
A flow-rate-aware data-driven model of vanadium redox flow battery based on gated
recurrent unit neural network⋆

Binyu Xionga, Jinrui Tanga, Yang Lib,∗, Peng Zhoua, Shaofeng Zhanga, Xinan Zhangc, Chaoyu Dongd, Hoay Beng Gooie

aSchool of Automation, Wuhan University of Technology, Wuhan, China.
bDepartment of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.

cSchool of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Australia.
dAgency for Science, Technology and Research, Singapore.

eSchool of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

Abstract

The vanadium redox flow battery (VRB) system involves complex multi-physical and multi-timescale interactions, where the elec-
trolyte flow rate plays a pivotal role in both static and dynamic performance. Traditionally, fixed flow rates have been employed for
operational convenience. However, in today’s highly dynamic energy market environment, adjusting flow rates based on operating
conditions can provide significant advantages for improving VRB energy conversion efficiency and cost-effectiveness. Unfortu-
nately, incorporating the electrolyte flow rate into conventional multi-physical models is overly complex for VRB management and
control systems, as real-time operations demand low-computational and low-complexity models for onboard functionalities. This
paper introduces a novel data-driven approach that integrates flow rates into VRB modeling, enhancing data processing capabilities
and prediction accuracy of VRB behaviors. The proposed model adopts a gated recurrent unit (GRU) neural network as its funda-
mental framework, exhibiting exceptional proficiency in capturing VRB’s nonlinear voltage segments. The GRU network structure
is carefully designed to optimize the predictive ability of the model, with flow rate considered as a crucial input parameter to ac-
count for its influence on VRB behavior. Model refinement involves analyzing well-designed simulation results obtained during
VRB operations under various flow rates. Laboratory experiments were also designed and conducted, covering different conditions
of currents and flow rates to validate the proposed data-driven modeling method. Comparative analyses were performed against
several state-of-the-art algorithms, including equivalent circuit models and other data-driven models, demonstrating the superiority
of the proposed GRU-based VRB model considering flow rates. Thanks to the GRU’s outstanding capability in processing time
series data, the proposed model delivers impressively accurate terminal voltage predictions with a low error margin of no more than
0.023 V (1.3%) under wide operating ranges. These results indicate the efficacy and robustness of the proposed approach, high-
lighting the novelty and significance of accounting for flow rates in accurate VRB modeling for management and control system
design.
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1. Introduction

As an emerging energy storage technology, vanadium redox
flow batteries (VRBs) offer high safety, flexible design, and
zero-emission levels, rendering them particularly well-suited
for long-duration operations and a promising option in our ef-
forts to achieve future carbon neutrality [1, 2, 3]. Therefore,
VRBs have demonstrated their potential in various modern ap-
plications, such as serving as reliable power sources for com-
munication base stations, utility-scale energy storage, and mi-
crogrids [4, 5]. As the scope of the applications widens, there
is a growing need for highly precise VRB models for effective
management of these delicate electrochemical devices. How-
ever, due to VRBs’ complex operational mechanisms and the
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infinite-order nature, developing a simplified yet accurate VRB
model for online use of advanced battery management and op-
timal control poses a fundamental challenge [6, 7].

Existing VRB models can be categorized into electrochemi-
cal models (EMs), equivalent circuit models (ECMs), and data-
driven models (DDMs) [8]. EMs typically consist of a set of
highly complex partial differential-algebraic equations, primar-
ily used for battery design and performance analysis [9]. De-
veloping a reliable EM requires in-depth knowledge of the in-
ternal mechanisms of VRBs, which can be a significant chal-
lenge for many power engineers who lack a background in elec-
trochemistry and multi-physics modeling [10]. In contrast to
EMs, ECMs are established to mimic the external characteris-
tics through electrical equivalence [11]. Commonly used ECMs
are based on the relationship among various electrical circuit
components, such as resistance and capacitance [12]. ECMs
often neglect the influence of the electrolyte flow rates on the
VRB’s external characteristics since the flow rate is typically



considered fixed and not subject to adjustment during operation
[13].

