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A B S T R A C T

Proton exchange membrane fuel cell (PEMFC) models are conventionally established with a set of parameters
identified under steady-state operating conditions. However, such an approach is insufficient to accurately
capture the dynamic characteristics of multi-parameter changes in real-world scenarios. This paper develops a
semi-empirical model for a 110-kW commercial PEMFC system based on its dynamic operation data to remedy
the defects. To improve the fitting accuracy of the semi-empirical PEMFC model, an improved grey wolf
optimization (IGWO) algorithm is proposed for model parameter identification. The IGWO algorithm adopts
chaotic mapping to optimize the initial population distribution, and a random walk strategy is incorporated
to boost the local search ability of the traditional grey wolf optimization (GWO) algorithm. The effectiveness
of this IGWO algorithm in optimizing the semi-empirical model is experimentally verified on the 110-kW
PEMFC system under highly dynamic operating conditions. Results show that the proposed IGWO algorithm
can effectively identify the semi-empirical model’s parameters, establishing a stable and robust model that
outperforms those based on traditional metaheuristic algorithms such as GWO, particle swarm optimization,
and genetic algorithm. The demonstrated improvement renders it as better suited for optimizing PEMFC
semi-empirical models under real-world operating conditions.
1. Introduction

1.1. Background

Proton exchange membrane fuel cells (PEMFCs) are widely used in
various applications such as mobile power supply, stationary power
generation, and electrified transportation systems. They are favored for
their high energy density, noise-free operation, utilization of hydrogen
as fuel, and minimal emissions, limited to water alone [1,2]. However,
the current PEMFC system still faces many technical limitations in
its power capability, durability, and reliability, making it difficult to
meet the demand for high-power applications [3]. Additionally, the
relatively high costs associated with both the PEMFC system and the
hydrogen further increase the research expenses of PEMFC technology.
Consequently, the importance of modeling and simulation techniques,
without relying solely on physical experiments, has been recognized
to study the dynamic performance of PEMFC. Accurate models can

∗ Corresponding author at: Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
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effectively simulate electrochemical reaction phenomena and facilitate
the integrated design of auxiliary systems, providing more insight into
fuel cells’ operational status. These models enable researchers to predict
and comprehend the fuel cells’ performance and response character-
istics, playing a crucial role in optimizing system design, evaluating
performance, and developing control strategies [4,5].

1.2. Literature review

The accurate PEMFC model is built on experimental data, which can
be classified into data-driven models [6,7], empirical formula-based
models [8–10], and hybrid models [11]. The data-driven models mainly
use various neural network (NN) algorithms to describe the input–
output relationship. For example, an artificial neural network (ANN)
algorithm was used to establish a data-driven model to predict the
output performance of a high-temperature PEMFC system [12], where
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the training data were generated from a numerical model. In Ref. [13],
a data-driven model was established using radial basis function and
applied to a PEMFC system parameters optimization. Two artificial
intelligence techniques, including probabilistic NN and group method
of data handling (GMDH) method, were investigated in [14] to predict
and control the behavior of a 25-W PEMFC. Numerical results showed
that the GMDH model was excellent for PEMFC design due to its high
accuracy based on polarization experimental data. A teaching–learning
optimization and differential evolution-based Elman NN was effectively
implemented for PEMFC nonlinear parameter identification [15]. The
back propagation NN algorithm was employed to develop the mapping
relation model between the membrane reactor’s prime operational
parameters and fuel cell output performance for a 500-W horizon
polymer electrolyte fuel cell system’s design and control [16]. Ref. [17]
proposed a hybrid model combining a least square vector machine
model with a regularized particle filter, which can provide better
remaining useful life prediction accuracy for the PEMFC. A Bayesian-
gated recurrent unit (GRU) model that combines the Bayesian theory
and GRU was proposed in [18] to predict the phenomenon of fuel cell
voltage decay over time so that the uncertainty in model parameters is
addressed. Since the PEMFC exhibits strong nonlinear characteristics,
the output performance is significantly influenced by temperature,
reaction gas pressure, and load change rate [19]. Due to the limitation
of cost and experimental environment, considering these influencing
factors, it is practically challenging to obtain adequate training data
from existing voltage and current measurements to reflect the system’s
characteristics under real-world operating conditions.

Modeling methods based on empirical formulas primarily involve
fitting equations to describe the relationship between input and out-
put variables and formulating equations to characterize the electrical
properties of circuit components. For instance, Amphlett et al. [20]
developed empirical and semi-empirical models for PEMFC. Restrepo
et al. [21] improved Amphlett’s semi-empirical model by proposing a
semi-empirical circuit model, including polarization capacitance phe-
nomena, and validated the model’s accuracy using experimental data.
Semi-empirical models are widely recognized for their ability to ac-
curately simulate the electrochemical characteristics of PEMFC and
predict output performance across various operating conditions, all
while minimizing the need for extensive experimental data during
model establishment. Based on a semi-empirical PEMFC model and
an air supply model, a model reference adaptive control algorithm
consisting of a nominal feedback loop and an adaptive mechanism loop
was proposed to control the cathode oxygen ratio and improve the
performance and efficiency of the air compressor in [22]. Similarly,
based on a coupled semi-empirical model and a thermal management
model, a temperature fuzzy control strategy, improved by particle
swarm optimization (PSO) algorithm, was proposed to optimize the
performance of the PEMFC [23]. The effects of altitude variation and
air stoichiometry on stack performance and thermal management were
investigated by coupling a semi-empirical model with a thermodynamic
model in [24]. A differential evolution (DE) algorithm based on a
semi-empirical model was designed to optimize a fuzzy logic controller
for PEMFC’s maximum power point tracking in [25]. An accurate
semi-empirical model can better fit the PEMFC output performance.
Compared to data-based models, semi-empirical models offer the ben-
efits of a simpler structure and improved model accuracy. In addition,
the establishment of semi-empirical models does not rely on a large
amount of experimental data. However, it is important to note that
for every different PEMFC system the unknown parameters of the
semi-empirical model have to be determined under varying operating
conditions.

