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Abstract—The concept of integrating physics-based and data-driven approaches has become popular for modeling sustainable
energy systems. However, the existing literature mainly focuses on the data-driven surrogates generated to replace physics-based
models. These models often trade accuracy for speed but lack the generalizability, adaptability, and interpretability inherent in
physics-based models, which are often indispensable in modeling real-world dynamic systems for optimization and control purposes.
We propose a novel machine learning architecture, termed model-integrated neural networks (MINN), that can learn the physics-based
dynamics of general autonomous or non-autonomous systems consisting of partial differential-algebraic equations (PDAEs). The
obtained architecture systematically solves an unsettled research problem in control-oriented modeling, i.e., how to obtain optimally
simplified models that are physically insightful, numerically accurate, and computationally tractable simultaneously. We apply the
proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries and show that MINN is extremely
data-efficient to train while being sufficiently generalizable to previously unseen input data, owing to its underlying physical invariants.
The MINN battery model has an accuracy comparable to the first principle-based model in predicting both the system outputs and any
locally distributed electrochemical behaviors but achieves two orders of magnitude reduction in the solution time.

Index Terms—Lithium-ion batteries, battery management systems, battery modeling, model simplification, physics-informed machine
learning, model-integrated neural networks.
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INTRODUCTION

APID advances in electromobility have positioned bat-
Rtery as a key player in the transition towards a more
sustainable future, with its impact on carbon neutrality con-
tinuing to gain momentum. While most battery research has
been mainly focused on searching for novel materials [1] 2],
the established battery chain and its circular economy have
been dominated by lithium-ion batteries (LIBs) foreseen to
prevail due to their proven long-term stability, cost-effective
production and recycling. Consequently, the pressure of
electromobility has been put on the optimization of LIBs in
the foreseeable future, from cell-level chemistry, structure,
and manufacturing process to system-level solutions for
improved safety, reliability, performance, and lifetime. One
key limiting factor in unleashing the full potential of LIBs for
electromobility is the current battery management systems
(BMS), which limit usage by imposing more or less fixed
constraints on battery cell external measurements. The next-
generation BMS should enable accurate monitoring and
optimal control of dynamical local behaviors distributed
inside each cell for real-time optimized utilization of the
battery systems.

A battery is a compact, multiphysics system with multi-
ple state variables, domains, material phases and physical
parameters over disparate time- and length scales. The
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current strategies for probing battery internal states involve
battery modeling based on equivalent circuits, which at their
best, are able to mimic the battery electric behaviors under
specific conditions [3]. More sophisticated electrochemical
models for locally distributed internal states, with their
minimal assumptions and greater flexibility, offer a distinct
advantage over other battery models by providing higher
accuracy under a broader range of usage conditions. This
makes them an ideal choice for all-purpose and compre-
hensive battery modeling. Although electrochemical mod-
els have been driving a wealth of LIB research in system
identification [4] [5]], state estimation [6] [7], fault and aging
predictions [8, 9], and optimal control [10, [11]], their typical
end-user applications, such as smartphones and laptop com-
puters, still require considerable computational power due
to the highly nonlinear and stiff PDAEs, let alone the upscal-
ing to pack-level and vehicle fleet-level battery applications.
Despite numerous offline implementations employing state-
of-the-art numerical techniques [12} [13] 14} [15} [16], it is still
infeasible to consider advanced electrochemical models for
on-board battery management with current hardware.