Recent studies, however, have revealed that varying the flow
rates of VRBs might significantly improve their system effi-
ciency [14, 15]. For example, Khazael et al. conducted an
analysis on how the flow rates affect VRB performance and
found a correlation between flow rates and voltage drop [16].
This connection arises because the flow rate is closely related
to the concentrations of vanadium ions and protons inside the
battery, thus affecting the terminal voltage of VRBs [17]. By
ignoring the influence of the flow rate, the terminal voltage
is calculated based on a simple transformation and superposi-
tion of linear and negative exponential functions, limiting the
fitting ability of nonlinear segments. Previous studies on the
flow rate influence on the VRB mainly focused on establish-
ing equivalent hydraulic models without considering the inter-
nal electrochemical characteristics. However, it is well-known
that the hydraulic and electric fields in VRBs are highly cou-
pled. A single equivalent circuit in the coupled model can only
describe phenomenological behaviors within a limited operat-
ing range, while accurately replicating system behaviors and
reflecting the completing internal operational mechanisms un-
der all allowable operating conditions might require complex
model structures and carefully designed experiments for identi-
fying the high-dimensional model parameters [18, 19].

In contrast, establishing a DDM does not require prior
knowledge of system mechanisms or physical model structures,
and the model accuracy can be readily improved by increas-
ing the training data size and type [20]. Additionally, DDMs
have outstanding capability to identify nonlinear characteris-
tics, making them highly suitable for the diverse operating con-
ditions of modern energy systems such as lithium-ion (Li-ion)
batteries. For instance, in [21], Li-ion batteries were modeled
using the back-propagation neural network (BPNN), and the
BPNN’s weights and thresholds were optimized using the par-
ticle swarm optimization (PSO) algorithm based on the Levy
flight strategy. Another BPNN was proposed in [22], which
was trained by the Levenberg-Marquardt algorithm and opti-
mized through the genetic algorithm and PSO. However, in
BPNNs, information is transferred in a unidirectional manner,
and the influence of the past output on the present input is ig-
nored, weakening the model’s predictability. To address this
problem, a multi-layer perceptron was employed to establish a
Li-ion battery model in [23], where the data sequence was split
into discrete points. Although the external characteristics of the
battery show regularity and continuity over time, the models
[20, 21, 22, 23, 24] ignored the time-series feature, resulting in
limited accuracy for long-term data.

Due to the rapid growth in battery data volume in recent
years, deep learning has been explored for modeling Li-ion bat-
tery to consider the features in the time series. For example, in
[25], a Li-ion battery model based on a recurrent neural net-
work (RNN) with a time lag was proposed. RNNs have a mem-
ory function that makes them suitable for simulating temporal
processes. However, RNNs are limited in their ability to capture
long-term dependencies in data, often leading to the issues such
as gradient disappearance or explosion. To solve this problem,

an RNN model in [26] divided the hidden layers into different
modules by clock-controlled RNN and assigned specified clock
speeds for each module to mitigate the long-term dependencies.
Nevertheless, traditional RNNs may still encounter gradient-
related issues. Introducing a long-short-term memory (LSTM)
unit can effectively control the information accumulation rate,
selectively incorporate new information, and forget previous
information, making them suitable for handling long-term se-
ries data. Thus, in [27, 28], a convolutional neural network
(CNN) and an LSTM network were combined and optimized
by a honey badger algorithm. The gated recurrent unit (GRU)
neural network is another option for long-term series data , of-
fering memory capability similar to LSTM but with a simpli-
fied network structure and fewer hidden layer neurons. With
their looped network knot, GRUs are more suitable for process-
ing temporal data, thereby effectively improving the problem of
long-term dependence [29]. A Li-ion battery model, featuring
the GRU as its core component and employing deep feature se-
lection was proposed in [30], where the input quantities were
weighted before fed into the GRU structures.

While extending the aforementioned DDMs to VRB systems
may seem straightforward, there remains a scarcity of relevant
research in this domain. Assessing the applicability of exist-
ing data-driven techniques to VRBs requires individual evalua-
tion, taking into account the notable structural and operational
differences between Li-ion batteries and VRBs, as discussed
earlier [31]. For example, pioneering studies on VRB DDMs
based on deep learning were introduced in [20, 28]. However,
it should be noted that both of these studies assume a constant
flow rate. Furthermore, in [29], a physics-informed CoKrig-
ing model was proposed, where the battery is discharged and
charged at a constant current. These assumptions significantly
deviate from the evolving requirements of new VRB applica-
tions, which demand continuous adjustment of flow rates [32].