In recent years, growing research has focused on determining, im-
proving, and optimizing the unknown parameters of semi-empirical
models for PEMFC systems. Particularly, intelligent optimization tech-
nology based on the metaheuristic method has achieved good results
2

in identifying unknown model parameters. The metaheuristic method
has been successfully applied to identify PEMFC model parameters, in-
cluding DE algorithm [26,27], genetic algorithm (GA) [28,29], and PSO
algorithm [30–32]. Also, a hybrid adaptive DE algorithm was applied to
the PEMFC parameter identification problem, and the superiority of the
algorithm was verified through polarization behavior prediction [26].
In [27], a dynamic DE algorithm with a collective guiding factor was
proposed to identify the complex parameters of the PEMFC model. It
could accurately estimate the PEMFC model parameters from polariza-
tion test data. In [28], the effectiveness of the GA in the parameter
identification for the semi-empirical models was verified by selecting
different ranges of unknown parameters based on polarization data. A
novel problem formulation based on the derivative of power to current
was proposed and solved via the GA [29]. Its accuracy and convergence
characteristics were verified using polarization test data under two
different reaction gas pressures and stack temperatures.

However, the traditional GA is known for its complex algorithm
structure, slower optimization convergence, and low precision when
solving high-dimensional problems. Therefore, a PSO-based parameter
identification technique for the Nexa 1.2 kW PEMFC model was pro-
posed in [30]. Furthermore, the momentum PSO was demonstrated
to achieve fast convergence for accurate PEMFC modeling [31]. The
chaos-embedded PSO algorithm with a new objective function was
proposed for PEMFC parameter identification in a more realistic setting
in [32]. The optimization effectiveness was validated using polariza-
tion test data from three commercial fuel cells, namely 250 W Stack,
BCS-500 W stack, and Nedstack PS6.

Unfortunately, the performance of the PSO algorithms depends on
the selection of learning and inertia factors. Tuning of these parameters
demands high computation costs, and inappropriate settings can lead
to premature convergence problems at a later stage. Therefore, in
addition to the commonly used GA and PSO, many novel metaheuris-
tic algorithms have been proposed for the parameter identification
of the semi-empirical PEMFC model. These include the shark smell
optimization (SSO) method [33], golden jackal optimization (GJO)
algorithm [34], and grey wolf optimization (GWO) algorithm [35]. For
example, the SSO method was used to determine the semi-empirical
model’s unknown parameters in [33], with validation using the po-
larization test data of five commercial fuel cell stacks. Similarly, a
PSO-based GJO method was developed to reduce the sum of squared
errors (SSE) of the measured output voltage and the output voltage of
the PEMFC stack in [34]. The results revealed that it outperformed the
other methods under comparison in optimally estimating the PEMFC
model.

Most literature establishes the PEMFC model based on public po-
larization experimental data. In these data, the operating parameters,
including the reaction gas pressure and temperature, exhibits a rela-
tively stable profile, while load variations occur gradually. However,
there are significant differences between the polarization experimental
data and real-world conditions. There, the load current undergoes
rapid changes, while the operating parameters, such as temperature
and reaction gas pressure, display significant variations. In the works
mentioned above, Refs. [29,33,35] used polarization experimental data
under different gas pressure and temperature to verify the accuracy
of the model. The results showed that temperatures and reaction gas
pressures greatly impacted on the performance of the PEMFC and
the accuracy of the model. Therefore, the parameter identification of
primary significance should be based on the actual dynamic conditions.

While various metaheuristic methods have successfully identified
and optimized PEMFC model parameters, each method possesses dis-
tinct characteristics and is best suited for specific optimization prob-
lems, considering factors such as the number of parameters involved,
exploration and exploitation strategies, and other relevant consider-
ations. Furthermore, metaheuristic algorithms inherently suffer from
certain limitations, including sensitivity to population initialization set-
tings, susceptibility to local optima, and premature convergence. There-

fore, there is potential for enhancing the accuracy of these algorithms
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to a certain degree [36,37]. Compared to other search optimization
algorithms, the GWO algorithm has the advantages of simple structure,
easy programming, fewer parameter settings, and fast iteration [38,39].
Therefore, it has been commonly applied in parameter identification
and system optimization. In [35], the PEMFC model based on GWO
was proposed and compared with other algorithms published in the
literature. A hybrid GWO method, including crossover and mutation
operators, was proposed for parameter identification of a PEMFC sys-
tem [40], to enhance the global search capability and effectively avoid
local optima.

For GWO, the initial population position, convergence factor, and
the update formula of the entire wolf pack position has a specific
influence on the optimization performance, leading to the problems of
poor population diversity and slow convergence in later iterations [41,
42]. The traditional metaheuristic algorithm uses pseudorandom num-
bers to generate the initial population position, which tends to cause
problems of uneven population initialization and slow convergence of
the algorithm. A chaotic system has the characteristics of random-
ness, ergodicity, and regularity, which can effectively overcome the
shortcomings of pseudorandom number initialization of the population.
For example, in [43], a chaotic random sequence was employed to
generate the initial population of GA. This strategy effectively ad-
dressed the traditional GA’s dependence on the initial value, improving
the performance. Similarly, in [44], the chaos operator was used to
simultaneously optimize the initial population as well as the random
walk strategy of the ant colony algorithm.

