.4. A position matrix d 

and parameter δ are introduced to construct a state-space model 

and Bayesian framework to express uncertainty behavior. 

Historical SOH is estimated, and the direction of state drift d is 

determined and the degree of state drift in the historical stage is 

estimated. The uncertainty behavior is quantified. DBO-LSTM is 

trained to predict δ in the prediction stage. The predicted δ, 

historical SOH, and process equation are combined to predict 

SOH and calculate RUL. 

 

 
Fig.4 The framework of the proposed method. 

A. Modeling for aging behavior 

The foundation of RUL prediction is the aging behavior model, 

and the model here is as follows [7], [30], [31]: 

 st cell 0 ohm

0 L

( ln( ) ln(1 )
i i

V n E R i aT bT
i i

= − − + −  (1) 

where Vst represents the stack voltage, ncell denotes the number 

of the single cells, i denotes the current density, T denotes the 

stack temperature, a represents the Tafel constant, b represents 

the concentration constant. E0 is the open circuit voltage of the 

stack at a given temperature and gas pressure, Rohm is the total 

ohmic resistance, i0 is the exchange current density, and iL is 

the density of the limiting current. 

According to [7], [30], [31], under the steady operating 

conditions, based on the parameter identification between (1) 

and polarization curve measured in the test, the parameters, 

Rohm and iL, exhibit significant changes, and their magnitude is 

comparable, while the changes in E0 and i0 are negligible. 

Dataset 1 belongs to the steady operating condition, and 

Dataset 2 belongs to the pseudo-steady condition [46]. 

Therefore, a single variable can be introduced to establish 

their relationship with time, which can serve as an indicator of 
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SOH for the fuel cell, and the model can be established as 

follows [7], [30], [31]: 

 ohm 0 (1 ( ))R R h t= +  (2) 

 L 0( ) (1 ( ))Li t i h t= −  (3) 

where h(t) represents SOH, and its derivative h'(t) represents 

the instantaneous aging rate. R0 and iL0 denote their initial 

values. 

B. RUL prediction based on Bayesian framework 

In this section, the fundamental principle of the RUL 

prediction method based on the Bayesian framework, which 

takes uncertainty quantification into account on the full-time 

scale, is described. 

The state space model of PEMFC considered is as follows: 

 
1 ( )

( , )

m i m m

m m m m

A

y g u v

+ = + +


= +

x d x w

x
 (4) 

In (4), xm represents the state of the PEMFC system, where 

xm = [h(m), h'(m)]T; ym denotes the voltage measurement, wm 

and vm are the process noise and measurement noise, 

respectively, g() represents observation equation, g(xm, um) = 

ncell(E0 - R0(1 + h(m))im - aT × ln(um / i0) + bT × ln(1 - um / 

(iL0(1 - h(m)))), um = im; wm and vm are zero-mean random 

vectors following Gaussian distribution, with covariance P0 > 

0, Qm > 0, Rm > 0. A = [1, Ts; 0, 1], where Ts is the sampling 

frequency. The matrix di and the parameter δ jointly represent 

the behavior of uncertainty in the system. δ represents the 

degree of state drift, while d indicates the direction of state 

drift caused by model uncertainty, i.e., the position of δ within 

the state transition matrix. The elements of d are either 0 or 1. 

The Bayesian framework is as follows [34]: 

 
1

1 1 1) 1

( , | , )

( | , , )( ( , | , )

m i m

m m i m i m m

P Y

p p Y d



 

−

− − − −= 

x d

x x d x d x
 (5) 

 1( , | , ) ( | ) ( , | , )m i m n m m i mP Y p y p Y  −x d x x d  (6) 

 

1 1

1 1

1

( | , ) ( | )
( | )

( | , ) ( | )

m i m i m

i m L

m i m i m

i

p y Y p Y
p Y

p y Y p Y

− −

− −

=

=



d d
d

d d
 (7) 

 
1

( , | ) ( , | , ) ( | )
L

m m m i m i m

i

p Y p Y p Y 
=

=x x d d  (8) 

where Ym represents voltage measurement. ym represents the 

voltage estimation. The prediction of the joint conditional 

probability density function of δ and xm is made by (5), which 

is updated by (6). (7) estimates the probability of δ being at 

position matrix di, and (8) combines the probability density 

functions and probability mass functions of δ at different 

predefined positions in the matrix d. 