In view of the above, this paper contributes to proposing
a novel data-driven modeling framework tailored for VRBs,
marking the early attempt of a flow-rate-aware approach. More
specifically, we employ a GRU neural network to character-
ize VRB performance without the need for prior knowledge of
the complex internal mechanisms. The GRU has the capabil-
ity to approach the nonlinear characteristic of the VRB, and
its recurrent and gated structures can alleviate the timing de-
pendence problems of conventional neural networks to handle
larger datasets. Flow rate, current, state of charge (SOC), and
historical voltage are selected as inputs to the model, which
reflects the VRB behaviors via multi-physics fields. Experi-
ments under systematically varying current and flow rates are
designed and conducted on a laboratory VRB platform to vali-
date the proposed models.

The rest of this paper is organized as follows: Section 2 out-
lines the framework of the DDM of VRB, including the extrac-
tion of GRU-based temporal features and the setting of hyper-
parameters. Section 3 details the experimental platform, exper-
imental design, and the data processing procedures. The effect
of flow rates on the performance of VRBs is also analyzed. Sec-
tion 4 assesses the accuracy of the proposed model under vary-
ing flow rates by comparing it with experimental data and other
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existing models. Finally, we present our concluding remarks
are in Section 5.

2. A data-driven VRB model based on GRU neural net-
works

The flow-rate-aware DDM framework for VRBs is depicted
in Fig. 1, consisting of three key steps:

1) Determination of the model structure.
2) Experimental design and data collection.
3) Model training and validation.
To predict the VRB terminal voltage, the data sequences are

first normalized and directed to the input layer. Subsequently,
the temporal features of each sequence are individually ex-
tracted through a GRU layer. Given that the cutoff voltage of
experiments is manually set, the sequences need to pass through
a sigmoid layer to restrict the output within the range of [0,1].
Finally, a fully connected layer is utilized to calculate the model
output.

2.1. Temporal feature extraction based on GRU
Since the external characteristics of VRBs exhibit regular-

ity and continuity over time, continuous data in time contain
more information [33]. Therefore, the time-series model of
VRB based on neural networks can approximate nonlinear re-
lationships and better handle the connections between external
characteristics. The GRU-RNN is shown in Fig. 2, where we
use the subscripts t and t − 1 to represent the current and the
previous time instants, respectively, and xt and ht represent the
input and the output of the GRU, respectively. Since the GRU
has fewer parameters than the LSTM, the training process of
the GRU is more straightforward and faster [29, 33]. The GRU
state is updated by:

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̃t (1)

zt = σ (Wzxt + Uzht−1 + bz) (2)

h̃t = tanh (Whxt + Uh (rt ⊙ ht−1) + bh) (3)

rt = σ (Wr xt + Urht−1 + br) (4)

where ⊙ represents the element-wise product. h̃t, zt, and rt are
the candidate state, the update gate, and the reset gate, respec-
tively. The update gate zt ∈ [0, 1] is used to balance between the
input and forget and the reset gate rt ∈ [0, 1] is to control the
dependence of the candidate state on the previous state. Fur-
thermore, W j, U j, and b j ( j ∈ {h, z, r}) represent the learnable
network parameters associated with the specific network struc-
ture.

2.2. Selection of hyperparameters
The selection of model hyperparameters is accomplished

through an iterative trial-and-error approach. Specifically, the
batch size is set to 16, the learning rate is set to 0.005, and the
model employs a single-layer GRU structure. The numbers of
neurons in the input and output layers are determined by the
numbers of input and output features. The hyperparameters of
the GRU neural network used in this work are given in Table 1.

2.3. Training the GRU neural network
This subsection provides a concise overview of the GRU neu-

ral network training process. Initially, the data undergo normal-
ization to eliminate the influence of different scales and units as
follows:

x̄i =
xi − xmin

xmax − xmin
(5)

where xmax and xmin are the maximum and the minimum val-
ues in the dataset, respectively. Normalizing the data ensures
that the neural network effectively processes and learns from
the input features without being skewed by variations in scales
or units, leading to more accurate and reliable predictions. Sub-
sequently, we employed the mean squared error (MSE) as the
chosen loss function for the training process.