In summary, over the past few years, the development of semi-
empirical modeling approaches has provided effective means of re-
ducing testing costs and circumventing the requirement for extensive
experimental data. The application of various metaheuristic methods
to parameter identification of the PEMFC has yielded successful re-
sults. However, it is worth noting that each method possesses distinct
characteristics concerning the optimization of parameters, exploration,
and exploitation strategies. Consequently, these variations can impose
limitations on the accuracy of the algorithms.

This paper employs an improved grey wolf optimization (IGWO)
algorithm for refining the semi-empirical PEMFC model. It utilizes a
chaotic mapping approach to initialize the population distribution of
the GWO algorithm. This results in a well-balanced population distribu-
tion across the search range, effectively enhancing population diversity.
An improved iteration factor employing the cosine function is designed
to achieve a harmonious balance between global and local search
capabilities during the early and later iterations of the GWO algorithm.
Furthermore, during the latter iterations of the IGWO algorithm, the
grey wolf elite individual random walk strategy is incorporated to
enhance the local search ability of the GWO algorithm.

1.3. Contributions

This paper presents two key contributions to address the challenges
of PEMFC dynamic modeling.

First, a semi-empirical model is developed based on experimental
data obtained from dynamic conditions of a high-power commercial
PEMFC system. The model captures the multi-parameter dynamics and
comprehensively represents the system’s behavior.

Second, the IGWO algorithm leverages chaotic mapping and a ran-
dom walk strategy to optimize the model parameters, enhancing its
accuracy and suitability for dynamic operating scenarios. The effective-
ness of the IGWO algorithm in optimizing the semi-empirical model
under dynamic conditions is demonstrated. A comparative analysis
with traditional optimization algorithms, including GWO, PSO, and GA,
highlights the superior performance of IGWO.

The proposed methodology offers significant advancements in mod-
eling PEMFC systems by incorporating dynamic characteristics and
addressing the limitations of traditional optimization techniques. The
results highlight the efficacy of the IGWO algorithm in optimizing the
semi-empirical model, paving the way for improved system perfor-
3

mance and control strategies in dynamic PEMFC applications. 𝜁
1.4. Outline

The remainder of the paper proceeds as follows. The PEMFC model
is introduced in Section 2. Section 3 details the parameter identification
method of the semi-empirical PEMFC model. The corresponding exper-
imental results are discussed in Section 4, followed by the conclusions
in Section 5.

2. PEMFC model

We adopt the PEMFC model developed in [32–35] to describe the
input–output relationship of the PEMFC system under investigation. In
practical operations, the cell voltage 𝑉fc is significantly lower than the
open-circuit voltage (OCV) 𝐸Ne due to various voltage losses. This is
given by

𝑉fc = 𝐸Ne − 𝑉Act − 𝑉Con − 𝑉Ohm (1)

where 𝑉Act , 𝑉Con, and 𝑉Ohm are voltage losses due to activation, concen-
tration polarization, and ohmic polarization, respectively. The OCV 𝐸Ne
is the ideal potential of the PEMFC obtained from the Nernst equation,
i.e.,

𝐸Ne = 1.229 − 0.000845(𝑇fc − 298.15) + 0.0000413𝑇fcln(𝑃H2
𝑃 0.5
O2

) (2)

where 𝑇fc is the temperature of the PEMFC. 𝑃H2
and 𝑃O2

represent
the gas pressures of the hydrogen and the oxygen in the reaction,
respectively.

The activation polarization voltage loss 𝑉Act is the result of the
driving voltage required by the electrode reaction kinetics. It can be
expressed as

𝑉Act = −[𝜁1 + 𝜁2𝑇fc + 𝜁3𝑇fc ln(𝑀O2
) + 𝜁4𝑇fc ln(𝐼fc)] (3)

𝑀O2
=

𝑃O2

5.08 × 106
exp

(

498
𝑇fc

)

(4)

where 𝜁1, 𝜁2, 𝜁3, and 𝜁4 are four coefficients, 𝐼fc denotes the load
current, and 𝑀O2

represents the oxygen molar concentration.
The concentration polarization 𝑉Con is the consequence of the rapid

consumption of reactants on the electrode, which forms a concentration
gradient. The electrochemical reaction potential will change with the
load current, which can be expressed as

𝑉Con = −𝛽ln
(

1 −
𝐼fc
𝐼max

)

(5)

where 𝛽 is a fitting parameter to be identified and 𝐼max is the limiting
maximum current.

The ohmic polarization 𝑉Ohm includes the intrinsic electronic
impedance and the membrane ionic impedance of conducting mate-
rials, expressed as

𝑉Ohm = 𝐼fc(𝑅m + 𝑅c) (6)

where

𝑅m =
𝜌m𝑙
𝐴fc

(7)

𝜌m =
181.6[1 + 0.03 𝐼fc

𝐴fc
+ 0.062( 𝑇fc303 )

2( 𝐼fc𝐴fc
)2.5]

[𝜆 − 0.634 − 3( 𝐼fc𝐴fc
)] exp(4.18 𝑇fc−303

𝑇fc
)

(8)

Here, 𝑅m and 𝑅c are the membrane ionic and material electronic resis-
tance, respectively. Furthermore, 𝜌m is the proton exchange membrane
specific resistance, 𝑙 is the film thickness, 𝐴fc is the active surface area,
and 𝜆 is the membrane water content.