The fundamental challenges in solving PDAEs for
control-oriented applications have been commonly ad-
dressed by reduced-order modeling. These reduced-order
models (ROMs) attempt to lower the computational com-
plexity by either exploring the mathematical structure of the
governing equations or simplifying the physics of the orig-
inal model. For example, the single particle model [18] fea-
tures cell-interior variables derived from volume-averaged
active materials and uniform molar flux, which result in sys-
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Fig. 1: Existing physics-based integration strategies for the blending of neural networks and physics-based models in
order to retain their individual merits. (a) A data-driven surrogate model using supervised learning requires relevant and
representative training data generated by snapshots of the physics-based model solutions. (b) A surrogate model
regularised physical constraints within the PINN framework, of which the PINN loss, Lpinn;, is composed of the loss due
to model-data inconsistency, Lsum,gate, and the loss owing to physical constraints, ﬁphysical. (c) The PINN workflow for
inverse problems used to estimate physical parameters as part of parametric PDEs [17].

tems of partial differential equations (PDEs). Other ROMs,
such as the physics-based equivalent circuit model [19} 20],
also result in a simplified system with fewer assumptions.
On a high level, these model reduction strategies can be seen
as an attempt to replace the original PDAE formulation with
a simplified system, resulting in less computational com-
plexity and fewer parameters but compromising accuracy
under performance-limiting conditions.

To circumvent the stiffness issues associated with
the first-principle electrochemical models, data-driven ap-
proaches have emerged as powerful tools for identify-
ing high-dimensional patterns in battery data. For exam-
ple, the cycle life of batteries can be accurately predicted
using machine learning methods given enough relevant
data [21},22, 23], and fast estimations of the terminal voltage
and state of charge (SOC) can be achieved by using recurrent
neural networks (RNN) [24]. Nevertheless, training a purely
data-driven model to predict internal states of battery cells,
such as the electrolyte concentration, local temperature and
lithium plating potential, is obscured due to the lack of mea-
surements. However, these internal states are highly impor-
tant for battery safety, health and performance optimization
purposes. Without tracking them, lithium dendrites may ul-
timately cause internal short-circuits to grow rapidly under
conditions of electrolyte depletion [25], high-temperature
gradient [26] and negative plating potential [27]. Notably,
as illustrated in Fig. [T, this class of data-driven surrogate
models relies on generic neural networks that are agnostic
to the underlying dynamics of the battery. Additionally,
given a large number of trainable parameters in these neural
network models, representative datasets are essential for
training to minimize out-of-sample errors, which are often
generated by physics-based models.

In contrast to reduced-order modeling and data-driven
approximation, physics-constrained learning offers a dis-
tinctive approach to integrate neural networks with physics-
based modeling. For instance, neural ordinary differential
equations (neural ODEs) leverage the approximation ca-
pabilities of neural networks to model dynamic states de-

scribed by differential equations [28]. Neural ODEs enable
a continuous-time formulation of deep learning models,
enhancing their flexibility and interpretability in handling
dynamic systems. Despite their success in predicting the
state of health in batteries [29], the dynamic equations ap-
proximated by neural ODEs remain essentially a black box.
This limitation prevents the direct integration of domain-
specific knowledge, such as current and energy conser-
vation laws or constitutive equations of battery systems,
into the learning process. Consequently, it undermines their
generalization capability and robustness in predicting the
evolution of system-specific states.

To blend neural networks with governing physical laws
directly, the physics-informed neural networks (PINNSs)
have been introduced to approximate solutions to PDEs by
incorporating physical constraints into the loss function [30].
As illustrated in Fig. , the PINN framework utilizes
automatic differentiation (AD) to compute the residual of
PDEs in an unsupervised manner. This process results in
a physical constraint loss term, Ephysical, which is added
to the supervised loss, Lsurrogate- Additionally, the PINN
framework can be employed to estimate the parameters of
a physics-based model as schematized in Fig. [Tk, even with
a limited experimental dataset. Furthermore, PINNs have
proven effective even for stiff systems [31], and various
software tools have been developed to automate PINN
implementation, making it accessible for different physical
systems formulated as initial value problems [32} [33] [34].
However, PINNs are known to encounter difficulties with
complex problems [35] and are inherently unable to handle
non-autonomous systems, or systems with different initial
conditions. Specifically, the external control inputs or distur-
bances of a non-autonomous system, or different initializa-
tions of a system’s states, will alter the system’s dynamical
behaviors. Thus, employing PINNs to approximate these
classes of dynamic systems, such as battery management
and control systems, is impractical.