Due to the lack of existing literature, δ is initialized to 1, 

and 15 possible positions are set as candidate positions where 

δ may occur, using permutation and combination, i.e. d1=[1, 0; 

0, 0], d2=[0, 1; 0, 0], d3=[0, 0; 1, 0], d4=[0, 0; 0, 1], d5=[1, 1; 0, 

0], d6=[1, 0; 1, 0], d7=[1, 0; 0, 1], d8=[0, 1; 1, 0], d9=[0, 1; 0, 1], 

d10=[0, 0; 1, 1], d11=[1, 1; 1, 0], d12=[1, 1; 0, 1], d13=[1, 0; 1, 1], 

d14=[0, 1; 1, 1], d15=[1, 1; 1, 1], d∈D={di, i=1, 2, …, L}, L = 

15. To proceed with the subsequent procedures, Gaussian 

assumptions are made as follows [45]: 

 ( | ) ~ ( ( , ), )m m m m mp y N g u Rx x  (9) 

 
, | , |

, | , |

, |

, |

( , | , ) ~ ,
( )

i m m i m m

i m m i m m

i m m

m i m T

i m m

P
P Y N

 






   
   
       

x

x x

P
x d

P Px
 (10) 

 

1

, | 1 , | 1 , | 1

, | 1 , | 1, | 1

( , | , )

~ ,
( )

m i m

x
i m m i m m i m m

x T x

i m m i m mi m m

p Y

P
N

 







−

− − −

− −−

    
    
       

x d

P

P Px

 (11) 

where, �̂� i,m|m and �̂� i,m|m represent the updates at time step m, 

concerning the matrix di.  

One-step prediction, update, determination of historical dtrue 

and final estimation, prediction for the behavior of uncertainty, 

and prediction for SOH are included in the proposed method.  

Firstly, the following problem is defined based on (5) to 

study the one-step prediction of x and δ with the position 

matrix as di. 

 
, | 1

1
,

, | 1

arg max ( , | , )
m

i m m

m i m

i m m

p Y





−

−

−

 
= 

  
x

x d
x

 (12) 

Details are as follows [34]: 

 , | 1 , 1| 1i m m i m m − − −=  (13) 

 , | 1 , 1| 1 , 1| 1( )i m m i m m i m mi− − − − −= +x A d x  (14) 

 
, | 1 , | 1i m m i m mP P 

− −=  (15) 

 
, 1| 1 , 1| 1

, | 1 1 1

, 1| 1 , 1| 1( )

x

i m m i m mx T

i m m m m mx T x

i m m i m m

P 



− − − −

− − −

− − − −

 
= + 

  

P
P G G Q

P P
 (16) 

 , | 1 , 1| 1 , 1| 1 1

T

i m m i m m i m m m

  

− − − − − −
 =  

x x
P P P F  (17) 

 , -1| -1 , -1| -1-1 i m m i m mm i i = +
 

G d x A d  (18) 

Then the prediction is updated. Voltage measurement Ym is 

introduced, and p(δ, xm | di, Ym-1) is updated to get p(δ, xm | di, 

Ym). Because the Gaussian assumptions (9) - (11) are satisfied, 

the problem of updating the one-step prediction can be 

converted into a nonlinear optimization problem as follows: 

 
, |

,
, |

arg max ( , | , )
m

i m m

m i m

i m m

P Y





 
= 

  
x

x d
x
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newton iteration method can be used to solve (19), and details 

are as follows: 

The initiation of ξ, ξ(0) i,m|m=[�̂�T i,m|m-1, 𝒙T i,m|m-1]T, the maximum 

of iteration itermax=10, and the boundary condition is |ξ(iter) i,m|m- 

ξ(iter
-

1) i,m|m | < 0.01. the formula is as follows: 
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ei,j represents the element of the matrix. 