Finally, considering that the PEMFC system consists of 𝑛fc identical
ells connected in series, the output voltage of the PEMFC system can
e calculated as 𝑉stack = 𝑛fc𝑉fc and the system output power is 𝑃stack =

𝑉stack𝐼fc.
In the above model, the current 𝐼fc, hydrogen pressure 𝑃H2

, oxygen
ressure 𝑃O2

, and temperature 𝑇fc are measurable inputs, and the
oltage 𝑉stack and power 𝑃stack are the measurable outputs. 𝐼max, 𝑙, and
fc are known model parameters. The remaining parameters, including

1, 𝜁2, 𝜁3, 𝜁4, 𝛽, 𝑅c, and 𝜆, are unknown and need to be identified.
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3. Parameter identification method

3.1. PEMFC model parameter identification problem

The unknown parameters of the semi-empirical PEMFC model pre-
sented in Section 2 can be vectorized as

𝑥(𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝛽, 𝑅c, 𝜆) (9)

To identify these parameters, we minimize the SSE between the pre-
dicted voltage values obtained from the semi-empirical model and
the actual voltage values from experimental data. The SSE is easy to
calculate, and is often used to evaluate model fitting performance.
The more closely SSE approaches zero, the higher the level of fitting
precision achieved by the model. In addition, the mean absolute error
(MAE) and the root mean square error (RMSE) are used to evaluate the
model’s overall fitting performance and accuracy. These performance
indicators are defined by

SSE =
𝑀
∑

𝑗=1
(𝑉 𝑗

r − 𝑉 𝑗
m)2 (10)

MAE =

∑𝑀
𝑗=1

|

|

|

𝑉 𝑗
r − 𝑉 𝑗

m
|

|

|

𝑀
(11)

RMSE =

√

√

√

√

∑𝑀
𝑗=1 (𝑉

𝑗
r − 𝑉 𝑗

m)
2

𝑀
(12)

where 𝑗 ∈ {1, 2,… ,𝑀} is the index of the data point and 𝑀 represents
he total amount of data points used for model identification. 𝑉r and 𝑉m

are the reference data and model predicted values of the output voltage
𝑉stack , respectively. The optimization problem is thus to minimize SSE
by tuning the unknown parameters 𝑥 as defined in (9).

3.2. GWO algorithm

The GWO algorithm is inspired by the group predation of grey
wolves in nature. The grey wolf group has a strict hierarchy and unique
hunting mechanism, distributed from high to low, in order of 𝛼 wolf, 𝛽
wolf, 𝛿 wolf, 𝜔 wolf, etc. In particular, the 𝛼 wolf is the core of the wolf
pack, which plays a decisive role in the entire wolf pack during hunting,
moving, and predating. In nature, the hunting mechanism of the grey
wolf group mainly has four parts, including chasing prey, encircling,
harassing, and attacking.

When grey wolves hunt, they find and approach prey through the
information interaction between individual grey wolves. Considering 𝑁
wolves in the pack, the position vector of the 𝑖th individual wolf in the
𝑘th iteration, denoted by 𝑥𝑘𝑖 , is updated by [45]

𝑋𝑛 = 𝑥𝑘𝑛 − 𝐴𝑛 ⋅
|

|

|

𝐶𝑛 ⋅ 𝑥
𝑘
𝑛 − 𝑥𝑘𝑖

|

|

|

, 𝑛 ∈ {𝛼, 𝛽, 𝛿} (13)

𝑥𝑘+1𝑖 =
𝑋𝛼 +𝑋𝛽 +𝑋𝛿

3
(14)

here 𝑥𝑘𝑛 is the position vector of the prey. 𝐴𝑛 and 𝐶𝑛 are coefficient
ectors, given by

𝐶𝑛 = 2 ⋅ 𝑟1 (15)

𝑛 = 2 ⋅ 𝑎 ⋅ 𝑟2 − 𝑎 (16)

ere 𝑎 is the convergence factor that linearly decreases from 2 to 0
ith the number of iterations, 𝑟1 and 𝑟2 are random numbers in the

ange of [0, 1]. After all individual wolves (𝑖 = 1, 2,… , 𝑁) have been
pdated, the top three best positions with smallest fitness values will
4

e identified and used to update 𝑥𝛼 , 𝑥𝛽 , 𝑥𝛿 , respectively.
.3. IGWO algorithm

As seen from the equations presented in Section 3.2, the most
triking difference of GWO to the commonly used GA and PSO algo-
ithms lies in the individual position update mode. Using the position
nformation of three optimal individuals (𝛼, 𝛽, 𝛿) can effectively avoid
he problem of a single local optimal individual during the update of
he position of other individuals in the population, thereby enhanc-
ng algorithm’s global search ability. Although the GWO algorithm
s widely recognized as a state-of-the-art metaheuristic optimization
echnique [35,38], its performance still can be limited by poor pop-
lation diversity and a tendency to converge to local optima. In the
ubsequent sections, we will demonstrate that directly applying the
onventional GWO algorithm to the PEMFC parameter identification
ields low model accuracy.

To address these challenges, we introduce the IGWO algorithm,
hich incorporates several enhancements. First, chaotic mapping is
mployed to initialize the population distribution, thereby promoting
opulation diversity. Second, an improved iteration factor based on
he cosine function is adopted to balance the global search abilities
hroughout the early and late stages of the optimization process. Last,
n the late iterations, the optimal individual wolf undergoes randomly
alking to enhance local search capabilities. As described in the forth-

oming sections, the IGWO algorithm offers a simple structure and
igh implementability, and serves as a proposed solution for effectively
ddressing the parameter identification problem in the semi-empirical
EMFC model.