To bridge the research gap, this work proposes a
model-integrated deep learning framework, termed model-



integrated neural networks (MINN), designed to leverage
the approximation power of neural networks, and the
physical insight and numerical machinery, from those of a
physics-based model. MINN is shown to be extremely data-
efficient to train and can extrapolate beyond the operating
conditions considered in the training data. Furthermore, it
retains the physical significance of hidden states and model
parameters that can be used directly for system identifica-
tion, model adaptation, state estimation, and model-based
control of LIB. The generality of the proposed framework
allows for the easy adoption of other dynamic systems.

2 MODEL-INTEGRATED NEURAL NETWORKS

Different from the two ways of coupling data-driven and
physics-based approaches introduced by the PINN frame-
work, this work presents a new hybrid approach leveraging
sequence-to-sequence learning to overcome the limitations
of PINN. Our approach is designed for a class of generic
dynamic systems with control inputs, or different initial
conditions. Instead of learning the entire space-time solution
using PINN, the main objective of MINN is to derive an
explicit function that is implicitly embedded in physics-
based models, in order to accelerate the solution process.
To achieve this, physics-based equations are integrated into
a neural network architecture directly. With the key idea
schematized in Fig. 2, MINN is formulated and explained
step-by-step in this section.

General multi-timescale dynamic systems can be formu-
lated as coupled differential-algebraic equations (DAEs), re-
sulting from the spatial discretization of the original PDAEs

ha(t) = £ (t has b)), M
y(t) = Y(t,hd,hz,u), )
0= g(t7hd7hz,u). )

The above DAE system features differential states hgq, alge-
braic variables h, and a time-varying control input u. y is
the output of interest, and Y is the function to compute
the output from the states and the input. The origin of
the algebraic equation is threefold, i.e., it can stem
from the boundary conditions, the singular perturbation of
the original PDAEs, or conservation laws naturally arising
from the physical problem. In some special cases, explicit
solutions for (3) exist for h,, which makes it replaceable by
a function G(t, hg, u) in () and @). However, in most cases,
h, does not have a fixed-form solution in terms of t, hy
and u. In such cases, more computationally involved DAE
solvers must be used.

Due to the high computational cost of solving DAE
systems, the solution process, or the model itself, must be
simplified to suit many model-based applications. If the end
result of training PINNSs is a fast solution and of numerical
methods, a slow, coarse-grained solution, training MINN
generates a simplified dynamic model, as shown in the
schematics of MINN in Fig. 2h. To this end, we parameterize
an explicit function Gnn within the recurrent unit by 6.
This function can be any nonlinear approximator, e.g. neural
networks, as illustrated by the “data-driven approximation”
module in Fig. Pb. The colors pink and blue in Fig. [2]
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represent approximations and physics-based equations, re-
spectively. For instance, the input of the neural network
within the “data-driven approximation” module consists of
functions of time t, differential states h,, and the control
input u, whereas the output i}, which is the approximated
algebraic variable, is fed to the g function of the “physics-
based equations” module, yielding the approximated con-
served quantities g. In this manner, the underlying physical
invariants and domain-specific priors are encoded in the
recurrent unit.

Mathematically, the hidden states of the proposed MINN
framework at time step k-1 are updated via the “numerical
solver” module using

REYL =k f (t%, Bk R k) - Stk @
het = G (8%, by, uF;0), ®)

where (4) is a discretized form of the continuous-time dy-
namic equation (I), and the algebraic variables % in (5) are
approximations to the roots of (). The function Gnn offers
a shortcut to solving the implicit algebraic equations of the
DAE system. Additionally, the time step ¢ taken can be
adaptively adjusted by the ODE solver, and the form of
can vary if implicit or multi-stage schemes are used. The
system output y and the conserved quantities of the battery
system g are computed by

yb =Y (%, bk R ub), 6)
g" = g(t* Wi, hoF u"), @)

where g is an approximation of g, computed at each time
step k. g does not strictly vanish due to the approximation
error, determined by trainable parameters 6. In addition,
the MINN framework integrates the differential equations
of the DAE system into the neural network architecture
through the physics-based hidden recurrent units, as shown
in Fig.2b.