After that the historical dtrue is determined. The di that 

makes its p(di | Ym) biggest is considered as dtrue that can be 

expressed as follows: 
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where μi,m= p(di | Ym), λi,m=p(ym | di, Ym-1), and details are as 

follows [34]: 
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According to (8), the estimation of δ and xm can be obtained 

by following formulas:  
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Prediction for the behavior of uncertainty should be 

performed after historical SOH, dtrue and δ are estimated in the 

historical stage. DBO-LSTM can be used. 

LSTM is an improved version of the traditional RNN, 

capable of effectively capturing semantic relationships 

between long sequences and addressing the issue of long-term 

dependency. It retains important features of time series 

through various gate functions, mitigating gradient vanishing 

or exploding in long sequence tasks. Each unit of LSTM 

includes two memory states, controlled by input, forget, and 

output gates, one hidden state and one cell state. LSTM first 

removes a portion of information from the cell state using a 

forget gate. Then, based on the current state and the last unit’s 

hidden state, necessary information is input into the next cell. 

The new hidden state is determined by the new cell state and 

input. DBO has been used for automatic optimization of 

LSTM to optimize the learning rate, regularization coefficient 

and number of neurons in the hidden layer. 

The data of estimated δ in the historical stage are used to 

train DBO-LSTM. The trained network is then utilized to 

make a long-term prediction for the value of δ in the 

prediction stage based on the iterative configuration with 

sliding window [26]. It belongs to a long-term prediction for 

time-series data. 

At the start of prediction tpre, the data of {(tpre+1-v, δpre+1-v), 

(tpre+2-v, δpre+2-v), ... (tpre, δpre)} are input to the network to 

predict the value of δ at the next time (tpre+1, �̂�pre+1) at tpre+1, the 

predicted δ, �̂� pre+1 is introduced to the historical data to 

construct {(t1, δ1), (t2, δ2), ... (tpre, δpre), (tpre+1, �̂�pre+1)}. Then, 

the data of {(tpre+2-v, δpre+2-v), ... (tpre, δpre), (tpre+1, �̂�pre+1)} are 

input to the network to predict the value of the next step (ts+2, 

�̂�pre+2). By that analogy, the prediction �̂�pre+1, �̂�pre+2, ... �̂�pre+PH 

all can be obtained. v is the width of the sliding window. The 

input of the DBO-LSTM is the δ sequence in the window 

before the prediction point, and the output is predicted δ at the 

time step. The iterative configuration is shown in Fig.5. 

 
Fig.5 The iterative configuration with sliding window of DBO-LSTM 

Finally, based on the prediction of parameter δ, historical 

SOH, and true position matrix dtrue, the future SOH is 

estimated using (33): 

 1 true( )mm mA + = +x d x  (33) 

The time between the start of prediction tpre and time when 

the predicted SOH reaches the failure threshold is the 

predicted RUL. The time between the start of prediction tpre 

and the end of life, tEOL is the actual RUL 

 preRUL EOLt t= −  (34) 

Based on the previous discussion, the program execution 

flow of the proposed method is shown below. 
TABLE I. 

THE PROCESS OF THE PROPOSED METHOD 

Algorithm 1 The process of the proposed method 

Require: the maximum iteration number amax and the total amount of 
historical data N 
Ensure: RUL 
1. Initialize the state xn and its covariance Px, process noise Q, 

measurement noise P, parameter δ and its covariance Pδ, and cross-
covariance of xn and δ, m =1, i =1 

2. While (m < N) do 
3.    While i < 15 do 
4.       Make a prediction for xi,m and δi,m based on (13)-(18) 
5.       Make an update for xi,m and δi,m based on (20) 
6.       Compute the possibility μi,m based on (28) 
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7.       Determine the true location matrix dtrue based on (27) 
8.    End while 
9.    Obtain the estimation for xm to get SOH and δm  based on (31)-(32) 
10. End while 
11. Predict δ based on BDO-LSTM 
12. RUL = 0 
13. While (SOH < failure threshold) do 
14.    Compute the SOH at next time based on (33) 
15.    RUL+1 
16. End while 