The procedure of optimizing the semi-empirical PEMFC model by
sing the proposed IGWO algorithm is illustrated in Fig. 1, which
ncludes six steps denoted as ‘Start’, ‘Step 1’ to ‘Step 4’, and ‘End’.
imilar to the traditional GWO algorithm, the ‘Start’ step configures the
yperparameters, including the total number of iterations (𝐾), popula-
ion size (𝑁), dimension of the unknown model parameter vector (𝑑𝑖𝑚),
nd range of each model parameter. For the present semi-empirical
EMFC model optimization problem, the 𝑑𝑖𝑚 is set to 7. 𝐾 and 𝑁

are set to 800 and 200, respectively, which are tuned according to
the actual optimization results. Step 1 serves as the initialization of
the population distribution through chaotic mapping. According to the
hyperparameters set at the ‘Start’ step, the chaotic mapping method
uniformly distributes grey wolf individuals within the allowable range
of model parameters. Step 2 aims to search for the optimal position
of the individual and update or retain the optimal position of indi-
vidual grey wolves (𝛼, 𝛽, and 𝛿) by calculating the fitness value of
each individual grey wolf in the population. Step 3 implements the
elite individual random walk strategy. An improved iterative factor
is used to balance the grey wolf population’s global and local search
capabilities in the early and late stages of the iterative GWO algorithm.
The elite individual random walk equation is added in the late stage
of the algorithm to enhance the local search capability in the late
stage and improve the accuracy of the optimal solution. In Step 4, the
individual position update of grey wolves is calculated. Before entering
a new iteration, the optimal solution (𝛼 wolf position) is extracted at
the ‘End’ step. It should be noted that, ‘Step 1’ to ‘Step 4’ in Fig. 1 are
the core steps for optimizing the semi-empirical PEMFC model, and the
algorithm will be explained in detail next.

Step 1: Chaotic mapping population initialization distribution
The chaotic system possesses inherent characteristics of ergodicity

and randomness, which is conducive to improving population diversity
and expanding the search space. Therefore, we employ an individual
update method based on chaotic logistic variation to initialize the grey
wolf individuals. The approach to calculating the position distribution
is as follows

𝑍1 = rand(1, 𝑑𝑖𝑚) (17)

𝑍𝑖 = 𝑐𝑍𝑖−1(1 −𝑍𝑖−1) (18)
1
𝑥𝑖 = 𝑋min +𝑍𝑖(𝑋max −𝑋min) (19)
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Fig. 1. Flowchart of the proposed IGWO algorithm for PEMFC model parameter identification.
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here 𝑐 ∈ [0, 4] is the chaotic coefficient, 𝑖 ∈ {1, 2,… , 𝑁} is the index of
ndividual grey wolf, and 𝑍𝑖 is the vector the chaotic system generates,
∈ [0, 1]. 𝑋max and 𝑋min are the upper and lower threshold vectors for

he parameter vector, respectively. 𝑥1𝑖 represents the initial position of
ndividual 𝑖 after chaotic mutation generated at the first iteration.
Step 2: Search for the optimal location
In the first iteration, the three individuals with the best fitness value

n the population are selected as grey wolves 𝛼, 𝛽, and 𝛿, respectively.
It can be expressed by

𝑓𝛼(𝑥𝛼) < 𝑓𝛽 (𝑥𝛽 ) < 𝑓𝛿(𝑥𝛿) (20)

here 𝑓𝛼 , 𝑓𝛽 , and 𝑓𝛿 present the corresponding fitness values. As the
teration progresses, the position of each individual, denoted by 𝑥𝑘𝑖 , is
pdated after the calculation of the position in Step 4. The positions of
rey wolves 𝛼, 𝛽, and 𝛿 are updated by comparing the optimal fitness
alues 𝑓𝛼 , 𝑓𝛽 , and 𝑓𝛿 calculated in the previous iteration.
Step 3: Elite individual random walk strategy
The traditional GWO algorithm’s iterative factor decreases linearly,

eading to a wide search range for the wolves in the early stage but
he range becomes overly narrow in the late stage [40,46]. To address
his limitation, a piecewise nonlinear decline function is proposed and
5

t

esigned as follows

=

{

1.5 cos ( 2𝑘𝜋3𝐾 ) + 0.5, 𝑘 ≤ 3𝐾
4

0.5 cos ( 2𝑘𝜋𝐾 − 𝜋) + 0.5, 𝑘 > 3𝐾
4

(21)

where 𝑎, 𝑘, and 𝐾 are the iterative convergence factor, the index
of the iteration, and the total number of iterations, respectively. The
piecewise nonlinear decline function provides a more comprehensive
global search range during the early iteration period and a more
accurate search range during the late iteration period. To enhance the
local search ability of wolves in the late iteration period, we incorporate
a random walk strategy for elite individuals to allow for exploration of
the search space and improve the chances of finding better solutions
locally. This is given by

𝑥′𝛼 = 𝑥𝑘𝛼 + 𝜀(𝑥𝑘𝛼 − 𝑥𝑘𝛿 ) (22)

where 𝑥𝑘𝛼 and 𝑥𝑘𝛿 represent the positions of wolves 𝛼 and 𝛿 in the grey
olf population, respectively. 𝜀 is the random coefficient uniformly
istributed in [0,1]. 𝑥′𝛼 denotes the position of wolf 𝛼 after applying the
andom walk strategy. The elite individuals of grey wolves search for
he best position in a small area. Additionally, the greedy mechanism is
mployed to compare the position and fitness of elite individuals after
igration with the current iteration’s optimal position. The new posi-

ion and fitness value are retained using the following calculation [47]
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Fig. 2. Framework of the proposed semi-empirical PEMFC model optimized by the IGWO algorithm.
𝑥𝑘𝛼 =