L (ŷi, yi) =
1
n

n∑
i=1

(ŷi − yi)2 =
1
n

n∑
i=1

( f (x̄i, θ) − yi)2 (6)

where ŷi is the predicted value of the output yi, f (x̄i, θ) repre-
sents the GRU function, and θ represents all the parameters (W,
U, and b), and n is the number of data samples in the training
set. The BP algorithm is used to reduce the error by adjust-
ing the connection weights of each layer, and the weights are
obtained by gradient descent, which is optimized by the Adam
method. Here, the partial derivative of the loss function for the
network parameter θ is:

ht (θ) =
1
n

∑
(x̄i,yi)∈In

∂L (yi, f (x̄i, θ))
∂θ

(7)

where In is the selected data set. The updated gradient gt is
defined as:

gt = ht (θt−1) (8)

The first-order moment Mt and second-order moment Gt of gt

are calculated by:

Mt = β1Mt−1 + (1 − β1) gt (9)

Gt = β2Gt−1 + (1 − β2)g2
t (10)

where β1 = 0.9 and β2 = 0.999 are two dynamic average rates.
Mt and Gt are updated to correct possible biases:

M̂t =
Mt

1 − βt
1

(11)

Ĝt =
Gt

1 − βt
2

(12)

Then, the new parameters are updated according to:

θt = θt−1 + ∆θt = θt−1 − α
M̂t√

Ĝt + ε
(13)

Here, the parameter ε is set to 10−8 to ensure numerical stability
during training. The initial learning rate α is set to 0.005 and
after t = 20 s, the learning rate is multiplied by 0.2. This ap-
proach enhances the convergence and facilitates efficient adap-
tation of the model to the data, resulting in improved overall
performance.
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Nomenclature

Abbreviation

BPNN Back-propagation neural network

CNN Convolutional neural network

DDM Data-driven model

ECM Equivalent circuit model

EM Electrochemical model

GRU Gated recurrent unit

Li-ion Lithium-ion

LSTM Long-short-term memory

MAE Mean absolute error

MSE Mean squared error

PSO Particle swarm optimization

R2 R-square

RMSE Root-mean-square error

RNN Recurrent neural network

SOC State of charge

VRB Vanadium redox flow battery

Symbol

α Learning rate

x̄ Normalized input of GRU or model

ȳ Mean value of model output

β1,β2 Dynamic average rates

Ĝ Corrected G

M̂ Corrected M

ŷ Predicted value of model output

L Loss function

θ All the learnable parameters

h̃ Candidate state of GRU

ε Update parameter

b A learnable parameter vector

f GRU function

G Second moment of g

g Updated gradient

h Output of GRU

M First moment of g

n Number of data samples

Qacc Accumulated charge

Qnom,chg Nominal charging capacity

Qnom,dch Nominal discharging capacity

r Reset gate of GRU

U A learnable parameter matrix

W A learnable parameter matrix

x Input of GRU or VRB model

xmax Maximum value of input data

xmin Minimum value of input data

y Actual value of model output

z Update gate of GRU

SOC0 Initial SOC

SOCchg SOC during charging

SOCdch SOC during discharging

Subscript

i Data sample index

j ∈ {h, z, r}

t Time index
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Figure 1: Framework of the proposed flow-rate-aware DDM of VRBs.

Table 1: Hyperparameters of the GRU neural network
Layer Number of Neurons Activation Function

Input Layer 4 –

GRU Layer 64
State activation function: tanh

Gate activation function: sigmoid
Sigmoid Layer 64 Sigmoid

Fully-Connected Layer 1 –
Output Layer 1 Loss function: MSE

3. Experimental platform and data acquisition

3.1. Experimental platform setup
The proposed DDM framework underwent rigorous valida-

tion via an experimental platform, depicted in Fig. 3(a). This
platform consists of three primary components: a VRB system,
a battery testing system, and a host computer, all of which are
provided by Wuhan Zhisheng New Energy Co., Ltd. Within
the VRB system, two cells with identical materials and build-
ing structures were used, as depicted in Fig. 3(b). The speci-
fications of the experimental platform are detailed in Table 2.

This configuration facilitated comprehensive testing and analy-
sis, ensuring the reliability and efficacy of the proposed DDM
framework for VRB modeling.

3.2. Experimental design

Three cases were designed by considering different currents
and flow rates, as shown in Fig. 3. They are described as fol-
lows.

1) Case 1: Constant flow rate and constant current in one
cycle
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Figure 2: RNN, LSTM, and GRU structures.