IV. DISCUSSION 

The proposed method is compared with UKF, AUKF, 

double-input echo state network (DI-ESN), and bidirectional 

LSTM (Bi-LSTM). The long-term predictive performance of 

these five methods under different training set lengths is 

discussed using three metrics: Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), and error 

of RUL (%ErRUL). Accuracy (Acc) is used to evaluate the 

prediction accuracy of RUL over the entire lifecycle. Smaller 

values of RMSE, MAPE, and %ErRUL, and larger values of 

Acc indicate higher accuracy of the prediction methods.  
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where, y
act 

i  represent the experimental data, y
pre 

i  represents the 

estimation or prediction, �̅�  represents the average of 

experimental data, RUL
pre 

i  is the prediction of RUL at the time 

i, RUL
act 

i  represents the true RUL at the time i. n represents the 

total amount of data. 

A. Determination of failure threshold 

The fuel cell’s failure threshold should be determined. 

According to [7], [31], over the entire lifecycle, SOH exhibits 

an increasing trend with time. Moreover, its maximum 

SOHmax serves as the failure threshold, and its corresponding 

time is tEOL. 

SOH and the possibilities of different location matrices 

under static quasi-dynamic and dynamic operating conditions 

are estimated based on (13)-(32), as shown in Fig.6. Based on 

the setting forms of [7], [31], when the initial parameter setting 

is as follows, these methods can achieve good performance: 

For FC1: R = 0.01, Q = [0,0; 0,10-10], x0 = [0; 0.001], P0 = 

[0.01, 0; 0, 0.01].  

For FC2: R = 0.01, Q = [0,0; 0,10-16], x0 = [0; 0.001], P0 = 

[0.01, 0; 0, 0.01]. 

For FC3: R = 0.1, Q = [10-6,0; 0, 10-6], x0 = [0; 0.001], P0 = 

[1, 0; 0, 1]. 

 
(a)                                                     (b) 

     
(c)                                                                                  (d)                                                                                 (e) 

Fig.6 The estimated SOH and the possibilities of different position matrices in the aging test. (a) SOH, Dataset 1. (b) SOH, Dataset 2. (c) possibilities, FC1. 
(d) possibilities, FC2. (e) possibilities, FC3. 

From Fig.6, it can be known that the true position dtrue of 

parameter δ in the state transition matrix A is fast explicitly 

determined as d2. The possibilities of FC2 and FC3 are 

determined quicker than FC1, indicating that the behaviors of 

uncertainty on FC2 and FC3 are more apparent than FC1. For 

FC1, the failure threshold is 0.26239 and tEOL is 991h. For 

FC2, the failure threshold is 0.23421 and tEOL is 1020h. For 

FC3, the failure threshold is 1.6125 and tEOL is 745h. It can be 

seen that lines of SOH under these operating conditions, all 

exhibit noticeable increasing trend, indicating the feasibility of 

the expression of SOH. 

B. Performance of aging prediction of Dataset 1 

To validate the proposed method’s long-term prediction 

performance, the dataset is split into training and prediction 

sets. The training sets include 60% (FC1: PH = 397h, FC2: PH 
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= 408h), 70% (FC1: PH = 297h, FC2: PH = 306h), and 80% 

(FC1: PH = 198h, FC2: PH = 204h) of the data, with the 

remaining part for prediction. The SOH trend is input into (1) 

for voltage prediction. The proposed method’s performance is 

compared with UKF, AUKF, DI-ESN and Bi-LSTM. Long-

term predictions of parameter δ are shown in Fig.7, and the 

voltage predictions are shown in Fig.8. 

 
(a)                                                        (b) 

 
(c)                                                       (d) 

 
                          (e)                                                         (f) 

Fig.7 The comparison between estimated δ and predicted δ. (a) FC1, 60% 

training. (b) FC2, 60% training. (c) FC1, 70% training. (d) FC2, 70%. training 

(e) FC1, 80% training. (f) FC2 80% training. 

It is shown that whether under the static condition or the 

quasi-dynamic condition, estimated δ can always reach a 

plateau, indicating that the proposed method has the ability to 

quantify the uncertainty behavior. For FC1, the maximum of 

estimated δ is about 0.97 while for FC2 the maximum of that 

is 1.00, which indicates that the aging behavior model under 

the quasi-dynamic condition has stronger uncertainty. For FC1, 

the error between the predicted and estimated values of δ is 

less than 0.06. For FC2, the error is less than 0.0004. 