The search for an optimally simplified model @)-(6) is
cast as the following nonlinear optimization problem

arg mein ‘CMINN (9, )\) = Ey(H) + )\59(9), (8)
in which the physics-based recurrent units are used to

formulate a physics-constrained loss function with £, and
L, given by

K 2
L,0)=>" (Y(tk,h’;,GNN(tk,hg, uk),uk) - g’c) 5t*,
k=0
)
K
Ly0)=>" g(tk,h’;,GNN(tk,h’;, uk),uk) 5tk (10)
k=0

where §* are measured outputs, and K is the number of
samples in the time time-series. In the training of MINN, we
seek parameters 6 by solving for h, for a given profile u*.
The loss function comprises a term L, to quantify physical
inconsistency, which due to conservation laws, is a function
of the algebraic variables, plus a loss associated with the
(measurable) output of the dynamic system. Unlike meth-
ods that require an accurate estimate of time derivatives of
the states, such as SINDy [36], the loss function of MINN is
a sum of model-measurement mismatch and £,. They are
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Fig. 2: The proposed MINN architecture for dynamic systems. (a) An iterative update of the hidden states h%, output y*
and conserved quantities §*, is controlled by input u* = u(t*) at time t* through physics-based hidden units. This update
is handled by the time integration via the numerical solver. (b) The design of a physics-based recurrent unit contains
physics-based equations, a deep learning-enabled approximation and an output function Y.

obtained by integrating the system via an ODE solver, and
this approach is known to be more noise-tolerant [37]. Dur-
ing training, the parameterized loss function Ly (6) is
minimized via a gradient-based optimizer, and the Lagrange
multiplier X is updated iteratively by the steepest ascent.
Through (8)—(10), it can be seen that the training of Gny is
dependent on the time trajectory of the dynamic system @)-
(7). This enables the deep integration of neural networks and
physics-based models. Once the MINN model is obtained,
an array of ODE solvers can be readily employed to repro-
duce the system’s state dynamics controlled by an arbitrary
profile u*.

The architecture of MINN integrates elements from RNN
and residual neural networks. RNN, known for its modular
and flexible design, is particularly suited for sequence-to-
sequence applications. As a bi-directional network, RNN
makes a good candidate for modeling dynamic systems
with time-stepping of states governed by the system dy-
namics and control input. The design of RNN’s recurrent
units facilitates the integration of physics-based equations,
allowing for modifications to neuron connectivity and func-
tionality. Despite its advantages, the baseline RNN architec-
ture is hindered by limitations such as short-term memory
and the vanishing gradient problem. These issues can be
partially mitigated by incorporating mechanisms like gated
recurrent units [38], echo state networks [39] and the long
short-term memory [40]. Nonetheless, these enhancements
do not fully resolve the challenges related to data efficiency,
and are still susceptible to overfitting and poor extrapolative
capabilities [41]. Therefore, incorporating domain-specific
knowledge derived from well-understood systems specified
by differential equations is crucial for developing neural net-
work architectures that embed physics-based prior knowl-
edge effectively.

The MINN model is physically informed of the dynam-
ics of the hidden states h4 by adding skip (residual) connec-
tions and input to model the dynamic system controlled by

u¥. This approach enables the integration of a numerical
solver that optimizes the time stepping. During training,
the learnable parameters 6 are updated by backpropagating
gradients through the solver. Physically, the input u* and
the hidden states h% at time step k are fed into the recur-
rent unit, resulting in the approximation of the (algebraic)
hidden variables h* used in the calculation of a vector-
valued function f representing the time derivative. This
facilitates the explicit integration of physics-based equations
and meaningful states into the MINN architecture. Different
from neural ODE [28], the model-integrated recurrent units
allow for the incorporation of control input, thereby en-
hancing interpretability and extrapolation capabilities. The
recurrent units transform hidden states in a sequence-to-
sequence manner, generating a time series of conserved
quantities, g*, for the physics-constrained loss function.