Table 2: Specification of the experimental VRB system
Parameters Setting

Electrolyte volume 25 mL
Electrolyte concentration 1.7 mol/L

Charge cutoff voltage 1.7 V
Discharge cutoff voltage 1.0 V

Number of cells 1
Shape of flow channels Serpentine

Current density 200 mA/cm2

Electrode size 3 cm × 3 cm
Membrane material Perfluorosulfur

To verify the impact of flow rate on the terminal voltage and
to examine the ability to learn the trend under different flow
rates, one-cycle experiments at a constant current of 1.0 A were
conducted under different constant flow rates of 90 mL/min –
15 mL/min (15 mL/min interval).

2) Case 2: Constant flow rate and variable currents in one
cycle

Experiments with constant flow rate and variable currents
have been conducted at 90 mL/min - 15 mL/min (15 mL/min
interval) to learn the relationship between the voltage and the
flow rates and currents. Two sub-cases were examined:

a) The current increases from 0.6 A, with a step change of
0.02 A every minute until reaching 1.8 A.

b) The current decreases from 1.8 A, with a step change of
−0.02 A every minute until reaching 0.6 A.

For example, during one specific charge-discharge cycle, the
flow rate is set at a constant value of 15 mL/min, current condi-
tions is set to sub-condition a)

3) Case 3: Variable flow rates and variable currents in one
cycle

To further verify the adaptability of the proposed model to
simultaneous variable flow rates and currents, experiments with
variable flow rates and variable currents in one cycle have been
conducted. The flow rate sub-conditions include:

a) The flow rate increases stepwise. It starts at 15 mL/min
and increases by 15 mL/min every 6 or 12 mins until reaching
90 mL/min.

(a)

(b)

Figure 3: VRB experimental platform: (a) Composition structure of the exper-
imental platform; (b) Stack structures of the two cells.

b) The flow rate decreases stepwise. It starts at 90 mL/min
and is reduced by 15 mL/min every 6 or 12 mins until reaching
15 mL/min.

At every flow rate, the current sub-condition include:
a) The current increases linearly. It starts at 0.6 A and in-

creases by 0.2 A/min until reaching 1.8 A.
b) The current decreases linearly. It starts at 1.8 A and de-

creases by 0.2 A/min until reaching 0.6 A.
c) The current increases stepwise. It starts at 0.6 A and in-

creases by 0.3 A every 3 min until reaching 1.8 A, with a duty
cycle of 50%.

d) The current decreases stepwise. It starts at 1.8 A and de-
creases by 0.3 A every 3 min until reaching 0.6 A, with a duty
cycle of 50%.

There are two types of current sub-conditions and four types
of flow rate sub-conditions, resulting in a total of eight different
operating conditions. For example, during one specific charge-
discharge cycle, the flow rate is set to sub-condition a), current
is set to sub-condition a).

3.3. Data preprocessing and analysis

The measured raw data were preprocessed as follows. a)
Deletion of the pause segments. During these periods, the ex-
periment was paused to facilitate the manual adjustment of the
flow rates. Therefore, the data segments with these manual
pause actions must be removed. b) Calculation of SOC. First,
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the VRB capacity is calibrated by low-current experiments. The
nominal charging capacity is Qnom,chg = 1107.175 mAh, and the
discharging capacity is Qnom,dch = 1070.925 mAh. The SOC
data can thus be calculated by:

SOCchg = SOC0 +
Qacc

Qnom,chg
(14)

SOCdch = SOCchg −
Qacc

Qnom,dch
(15)

where SOC0 is the initial SOC, Qacc is the accumulated charge
calculated as the integration of battery current, and SOCchg and
SOCdch denote the charging and discharging SOC, respectively.

The data obtained from VRB experiments are visualized in
Fig. 4. It can be seen that the terminal voltage of VRB varies
with flow rates, currents, and SOC. Among all features, the flow
rate is unique for the VRB. The voltages under different flow
rates are shown in Fig. 5, clearly indicating that substantial im-
pact of flow rate on voltage. As the flow rate increases, both the
growth rate of charging voltage in Fig. 5(a) and the reduction
rate of discharging voltage in Fig. 5(b) decrease. In addition,
the black contour lines in Fig. 5 show that the change rate of
the terminal voltage decreases as the flow rate increases.

Figure 4: Waveforms of VRB experimental data.