 
                            (a)                                                   (b) 

 
                            (c)                                                      (d)  

 
                            (e)                                                    (f) 

Fig.8 Long-term prediction results of different training set length. (a)FC1, 

60% training. (b) FC2, 60% training. (c) FC1, 70% training.  

(d) FC2, 70% training. (e) FC1, 80% training. (f) FC2, 80% training. 

It is shown that results of the proposed method, UKF, 

AUKF and DI-ESN exhibit obvious decreasing trends under 

the static condition but Bi-LSTM cannot. Under the quasi-

dynamic condition, the proposed method can predict the 

degradation trend with different training sets. The results 

predicted by UKF, AUKF, DI-ESN and Bi-LSTM fail to 

guarantee the accuracy. And at 1020h, the prediction of the 

proposed method seems to be closest to the experimental data.  

To compare the prediction accuracy of these methods, the 

RMSE, MAPE and %ErRUL are listed in TABLE II. 
TABLE II. 

THE PRECISION OF DEGRADATION PREDICTION FOR FC1 AND FC2 

FC1 

 
Metric 

 
Method 

Proportion for training Stacked 
value 60% 70% 80% 

 
 
RMSE 

UKF 0.0111 0.0101 0.0105 0.0317 
AUKF 0.0098 0.0092 0.0122 0.0312 

DI-ESN 0.0119 0.0109 0.0113 0.0341 
Bi-LSTM 0.0338 0.0245 0.0203 0.0786 

Proposed method 0.0090 0.0101 0.0110 0.0301 
 
 
MAPE 

UKF 0.0029 0.0025 0.0022 0.0076 
AUKF 0.0023 0.0018 0.0031 0.0072 

DI-ESN 0.0026 0.0021 0.0024 0.0071 
Bi-LSTM 0.0094 0.0065 0.0054 0.0213 

Proposed method 0.0020 0.0024 0.0025 0.0069 
 
 
%ErRUL 

UKF -0.1864 -0.1611 -0.0754 -0.4229 
AUKF -0.1741 -0.1319 -0.3584 -0.6644 

DI-ESN - - - - 
Bi-LSTM - - - - 

Proposed method -0.0579 -0.1711 -0.1256 -0.3546 

FC2 

 
 
RMSE 

UKF 0.0331 0.0228 0.0244 0.0803 
AUKF 0.0377 0.0431 0.0225 0.1033 

DI-ESN 0.0691 0.0301 0.0227 0.1219 
Bi-LSTM 0.0202 0.0219 0.0278 0.0699 

Proposed method 0.0246 0.0187 0.0224 0.0657 
 
 
MAPE 

UKF 0.0083 0.0053 0.0062 0.0198 
AUKF 0.0095 0.0108 0.0056 0.0259 

DI-ESN 0.0201 0.0078 0.0065 0.0344 
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BI-LSTM 0.0050 0.0058 0.0077 0.0185 
Proposed method 0.0058 0.0042 0.0054 0.0154 

 
 
%ErRUL 

UKF -0.4632 -0.3758 -0.5000 -1.339 
AUKF 0.4644 0.4459 -0.1478 1.0590 

DI-ESN - - - - 
BI-LSTM - - - - 

Proposed method -0.2722 -0.0805 0 -0.3527 

When the training proportion (TP) is 60%, the proposed 

method has the highest accuracy under the static condition. 

The proposed method reduces RMSE by 18.92%, 8.89%, 

24.37% and 73.37% compared to UKF, AUKF, DI-ESN, and 

Bi-LSTM. The improvement is more significant on FC2. 

Compared with UKF, the proposed method reduces RMSE by 

35.72%. The proposed method has one of the smallest stacked 

RMSE and MAPE for prediction results, regardless of 

operating conditions. Under the quasi-dynamic condition, 

compared with UKF, AUKF, DI-ESN and Bi-LSTM, the 

stacked RMSE of the proposed method is reduced by 17.93%, 

36.21%, 46.10% and 6.00%, respectively. This is due to 

considering uncertainty quantification on the full-time scale, 

improving prediction performance for aging trends and RUL.  