{

𝑥′𝛼 , 𝑓 (𝑥
′
𝛼) ≤ 𝑓𝛼

𝑥𝑘𝛼 , 𝑓 (𝑥
′
𝛼) > 𝑓𝛼

(23)

Step 4: Individual position renewal
Grey wolves search for prey through information interaction be-

tween individuals and update their positions according to the position
vectors of grey wolves 𝛼, 𝛽, and 𝛿 (denoted by 𝑥𝑘𝛼 , 𝑥𝑘𝛽 , and 𝑥𝑘𝛿 ) when
moving. The calculation is the same as in the GWO, i.e.,

𝑥𝑘+1𝑖 =
𝑋𝛼 +𝑋𝛽 +𝑋𝛿

3
(24)

where

𝑋𝑛 = 𝑥𝑘𝑛 − 𝐴𝑛 ⋅
|

|

|

𝐶𝑛 ⋅ 𝑥
𝑘
𝑛 − 𝑥𝑘𝑖

|

|

|

, 𝑛 ∈ {𝛼, 𝛽, 𝛿} (25)

Here, 𝑥𝑘𝑖 and 𝑥𝑘+1𝑖 are the position information of individual 𝑖 at the
iterations 𝑘 and 𝑘 + 1, respectively. 𝑋𝑛 is the relative position vectors
of individual 𝑖, and 𝐴𝑛 and 𝐶𝑛 are corresponding random coefficient
vectors as explained in Section 3.2.

4. Experimental verification and analysis

This section begins by analyzing three operating conditions of the
110-kW commercial PEMFC system. Next, the results of model pa-
rameter identification using four meta-heuristic methods are discussed.
Finally, the model errors under three operating conditions are analyzed.

4.1. PEMFC experiment and conditions

We investigate a 110-kW commercial PEMFC system, and its spec-
ifications are given in Table 1. The normal operating temperature of
this PEMFC is between 50 ◦C and 80 ◦C, the control range of anode
hydrogen pressure is from 120 kPa to 270 kPa, and the control range
of cathode oxygen pressure is from 110 kPa to 270 kPa. To obtain
the operation data of this PEMFC under dynamic operating conditions
6

Table 1
PEMFC specifications.

PEMFC parameters Value

Rated power (kW) 110
Operating temperature (◦C) 50–80
Hydrogen pressure (kPa) 120–270
Oxygen pressure (kPa) 110–270

and establish a semi-empirical PEMFC model, the PEMFC experimental
platform and model establishment process is shown in Fig. 2.

The available data include the measurable model inputs and outputs
as described in Section 2, i.e., the voltage, current, pressures, and
temperature. The fuel cell control unit (FCCU) collects measured data
and sends the information to different components via the controller
area network (CAN) bus. At the same time, the FCCU communicates
with the DC converter to receive the stack voltage and current through
the CAN. The data acquisition system (DAS) receives operational data
of the PEMFC system transmitted from the FCCU via the CAN bus
and stores the data in the computer. The sampling frequency used by
the sensor is 1 Hz. The stored current, temperature, and reaction gas
pressure are inputs to the semi-empirical PEMFC model established in
Section 2, and the output is expressed as the model voltage. The SSE
between the model voltage and the actual voltage is used as the fitness
function, and the IGWO algorithm minimizes the SSE value to optimize
the model parameters.

We use three experimental conditions, denoted by Conditions 1
to 3, to establish and verify the proposed semi-empirical model of
the PEMFC system. Condition 1 involves a hybrid experiment lasting
1.39 h, which includes short-term durability and polarization tests.
Condition 2 comprises a dynamic durability experiment spanning 4.8 h.
Condition 3 is a 2.5 h polarization experiment carried out in accordance
with GB/T 24554–2009, which is a Chinese national standard for fuel
cell system performance tests [48]. According to GB/T 24554–2009,
a minimum of ten power points are uniformly selected within the
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Fig. 3. Measured data of three conditions.
operating range of the fuel cell system. Stable and continuous operation
is maintained for at least 3 minutes at each operating point. Therefore,
Condition 3 consists of a total of 17 power points.

The ranges and average values of different operating parameters of
the PEMFC system under the three conditions are shown in Table 2.
These parameters include operating power 𝑃stack , voltage 𝑉r , current
𝐼fc, hydrogen pressure 𝑃H2

, oxygen pressure 𝑃O2
, and temperature 𝑇fc.

The parameter ranges are similar in all three experiments. The power
𝑃stack varies between 3.32 kW and 144.53 kW, the voltage 𝑉r ranges
from 240.82 V to 345.30 V, the current 𝐼fc varies from 9.71 A to
549.84 A, the PEMFC temperature 𝑇 fluctuates between 46.35 ◦C
7

fc
and 83.50 ◦C, the hydrogen pressure 𝑃H2
changes from 132.12 kPa

to 234.28 kPa, and the oxygen pressure 𝑃O2
spans from 117.78 kPa to

244.92 kPa. The average values for those parameters, however, show
noticeable differences among the three conditions.