3 APPLICATION TO BATTERY MODELING

As stated before, lithium-ion batteries represent a prevalent
technology in electromobility and sustainable energy stor-
age that are important forces in the fight against climate
change. In this respect, BMS plays a crucial role in battery
safety, reliability, sustainability, and dynamic performance.
The central thesis for enabling advanced BMS is to develop
a battery model that simultaneously preserves physical in-
sights, accuracy and computational efficiency. To this end,
the proposed MINN architecture is applied to the modeling
of lithium-ion batteries, where each hidden state of the
MINN model is assigned to an electrochemical state of the
first principle battery model. Depending on the application,
the control u can be the current I for a battery system.
The output may include the terminal voltage, SOC and
lithium plating potential if a reference electrode is used.
The training data generation for MINN involves only the
output that can be measured using, e.g., a three-electrode
cell setup. Here, instead of learning blindly from the training
data as illustrated by the hybrid approach shown in Fig.[Tk,



we integrate prior knowledge, i.e., the equations from the
PDAE system, into the neural network architecture. Fig.
shows the realization of the physics-based equations in the
recurrent unit of MINN, for which the circuitry is based on
Newman’s P2D model [42} 43} 144].
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Fig. 3: The realization of the “physics-based equations”
module in the physics-based recurrent unit of Fig. [2| For
battery systems, the control input « is the applied current,
i.e. u¥ = I(t*), and the differential state and algebraic
variables are represented by hg = [Cy, C.]T and h, = j,
respectively. The g-component evaluates the conservation
laws at each time step k with the approximated algebraic
variable h%, while the f—component_ evaluates the time
derivative of the differential states h4. The two components
in the circuitry feature P2D equations, e.g., the open circuit
potential (OCP) is a fitted function that takes in the solid
concentration at the active material surface and outputs the
equilibrium potential ¢.q4.

3.1

The most widely used model for Li-ion battery electro-
chemistry is the celebrated pseudo-two-dimensional (P2D)
model, after the paradigm coined by Newman and co-
workers [42, 143 [44]. The P2D model consists of a set of
coupled PDAEs describing the lithium ion dynamics in solid
and liquid phases based on porous electrode theory and
concentrated solution theory. Although it is a macroscopic
model, the model formulations span over multiple length
scales. Starting from the pore-scale dynamics within the
active particles, the lithium-ion concentration in the solid
phase C is conserved given a thermodynamic driving force,
i.e., the chemical potential p, according to

aC, (DSCS >

=V wl,
ot kT
where D, kg and T are the solid diffusion coefficient, Boltz-
mann constant and temperature, respectively. The driving
force, also termed the chemical potential of the system,
adopts the Nernst relation assuming a concentrated solu-
tion, i.e., with only entropic contribution ¢t = kT InCs.
Consequently, reduces to Fick’s diffusion equation,
which in spherical coordinates has the form

Physics-based Battery Model

(11)
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where 7 represents the radial (pseudo) dimension. At the
center of the particle (r = 0), there is a no-flux boundary
condition. Imposed by charge transfer, the derivative at the
particle surface (r = R) gives the interfacial flux j, i.e.,

oC;

. 219
J = S oy

F

Assuming symmetric Butler-Volmer kinetics, de-
scribes the local reaction molar flux j as a function of
(symmetric) exchange current density

r=R

io = Fhoy/(Cmax — CF) . CF . C., (14)
and the local overpotential 7 in the electrode thickness
dimension (), i.e.
n:¢s_¢8_¢eq( )
In the above equations, ko, C***, F, R and Rggr stand
for reaction rate constant, maximum solid concentration,
universal gas constant, Faraday constant and resistance
of the solid electrolyte interface (SEI). ¢., denotes the
equilibrium potential (relative to lithium metal Li’, deter-
mined by the open circuit potential of the materials, which
is a function of the concentration at the particle surface
CSR = Cslr=r. ¢s, ¢ and C, are the electrical potential,
ionic potential and electrolyte concentration fields treated
as superimposed continua, along with the currents in the
solid and electrolyte (is and ). They are determined by ¢,
¢e and C, according to Ohm's law and the modified Ohm'’s
law, known as MacInnes’ equation