%ErRUL is negative, indicating that the proposed method 

provides smaller RUL estimation than real RUL. This would 

provide enough time for maintenance. For FC2, the relative 

error in RUL prediction is smaller significantly than 

traditional methods. It enables long-term prediction up to PH 

= 408h, with relative error reductions of 41.23% and 41.38% 

compared to UKF and AUKF. At PH = 306h, the reductions 

are 78.58% and 81.95%. At PH = 204h, the predicted RUL by 

the proposed method is equal to the real RUL. 

To comprehensively testify the performance of the proposed 

method under the static and quasi-dynamic conditions, results 

of other studies on the same dataset are listed in TABLE III. 

They are all data-driven methods. It can be seen that the 

proposed method can make prediction with lowest RMSE. 

Under the static condition, when the prediction starting point 

is 550h, the proposed method reduces RMSE by 28.82%, 

27.98%, 55.35% and 63.44% compared with RVM [16], back 

propagation neural network (BPNN) [16], ESN [48] and 

NARX [30]. Under the quasi-dynamic condition, when the 

prediction starting point is 550h, the proposed method reduces 

RMSE by 39.56%, 17.80%, 48.81% and 54.88% compared 

with RVM, BPNN, ESN and NARX.  
TABLE III. 

COMPARISON WITH OTHER RESEARCHES IN RMSE FOR FC1 

AND FC2 

FC1 

 Prediction starting point 
Method 550h 650h 750h 

RVM [16] 0.0170 0.0240 0.0127 
BPNN [16] 0.0168 - - 
ESN [48] 0.0271 - - 

NARX [30] 0.0331 - - 
Proposed method 0.0121 0.0185 0.0098 

FC2 

RVM [16] 0.0321 0.0572 0.0349 
BPNN [16] 0.0236 - - 
ESN [48] 0.0379 - - 

NARX [30] 0.0430 - - 
Proposed method 0.0194 0.0263 0.0212 

 

C. Performance of aging prediction of Dataset 2 

Data is divided in the same way as the Dataset 1. The 

estimated δ and predicted δ are shown in Fig.9. The 

predictions made by UKF, AUKF, DI-ESN, Bi-LSTM and the 

proposed method are shown in Fig.10. 

 
                          (a)                                                          (b) 

 
(c) 

Fig.9 The estimated δ and predicted δ for FC3. (a) 60% training. (b) 70% 

training. (c) 80% training. 

For FC3, the estimated value of δ eventually stabilizes at 

1.1, indicating that under dynamic operating conditions, the 

uncertainty associated with the aging behavior model is 

greater than that under the static and quasi-dynamic conditions. 

When TP is 80%, the error between the predicted and 

estimated values of δ is less than 0.00003. 

 
                          (a)                                                            (b)  

 
(c) 

Fig.10 Long-term prediction results of FC3. (a) 60% training. (b) 70% 
training. (c) 80% training. 

It is shown that UKF cannot give effective prediction. 

Parameter identification of polarization curve fitting is not 

applicable to dynamic conditions, and the aging behavior 

model is too simple for dynamic conditions, causing strong 
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model uncertainty. For AUKF, the adaptive mechanism 

considers uncertainty from data and works a little so the 

predictive effectiveness is improved. But it can be found that 

when TP is 60% or 70%, the starting value of its voltage 

prediction is located at the edge of the experimental data, 

indicating that the state estimated by AUKF is not accurate. 

For Bi-LSTM, with different TPs, the prediction has 

fluctuation and is difficult to exhibit a decreasing trend. This 

can be root in significant fluctuation in experimental data. It 

takes 750h for the experimental data to drop by 0.05V, during 

which the maximum fluctuation reaches 0.02V. In the whole 

experimental data, the voltage fluctuation is more significant 

than degradation. Therefore, the weights in Bi-LSTSM to 

store the volatility information are significantly higher than 

that to store the degradation information. When TP is 60%, 

prediction of DI-ESN exhibits decreasing trend but it deviates 

from the experimental data too much. When TP is 70% or 

80%, DI-ESN is faced similar problem with Bi-LSTM. 
TABLE IV. 