3.4. Performance metrics for model evaluation
The mean absolute error (MAE), root-mean-square error

(RMSE), and the coefficient of determination R-square (R2)
will be used as the metrics to evaluate the model performance.
They are defined by

MAE=
1
n

n∑
i=1

|ŷi − yi| (16)

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)2 (17)

R2 = 1 −

n∑
i=1

(ŷi − ȳi)2

n∑
i=1

(ŷi − yi)2
(18)

where y is the actual value, ŷ is the predicted value from the
model, and ȳ is the mean value. n is the number of data samples
in the corresponding data set.

(a)

(b)

Figure 5: Surfaces of VRB voltage as a function of flow rate and time during
the (a) charging and (b) discharging processes.

4. Results and discussion

4.1. Model performance under different flow rates

The measured data from Case 2 served for model training,
and the accuracy of different models was assessed by com-
paring their predictions with the measured data obtained from
Cases 1 and 3. Fig. 6 presents a visual comparison between the
VRB terminal voltage predicted by the GRU neural network for
Case 1 and the corresponding experimental measurements, with
fixed constant current but different constant flow rates applied
during six cycles. The model’s performance is evaluated and
summarized in Table 3.

The results show that the developed GRU neural network
demonstrates excellent accuracy in predicting the VRB terminal
voltage across various flow rate conditions, with the MAE and
RMSE consistently below 0.0059 V and 0.0095 V, respectively.
These errors are as low as 0.35% and 0.56%, respectively, when
compared to the maximum battery voltage of 1.7 V. In Fig. 6,
both the charging and discharging processes show nearly linear
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Table 3: Performance indicators based on the results with constant flow rate and constant current in one cycle.
Flow Rate (mL/min) 15 30 45 60 75 90

MAE 0.0055 0.0053 0.0052 0.0058 0.0059 0.0058
RMSE 0.0095 0.0088 0.0095 0.0090 0.0091 0.0091

R2 0.9958 0.9962 0.9954 0.9958 0.9957 0.9957

Figure 6: Comparison between the predicted voltage and experimental results
under different constant flow rates in six cycles. The same constant current is
applied for different cycles.

voltage changes over time until reaching their respective end-
points. Throughout these periods, the GRU neural network’s
the predicted voltage aligns well with the actual data. To en-
sure safe operation, the battery’s cutoff voltage was artificially
set during experiments. However, the collected dataset con-
tains limited information about the cutoff voltage, posing chal-
lenges for conventional GRU models to learn effectively. This
limitation can lead to an unfavorable prediction error, poten-
tially causing overcharging or overdischarging. To address this
concern and enhance safety, our model incorporates a sigmoid
layer to constrain the GRU’s output within the range of [0, 1].
Here, 0 and 1 correspond to the maximum and minimum volt-
age limits after normalization, respectively. By applying this
approach, the model significantly reduces the prediction error
and mitigates the risk of overcharging or overdischarging dur-
ing operation.

4.2. Model comparison
4.2.1. Comparison with ECMs

To examine the data processing capability of the proposed
DDM at different flow rates, the DDM was compared with a
VRB model based on the first-order RC equivalent circuit in
Case 1. As shown in Fig. 7, for the GRU model, as demon-
strated in Section 4.1, its terminal voltage adapts to different
flow rates since the model captures the coupling hydrodynamic
and electric behaviors buried in the training data. In contrast,
the ECM relies on basic transformations and linear combina-
tions of negative exponential functions, rendering it inadequate
in reproducing the voltage segments attributed to the nonlinear
dynamic behaviors of the system. In addition, the ECM ne-
glects the impact of flow rates on external characteristics, lead-
ing to a failure to reflect variable flow rates in the predicted

voltage. The GRU performance is therefore much superior to
the ECM under the variable flow rate conditions.

Figure 7: Comparison of results between an ECM and the proposed GRU
model.

Note that during the final stages of charging and discharging
(approximately the last 20 min), significant nonlinear voltage
behaviors are observed in Fig. 7. The proposed GRU model ex-
hibits superior adaptability to the variations in internal charac-
teristics, thanks to its remarkable ability to handle time-series
data. At the end of the discharge, the maximum error is less
than 0.1096 V, and the time error to reach the end of discharge
is less than 1 min. In contrast, while the maximum error of the
ECM is 0.1475 V, which may not seem significantly higher than
the GRU model, the corresponding time error in predicting the
end of discharge reaches up to 12 min.