Resgr - 7. (15)

i, 0,
= — 1
Oeff oz’ (16)
e _ 0o, 0InC,
Heff(ce) h 8x 695 ’ (17)

where oo and kg are effective ionic conductivities in the
solid and electrolyte, respectively, and A = 2(1 — t9)RT/F
term in the accounts for the diffusion overpotential
induced by an electrolyte concentration gradient. The paral-
lel currents i, and i, are constrained by Kirchhoff’s law,
ie, is + 4. = wu(t) where u(t) is the applied current.
Fig. 4|illustrates the various fields, domains and boundaries
characteristic of the electrochemistry of a Li-ion battery
system as per the P2D model.

To complete the P2D formulation, the electrolyte trans-
port is modeled by a diffusion-reaction equation with a
source term that couples it to the lithium-ion diffusion given
by through the molar, interfacial flux j,

oC
eff Ye
(De ox

where e, ag, Dg“ and tg are the volume fraction and specific
interfacial surface area of the active materials, the effective
diffusion coefficient of the electrolyte and the transference
number, respectively. The interfacial flux j only exists in the
anode and cathode domains and is zero otherwise.

aC. 0
ce ot  Ox

> +a,(1-t5)5,  (18)



Fig. 4: P2D representation of a LIB cell with superimposed
continua spanning over two phases and three domains.
The nomenclature can be found in the Supplementary
Information.

3.2 MINN Battery Model

Eqns. (I2)—(I8) form a system of PDAEs, characterized by
the circular, nested loops of algebraic variables h.(t), which
couple the dynamical equations of the differential (dynamic)
states hq(t) through the molar flux terms. The origin of
these algebraic variables lies in the enormously different
characteristic time scales of ionic and electron transport [45].
The resulting system is highly nonlinear and stiff, which
poses challenges to numerical techniques. In order to em-
ploy specialized solvers optimized for accurate and stable
time integration, the system is normally discretized in space,
which results in a DAE system in its semi-explicit form,

ha = f (ha, h.),
O:g(h'd7 hZ7 I)7

(19)
(20)

where (19) is an ODE system for ionic transport and (20)
are conservation laws resulting from (simplified) electron
transport. The so-called hidden states are composed of
differential states hy = [Cs, C.]T and algebraic variables
h, = j. It is also required for the DAE solver to have a con-
sistent initial condition 2(0) = [k, h2]7 that satisfies (20).
In the solution process of a DAE system, it must find roots
of the algebraic system of equations g (hg, h., I) iteratively
within solver tolerances because h, cannot be explicitly
derived. In addition, the system is unstable at an occur-
rence when the system deviates from g (hg, h, I) = 0.
In such an event, re-initialization is necessary through the
discontinuous callback of the DAE solver whenever there
is discontinuity detected in the input I(t¢). Consequently,
solving the DAE system originating from the P2D model
becomes very expensive in the case of real-world driving
cycles, which usually render the DAE solver prohibitively
slow. To this end, the proposed MINN model circumvents
the need for root finding as well as re-initialization.