THE PRECISION OF DEGRADATION PREDICTION FOR FC3 

 
Metric 

 
Method 

Proportion for training Stacked 
value 60% 70% 80% 

 
 

RMSE 

UKF 0.0487 0.0484 0.0553 0.1524 

AUKF 0.0175 0.0084 0.0053 0.0312 

DI-ESN 0.0092 0.0063 0.0062 0.0217 

BI-LSTM 0.0061 0.0065 0.0061 0.0187 

Proposed method 0.0071 0.0053 0.0057 0.0181 

 
 

MAPE 

UKF 0.0374 0.0547 0.0707 0.1628 

AUKF 0.0476 0.0466 0.0561 0.1503 

DI-ESN 0.0169 0.0074 0.0056 0.0299 

BI-LSTM 0.0190 0.0088 0.0054 0.0332 

Proposed method 0.0065 0.0053 0.0060 0.0178 

 
 

%ErRUL 

UKF - - - - 

DI-ESN - - - - 

BI-LSTM    - 

AUKF -0.7718 1.4529 -0.8389 3.0636 

Proposed method -0.5436 0 0 -0.5436 

Because of inaccuracy estimation of SOH in the historical 

stage, it is difficult for AUKF to give accurate prediction for 

RUL. The proposed method provides accurate RUL prediction 

for FC3. Compared to AUKF, when TP is 60%, the precision 

is improved by 29.57%. When TP is 70% or 80%, the RUL 

prediction deviates little from the real value.  

The proposed method can predict the degradation trend well 

with different TPs. In terms of stacked RMSE, compared with 

UKF, AUKF, DI-ESN and Bi-LSTM, the errors of the 

proposed method are reduced by 88.12%, 41.99%, 13.82% 

and 3.21%, respectively. It indicates that the proposed method 

can make good degradation prediction under the dynamic 

condition. 

D. RUL prediction 

The Satisfactory Horizon (SH) is defined as the duration in 

which the predicted RUL values fall within an acceptable error 

range [26]. The results of RUL prediction for the entire 

lifecycle are shown in Fig.11.  

 
                            (a)                                                        (b) 

 
(c) 

Fig.11 RUL predictions of the proposed method. (a) FC1. 

 (b) FC2. (c) FC3. 

TABLE V. 
COMPARISON OF RUL PREDICTION 

PEMFC Metrics PF [49] UKF AUKF Proposed 
method 

FC1 Acc 0.8100 0.7379 0.6599 0.8341 

SH(h) - 970 570 919 

FC2 Acc 0.6330 0.5938 0.546 0.7344 

SH(h) - 504 461 771 

FC3 Acc - - 0.3766 0.7919 

SH(h) - - 313 577 

The RUL prediction curve for FC1 is relatively smooth. 

However, for FC2, the presence of faults causes a significant 

reduction in experimental data. This results in noticeable 

fluctuations in the predicted RUL. The SH for FC2 is 

decreased by 14.92% and the accuracy is decreased by 11.95% 

compared to FC1. The proposed method demonstrates a 

significant improvement in accuracy of RUL prediction 

compared to the other methods shown in TABLE V. For FC1, 

compared with PF [49], UKF and AUKF, the proposed 

method improves the accuracy by 2.98%, 13.03% and 26.40%, 

respectively. For FC2, the proposed method shows 

improvement of 16.02%, 23.67% and 34.51%. For FC3, the 

proposed method’s RUL prediction has significant advantages 

over AUKF in terms of Acc and SH. The proportion of SH in 

the entire lifecycle has increased by 84.10%. RUL prediction 

accuracy of the proposed method is 110% higher than that of 

AUKF. This indicates that for the same model, the ability of 

the proposed method to quantify uncertainty behavior is 

superior to adaptive algorithm. Under the quasi-dynamic 

operating condition, it has improved by 2.28% compared to 

the best result in [49]. 