4.2.2. Comparison with state-of-the-art DDMs
A comparison of Case 1 between the proposed GRU model

with two widely adopted DDMs, SVM and BPNN, is presented
in Table 4. The results clearly demonstrate that the VRB model
based on GRU outperforms SVM and BPNN in terms of vari-
ous evaluation indicators. Specifically, SVM demonstrates the
largest error, with its accuracy showing significant fluctuations
across various flow rates. Notably, SVM records its highest er-
ror at a flow rate of 15 mL/min, reaching a MAE of 0.0319 V.
This is attributed to SVM’s conventional nature as a machine
learning algorithm, devoid of deep neural network structures.
Instead, SVM relies on mathematical and geometric principles
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for model training and prediction, making it ill-suited for cap-
turing the intricate dynamics of voltage fluctuations during bat-
tery operation.

In contrast, BPNN and GRU, both popular deep learning
algorithms, exhibit comparable performance indicators across
different flow rates. However, it’s important to note that BPNN
struggles to handle temporal data, learning individual data sam-
ples in isolation. On the other hand, GRU excels in processing
time-series data and accurately capturing the nonlinear varia-
tions in battery terminal voltage. The MAE of GRU consis-
tently remains below 0.0056 V, showcasing its superior predic-
tive capabilities. Hence, GRU was chosen to build our battery
model.

4.3. Model validation under different operating conditions
A VRB serves as a power source that frequently operates un-

der changing currents, experiencing acceleration, deceleration,
and pulsed current conditions when utilized for renewable en-
ergy storage. The flow rate is a vital operational parameter in
flow batteries, directly impacting the oxidation-reduction reac-
tions within the cell stack. For VRBs, a low flow rate causes
an increase in concentration overpotential within the battery.
This speeds up the battery’s approach to the cutoff voltage and
consequently reduces the efficiency. On the other hand, when
the flow rate is too high, the electrolyte does not react suffi-
ciently within the battery, leading to a drop in the operational
efficiency. As such, it becomes imperative to assess the adapt-
ability of the VRB model across various scenarios. The results
from Case 3, involving linear current variation under different
flow rates, are presented in Fig. 8, and the performance in-
dicators for variable flow rates and linear currents are given
in Table 5. The model showcases strong generalization ca-
pabilities and impressive temporal processing capacity. It ef-
fectively analyzes the temporal relationship between input and
output vectors, enabling it to adapt dynamically to the fluctu-
ations in VRB’s internal characteristics. This capacity ensures
the model’s effectiveness in capturing the complexities of real-
world operational conditions and enhances its ability to deliver
accurate predictions for different VRB scenarios.

The pumps used in our experiments must be stopped at the
instance of switching the flow rates. Therefore, there is a shift
point of the terminal voltage at the point of flow rate switch-
ing. However, the conventional model faces challenges, show-
ing significant oscillations during the simulation of the shift
point and suffering from a substantial deviation in fitting the
edges. In contrast, the proposed model can successfully control
the oscillation within a narrow range using the feature extractor
of GRU, leading to a mean error of 0.0734 V at the shift point.
This noteworthy improvement in simulation accuracy at jump
points enables the model to better replicate the entire charging
and discharging process, especially when dealing with variable
currents.

Compared to Case 3 of linear current variation in Fig. 8, it
becomes evident that the shift points of the terminal voltage
appear more frequently in the case of pulsed current variation.
Fig. 9 displays the results of shift points for Case 3, with step
increases in flow rates and current. The distance between the

predicted and actual values is effectively limited within a nar-
row range. The terminal voltage under pulsed current condi-
tions undergoes five distinct jumps at every flow rate, showing
the model’s excellent learning ability to adapt to changes in ex-
ternal characteristics. The evaluating indicators for experiments
featuring variable flow rates and pulsed currents in a single cy-
cle are summarized in Table 6. The model achieves exceptional
performance, with an MAE of 0.0067 V for data from experi-
ments with step-transformation currents and the RMSEs within
the range of 0 − 0.0146 V. These results highlight the model’s
excellent capabilities and reinforce its capacity to deliver accu-
rate predictions in the face of dynamic conditions with pulsed
currents and variable flow rates.