The DAE system (12)-(18) is of index one [7], which
means that for hy at a given time ¢, defines h, uniquely.
We can therefore find a locally unique solution &} for @0).
Accordingly, the DAE system can be written as one system
of ODE,

ha=f(ha, B2). @)

6

The time integration of the ODE system (2I) requires
no re-initialization and computationally less workload. We
then proceed to parameterize the function G(hg, I) by a
neural network whose size is dependent on the number
of dynamic states (input) and algebraic variables (output).
Consider approximating G with a DNN of L layers, i.e.,

all = [hg, IIT e R™
all = o (Wial=1 4 b)), for 1=2,3,.., L
ht =Wralll + b, € R"

(22)

Incidentally, the number of trainable parameters é of this ap-
proximation Gy (hq, I; 0) gets large when the order of the
system N = m +n is large, especially if the weight matrices
W, biases b; and L are also large. An orthogonal collocation
method is used for the spatial discretization of the PDAE
system (I2)—(I8) in this work to relieve the difficulty of
training. For the same number of discretization points, this
method is known to yield much smaller truncation errors
than finite volume [12| [15], finite difference [46] and finite
element [15| 47] commonly used in the battery modeling
community, thanks to spectral accuracy.

There are 16 boundary conditions in the P2D formula-
tion that are necessary to describe the current and potential
fields in three domains. This results in 16 additional terms
signifying the boundary loss in the loss function for a
standard PINN setup, which is expensive and difficult to
train. The convergence and regularisation of these terms
also require additional hyperparameters for tuning. Unlike
the physically constrained loss function in the PINN frame-
work [17, [30], MINN accounts for the boundary conditions
without specifying them explicitly in the loss function.
Instead, they are imposed on the integration constants by
considering, for example, the ionic potential ¢. as a func-
tion of the electrolyte current i, integrated over electrode
dimension z, i.e.,

¢e,i - — / M dzx + A lnCe}i (l‘) + Bz

Reff (x ) (23)

By substituting into the boundary conditions, three
integration constants 3; are obtained for each domain i,
i.e., anode, separator and cathode. By the same token, the

interfacial flux j; = - 1 = %i; can be integrated as follows

fen = ayiF / ji (z) dz + B, (24)

where the integration constant E; is equal to I(t) in the
cathode and 0 in the anode such that i, = 0 at the electrode-
current collector interfaces and i, = I(t) at the electrode-
separator interfaces. In this way, both ¢.; and ¢.; can be
exclusively calculated from j;, and so is i,; because of
Kirchhoff’s current law, is + i, = I(t). Likewise, can
be integrated to yield two integration constants ¢5, which

stand for the anode and cathode potentials at the current



collector. This gives

Gsi = / 000 gy g (25)
Oeff ’
2RT /i
G= —f_. sinh ! (’;{) ) + e
+ Qeg,i — Ps,i + Ji - Rsgr (26)
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Eqns. 23)-(25) reduce the algebraic variables to only the
interfacial flux j;, where j; is only defined in the anode
and cathode. In summary, the algebraic system of equations
amounts to

o= e T i)+ 7] .

(28)
During training, the first term £, in the loss function
measures the error in the model outputs, and they can be the
terminal voltage Yy, SOC or lithium plating potential for a
battery system. The SOC of the battery system is defined
by the average concentration of the anode particles over
the electrode thickness §, normalized by the electrode sto-
ichiometry at 100% and 0% SOC, and the plating potential
is the difference between the solid and liquid potentials at
the anode-separator interface (ASI), which give

3
§ - R3 (C100% — C0%)

§ (R 2
. / / ——— Cy(x,r, t)drdx — C’S% , (29)
o Jo Cmmax

Yoip (hay B2, t) = o251 (t) — o251 (t). (30)

}/SOC (hda h’zv t) =

4 BENCHMARKING AND TRAINING

This section introduces four state-of-the-art battery models
for evaluating the performance of MINN, using physics-
based, data-driven and hybrid approaches. Initially, ground
truth solutions are obtained using the P2D model. Sub-
sequently, two benchmarking scenarios are considered: 1)
for predefined control input, three baseline designs are
developed, including DNN, PINN, and neural ODE battery
models; 2) for time-varying control input, which may be
unknown a priori (e.g., derived from real-time optimization
or control), a battery model termed data-driven-reduced
order model (DD-ROM) is developed to benchmark MINN's
performance under real-world driving cycles.