Robustness is as important as accuracy in RUL prediction 

for PEMFC. In Bayesian framework, initial state is the best 

estimation of the state of the system at the beginning of state 

estimation. This is a guess as to the state of the system at the 

initial moment [35]. The state covariance is a measure of 

uncertainty associated with the initial state estimation. It is 

necessary to obtain the initial state and the associated 

covariance based on prior information. The robustness can be 

validated by examining the performance of the method with 

different initial conditions including initial state and 

covariance of initial state [31]. 
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Before the aging test begins, the fuel cell is considered to be 

brand new but it should have an aging trend, so SOH is set to 

0, and the its rate of change may be variable. Initial state 

covariance should be variable due to variability of the prior 

information [31]. Therefore, the initial rate of change and 

values in the error covariance are adjusted. Five types are set: 

type 1 (x0=[0; 0.001], P0=[0.001, 0; 0, 0.001]), type 2 (x0=[0; 

0.005], P0=[0.05, 0; 0, 0.05]), type 3 (x0=[0; 0.01], P0=[0.1, 0; 

0, 0.1]), type 4(x0=[0; 0.05], P0=[0.5, 0; 0, 0.5]) and type 

5(x0=[0; 0.1], P0=[1, 0; 0, 1]).  
TABLE V. 

RESULTS OF RUL PREDICTION BASED ON DIFFERENT 
INITIALIZATION 

 FC1 FC2 FC3 
 Acc SH Acc SH Acc SH 

Type 1 0.8296 846 0.7298 753 0.7951 603 
Type 2 0.7738 861 0.7235 725 0.7960 604 
Type 3 0.7667 844 0.7197 697 0.7792 584 
Type 4 0.8451 979 0.7205 809 0.7979 593 
Type 5 0.8599 965 0.6702 692 0.7964 583 

The proposed method can effectively forecast RUL. For 

FC1, Acc remains above 0.75, and for FC2, the Acc remains 

above 0.65. For FC3, Acc remains above 0.79. The average of 

FC1 is 0.815, which has a 14.35% increase in Acc compared 

to FC2. However, the proposed method exhibits the best 

prediction stability for FC3, with the smallest variance of 

0.0006. And the variance of FC2 is smaller than that of FC1. 

The range of RUL prediction of FC3 is 21h, while FC1’s is 

135h and FC2’s is 117h. The validation indicates that the 

proposed method achieves higher accuracy in scenarios with 

stronger linearity, like the static operating condition. And it 

can achieve better prediction stability in scenarios with higher 

uncertainty, like the dynamic operating condition. 

V. CONCLUSION 

Uncertainty in the PEMFC aging behavior model can 

significantly impacts the accuracy of RUL prediction and 

robustness. A Bayesian-based RUL prediction method for 

PEMFC that incorporates uncertainty quantification on the 

full-time scale is proposed. DBO-LSTM is used to quantify 

uncertainty behavior during the prediction stage. The 

method’s advantages in RUL prediction accuracy and 

robustness are validated. The main conclusions are:  

(1) For SOH estimation under the static, quasi-dynamic and 

dynamic operating conditions, the direction of state drift 

caused by uncertainty is [0, 1; 0, 0]. The degree of state drift 

under the dynamic condition is greatest. Under these operating 

conditions, the prediction for degree of state drift is accurate. 

The prediction errors are lower than 0.06, 0.0004, and 0.00015, 

respectively. 

(2) The proposed method can achieve good long-term 

prediction. This advantage is particularly prominent in the 

dynamic condition. When TP is 60%, compared to AUKF, the 

relative error of RUL prediction is decreased by 29.57%. The 

Acc in the entire lifecycle is increased by 34.51%, respectively. 

(3) Effective prediction for RUL can always be obtained, 

even with different initial conditions. Validation shows that 

the proposed method can achieve long-term prediction with 

higher precision under the static operating condition. Under 

the quasi-dynamic and dynamic operating conditions, the 

stability of the proposed method is better.  

The proposed method can also be applied to the estimation 

and prediction of the state of charge and battery capacity in 

lithium batteries. In future work, we will investigate the 

application of the proposed method in PEMFC operation 

strategy research and fuel cell system control. 
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