The voltage, current, power, temperature, intake hydrogen pressure,
and intake oxygen pressure for the three conditions are shown in Fig. 3.
It can be seen that the variations of the intake pressure of hydrogen
and oxygen over time exhibits similar trends to that of current and
power. For instance, in Condition 1 (refer to Fig. 3(a) and (b)), the
power, current, voltage, hydrogen pressure, and oxygen pressure all
reach their maximum values at approximately 1800 s. Condition 1
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Table 2
Condition characteristic parameters.
Condition Data 𝑃stack

(kW)
𝑉r
(V)

𝐼fc
(A)

𝑃H2

(kPa)
𝑃O2

(kPa)
𝑇fc
(◦C)

Condition 1
Max 144.53 345.30 549.82 234.28 244.92 83.50
Min 3.32 241.06 9.71 132.12 117.78 53.84
Average 65.91 289.11 244.71 166.05 160.05 70.04

Condition 2
Max 144.53 327.64 549.72 234.28 244.32 83.32
Min 15.11 240.82 49.22 133.28 117.78 58.77
Average 91.31 273.17 350.52 185.28 183.76 72.81

Condition 3
Max 141.92 345.30 549.84 230.64 244.92 83.50
Min 3.32 254.43 9.71 132.12 120.46 46.35
Average 71.71 286.94 264.59 172.68 167.90 70.58
Table 3
Parameters range of the PEMFC model.
Parameter 𝜁1 𝜁2 𝜁3 𝜁4 𝛽 𝑅c 𝜆

Upper limit −0.5 1 × 10−2 1 × 10−3 −1 × 10−5 1 8 × 10−4 23
Lower limit −2 1 × 10−3 5 × 10−6 −3 × 10−4 5 × 10−4 1 × 10−4 13
stands out for its wide power operating range, comprehensive data
coverage, and high data quality. Therefore, when training the model,
utilizing the operating data from Condition 1 enables better model
fitting, thereby allowing a semi-empirical model applicable to multiple
operating points of PEMFC. It showcases the selected semi-empirical
model’s fitting capability and enhances its universality. Consequently,
Condition 1 is chosen as the parameter identification condition for
the model, facilitating a comprehensive description of the model’s
applicability across a wide range of operating power points.

4.2. Parameter identification result

The parameter identification process is conducted using the ex-
perimental data for Condition 1. First, the ranges for the unknown
parameters of the semi-empirical PEMFC model are set according to
Table 3 [28]. Subsequently, four intelligent algorithms, IGWO, GWO,
PSO, and GA, are employed to optimize the semi-empirical PEMFC
model. The intelligent optimization is repeatedly performed 20 times.

Fig. 4 displays the SSE of each optimization process. A double-axis
plot is utilized to better compare the SSE among the four parameter
identification methods. When comparing IGWO, GWO, PSO, and GA, it
is evident that GA exhibits large and unstable SSE values, indicating low
optimization accuracy. The SSE values optimized by PSO are similar
to GWO, but the SSE still exhibit instability. The SSE value range is
divided into [0.28, 0.29), [0.29, 0.3), [0.3, 0.31), and [0.31,+∞). Within the
range of [0.28, 0.29), the IGWO algorithm accounts for 70%, while the
GWO represents 30%, and the PSO and the GA are both zero. Compared
to the GWO algorithm, PSO and GA demonstrate significantly weaker
optimization abilities. The IGWO algorithm effectively enhances the
accuracy and stability of the GWO algorithm, as evidenced by the SSE
value and probability distribution.

For model verification, the model parameters corresponding to the
minimum SSE values of the four algorithms are selected and presented
in Table 4, along with the computational time of each model. Under
Condition 1, the running time of the four algorithms is similar, with
the IGWO algorithm not significantly increasing the computational time
compared to the traditional GWO algorithm. While the convergence
time of the IGWO is slightly longer than that of the GWO, it is still
shorter than that of the PSO and GA. In the subsequent analysis, we
will utilize these optimized model parameters to evaluate the accuracy
and versatility of the four PEMFC models.

4.3. Model error analysis

In this subsection, Conditions 1 to 3 are used to assess the accuracy,
versatility, and generalization of the proposed models. With a slight
8

Table 4
PEMFC model parameters optimized with four identification methods.

Parameter 𝜁1 𝜁2 𝜁3 𝜁4 𝛽 𝑅c 𝜆 Runtime
Unit – ×10−3 ×10−4 ×10−4 ×10−4 ×10−4 – s

IGWO −1.29 7.66 3.30 −1.15 5.88 2.85 22.95 948.4
GWO −1.31 8.45 3.83 −1.11 20.04 3.10 22.59 947.9
PSO −1.34 6.70 2.44 −1.37 10.00 1.32 13.00 954.2
GA −1.93 9.28 3.13 −0.99 19.77 3.41 19.18 962.3

Fig. 4. Optimizing SSE value for 20 times.

abuse of terminology, in the following context, we denote a model
whose parameters are optimized by IGWO, GWO, PSO, and GA as the
IGWO model, GWO model, PSO model, and GA model, respectively.

Figs. 5(a), 6(a), and 7(a) illustrate the output voltage of PEMFC
models based on four parameter identification methods under Condi-
tions 1 to 3, while Figs. 5(b), 6(b), and 7(b) present the corresponding
model errors. The overlapping areas of the results for the four models
have been partially enlarged to enhance clarity. It can be observed that
all models effectively capture the voltage change trend.