4.4. Evaluation of model robustness
To demonstrate the model’s robustness to different cell pa-

rameters, we conducted experiments on two VRB cells, ac-
counting for potential cell inconsistency. The earlier Cases 1–3
were replicated for both cells. The model was trained using
the data from Cell 1, and for testing, one-cycle experiment data
from Cell 2 were employed as the test set, encompassing the
variable flow rates and currents.

Fig. 10 illustrates the performance indicators for the results
obtained from Case 3 of Cell 2. The model presents excel-
lent prediction accuracy for data with linear current, as demon-
strated by all three evaluating indicators. Notably, the model’s
RMSE remains well below 0.013 V for data from linear cur-
rent variation experiments, indicating its precise prediction of
Cell 2’s terminal voltage. Furthermore, the proposed model ef-
fectively limits the RMSE within a specific range of less than
0.023 V for operating conditions involving pulsed current. This
level of accuracy meets the requirement of typical VRB models
for management and control purposes. Consequently, the VRB
modeling method, based on the GRU neural network while con-
sidering flow rates can be extended to simulate the terminal
voltage of VRB with the same type and applicable to various
related applications.

5. Conclusions

This paper presents a novel data-driven modeling approach
for vanadium redox flow batteries (VRB) using a gated recur-
rent unit (GRU) neural network targeting variable flow rate ap-
plications. By incorporating electrolyte flow rates and consid-
ering the time-series nature and nonlinearity of VRB character-
istics, the developed model enables accurate prediction of the
terminal voltage at different flow rates and enhances the preci-
sion of nonlinear data analysis. The proposed GRU model takes
inputs such as flow rate, current, state of charge, and voltage, all
while eliminating the need to consider internal operating princi-
ples. This streamlining greatly reduces the model’s complexity,
making it well-suited for real-time operation. To evaluate the
model’s performance, simulations were conducted at different
flow rates, and the results in the nonlinear section are compared
with those from widely utilized equivalent circuit model. This
comparison demonstrates the superior data processing capabil-
ities of the proposed model. In addition, the effectiveness of the
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Table 4: Comparison of performance indicators of SVM, BP, and GRU models.

Algorithm
SVM BPNN GRU

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

15 mL/min 0.0319 0.0395 0.8935 0.0081 0.0114 0.9933 0.0056 0.0098 0.9953
30 mL/min 0.0288 0.0338 0.9272 0.0071 0.0104 0.9942 0.0053 0.0088 0.9961
45 mL/min 0.0268 0.0311 0.9407 0.0069 0.0101 0.9944 0.0052 0.0087 0.9962
60 mL/min 0.0260 0.0300 0.9446 0.0063 0.0096 0.9947 0.0058 0.0091 0.9957
75 mL/min 0.0267 0.0311 0.9382 0.0068 0.0100 0.9943 0.0059 0.0092 0.9957
90 mL/min 0.0299 0.0350 0.9165 0.0075 0.0106 0.9935 0.0058 0.0091 0.9957

Table 5: Performance indicators based on the results under variable and linear currents.

Case
Linear Current Increase Increase Decrease Decrease

Pulsed Flow Rate Increase Decrease Increase Decrease
MAE 0.0065 0.0058 0.0079 0.0059

RMSE 0.0095 0.0090 0.0120 0.0119
R2 0.9964 0.9965 0.9945 0.9945

Figure 8: Results for data with the case of the linear current variation. (a) Linear increase in current/step increase in flow rate(b) Linear increase in current/step
decrease in flow rate(c) Linear decrease in current/step increase in flow rate(d) Linear decrease in current/step decrease in flow rate.

Table 6: Performance indicators for experiments with variable flow rates and pulsed currents in one cycle.

Case
Pulsed Current Increase Increase Decrease Decrease

Pulsed Flow Rate Increase Decrease Increase Decrease
MAE 0.0067 0.0067 0.0080 0.0055

RMSE 0.0139 0.0134 0.0146 0.0123
R2 0.9869 0.9864 0.9864 0.9882

data-driven algorithm is assessed by comparing it with other
existing methods. The proposed model is validated using ex-
perimental data from various test cases and another VRB cell
of the same type. The results clearly demonstrate the modeling

method’s adaptability to achieve high performance prediction.

10



Figure 9: Results of shift points of the case with step increase flow rate and step
increase current.

Figure 10: Model performance metrics for results from the Cell 2.
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