Specifically, Condition 1 serves as the foundation for establishing
the model. The resultant output voltage and model error are displayed
in Fig. 5. As observed from Fig. 5(a), the GA model demonstrates low
accuracy, while IGWO, GWO, and PSO models closely replicate the
original voltage curve. Model errors are shown in Fig. 5(b). Voltage
errors of IGWO, GWO, and PSO models predominantly fall between
−5 V and 5 V, while the voltage errors of GA models span from −5 V
to 10 V. The maximum voltage error (MAX), MAE, and RMSE of the
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Fig. 5. Comparison of four models under Condition 1.
four models are compared in Table 5. The MAX of the IGWO, GWO,
and PSO models are 11.59 V, 11.87 V, and 12.37 V, respectively,
significantly lower than that of the GA model. The MAE and RMSE of
the IGWO model are 2.17 V and 3.01 V, respectively, smaller than the
other three models. The MAE and RMSE of the GWO model are 2.25 V
and 3.05 V, respectively, smaller than the PSO model. Therefore, the
IGWO model outperforms in terms of minimal overall error and high
numerical stability, rendering it better suited for accurately capturing
the actual PEMFC output performance.

Conditions 2 and 3 are utilized for model verification. The predicted
voltage and model error are shown in Figs. 6 and 7, respectively.
Similarly to the findings in Condition 1, Fig. 6(a) and Fig. 7(a) re-
veals the limited accuracy of the GA model, whereas IGWO, GWO,
and PSO models closely align with the original voltage curve. Model
errors corresponding to Conditions 2 and 3 are shown in Fig. 6(b) and
Fig. 7(b), respectively. All four models demonstrate substantial errors
when subjected to extremely high and low load currents. As shown in
9

Table 5, the GA model exhibits a considerably higher MAX of 18.26 V
and 16.36 V under Conditions 2 and 3, respectively, exceeding those
of the other three models. In Condition 2, the MAE and RMSE of the
IGWO model are 1.57 V and 2.12 V, respectively, which are the lowest
amongst all models. The MAE and RMSE of the GWO model are 1.82
V and 2.35 V, respectively, smaller than the PSO model. In Condition
3, the MAE and RMSE of the IGWO model are 1.91 V and 2.15 V,
respectively, lower than those of the GWO model but slightly higher
than that of the PSO model. In addition, the MAX of the IGWO model
is 5.42 V, smaller than the PSO model’s 6.15 V. These results emphasize
the fluctuation of model error influenced by the specific operating
conditions. Nevertheless, the outcomes indicate that IGWO effectively
optimizes the semi-empirical PEMFC model under both Conditions 2
and 3 during the verification process. The fitting accuracy of the IGWO
model is higher than that of the GWO model across all three operating
conditions. Moreover, in comparison to the PSO and GA models, the



Fuel 357 (2024) 129589H. Zhou et al.
Fig. 6. Comparison of four models under Condition 2.
IGWO model features a simpler structure with fewer parameters to be
configured.

5. Conclusion

This paper presents an IGWO algorithm for identifying parameters
in a proposed semi-empirical PEMFC model. This approach addresses
the limitations inherent in the traditional GWO algorithm. Further-
more, to evaluate the effectiveness and practicability of the IGWO
algorithm, the experimental data obtained from a 110-kW commercial
PEMFC system under highly dynamic operating conditions were di-
vided into several parts for model establishment and verification. The
primary research findings are summarized below:

(1) When initializing the population distribution, the IGWO algo-
rithm uses chaotic mapping to optimize the traditional GWO algorithm.
10
Table 5
Error analysis of four models under three conditions.

Condition Model MAX MAE RMSE

Condition 1

IGWO 11.59 2.17 3.01
GWO 11.87 2.25 3.05
PSO 12.37 2.27 3.14
GA 18.26 3.16 4.45

Condition 2

IGWO 13.30 1.57 2.12
GWO 13.50 1.82 2.35
PSO 12.58 1.68 2.23
GA 18.26 2.09 2.76

Condition 3

IGWO 5.42 1.91 2.15
GWO 5.21 2.01 2.29
PSO 6.15 1.87 2.11
GA 16.36 3.44 4.31
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Fig. 7. Comparison of four models under Condition 3.
Compared to initializing the distribution using random numbers, chaotic
mapping can evenly distribute the population position and improve the
diversity and convergence speed of the population.

(2) An adaptive iterative factor, improved through the utilization of
the cosine function, was designed to balance the search capabilities of
the grey wolf population during both initial and later stages. Addition-
ally, a random walk strategy was introduced for elite individuals of the
grey wolf in the later iterations of the algorithm, thereby enhancing the
local search capabilities.

(3) An analysis was given focused on the fitting accuracy of the
semi-empirical model optimized by IGWO, GWO, PSO, and GA algo-
rithms. Simulation results show that, under verification conditions, the
IGWO algorithm can retain the MAX, MAE, and RMSE of the predicted
PEMFC voltage within 13.30 V, 2.17 V, and 3.01 V, respectively.
11
Compared to state-of-the-art GWO, PSO, and GA, the IGWO algo-
rithm offers the merits of simpler structure, minimum efforts for hyper-
parameter setting, easy implementation, and high predictive accuracy.
These attributes highlight that IGWO is well-suited for semi-empirical
PEMFC model optimization at dynamic operation. The demonstrated
advantages of the IGWO algorithm also suggest its applicability extends
to various engineering challenges, including solving the problems of
path optimization and energy allocation.

This paper also reveals that a single semi-empirical model cannot
sufficiently capture all the PEMFC output characteristics. Establishing
a generic model capable of accommodating more dynamic operations
is the basis of more comprehensive PEMFC modeling and advanced
control. Therefore, forthcoming research on the PEMFC model should
be focused on two principal aspects: identifying and prioritizing the
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influence of different factors on the output characteristics and es-
tablishing a versatile control-oriented model tailored for the PEMFC
system.
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