4.1 Data Generation

Newman’s P2D model serves as the ground truth for bench-
marking. The model’s accuracy is dependent on the spatial
discretization of the equations introduced in Section
To this end, we obtained a high-fidelity P2D model using
the spectral collocation method consisting of 130 states and
14 algebraic variables. The resulting 144-order model is
generated symbolically with Symbolics.jl [48], and the time
integration is done using a legacy IDA solver [49].

4.2 Baseline Designs
4.2.1 DNN Battery Model

We developed a purely data-driven battery model using
deep learning. This model is parameterized by a three-layer
deep neural network with an input size of one, correspond-
ing to the time coordinate, and an output size equal to the
number of internal states. The DNN is trained to map the
time coordinates to the corresponding internal states of the
battery, [h%, h¥]T, for a predefined current rate. The loss
function is defined as

K

Lpnn = Z

k=0

where VA% and NA* are the outputs of the DNN relating
to the differential states and algebraic states at timestep £,
and §t* is the are sampling intervals.

2
([NNZ,NN’S]T—% h’;]T) 5tk (31)

4.2.2 PINN Battery Model

The PINN hybrid battery model is developed using the
schemes illustrated in Fig. [Ip. Different from the original
PINN formulation [30], which has a spatial coordinate and
time as input, i.e. [z, t], the inputs of our PINN battery
model are the solution trajectories of all discretized differen-
tial states and algebraic variables. Although each of these so-
lution trajectories can be approximated by a PINN mapping
space-time coordinates [z, t] to seven solution trajectories,
ie. C in three domains plus Cs and j in two domains,
the training of these PINNs jointly results in a complex
loss function that can undermine the performance of PINN,
according to [35]. There are also 16 boundary conditions
that further complicate the loss function. For these reasons,
we formulate the PINN battery model using the discretized
P2D model formulation, i.e., (I9)—-@0), to include only the
time coordinate as the input. In addition to the data-driven
loss Lpnn, the loss function for the PINN battery model
includes a physical loss due to physical inconsistency:

Lpmn = Lpnw + ‘Cphysicala (32)
K
[:physical = Z (f (N./V’g, N./\/";) _ h§)2 5tk

+§: ‘g (NNE NNE, 1) ] st (33)
k=0

where hffl is the time derivative of the differential states in
the training data generated by the P2D model. The functions
f and g are the right-hand sides of (I9) and (20), respectively,
from the P2D formulation.

4.2.3 Neural ODE Battery Model

Given that both DNN and PINN battery models learn solu-
tion trajectories rather than dynamics, they lack adaptability
to changes in initial conditions. To address this, a neural
ODE (NODE) battery model is incorporated into the base-
line design. Unlike the training of NODE [28] using single
shooting, multiple shooting is used for training a NODE due
to the battery’s stiff nonlinear nature. This approach, akin to
that detailed in a prior work [37], involves fitting multiple
successive trajectory segments. To do this for a battery



system, we first approximate the dynamics of the battery by
a neural network, i.e., dh/dt ~ NN (h). It should be noted
that the hidden state h here does not differentiate between
hq and h. The loss function is augmented to accommodate
shooting constraints using Lagrangian multipliers.

4.2.4 DD-ROM Battery Model

For benchmarking MINN under dynamic control input, an
idealized battery model termed DD-ROM is developed, as
the baseline designs above are limited to predefined control
input. DD-ROM is a reduced-order model, as it eliminates
algebraic variables, thereby reducing the model’s complex-
ity. Moreover, it is data-driven, requiring measurements of
all internal states [h%, h¥]T. In practice, these measurements
can only be obtained using next-generation embedded sen-
sors in laboratory settings [50].

The training dataset for DD-ROM consists of all internal
state data with the corresponding labels, i.e., a pair of input-
label data X = [h%, I¥]T and Y = h%. The loss function for
DD-ROM is defined by the mean square error (MSE) loss
of the training data, in a supervised learning fashion. For
49 pairs of input-label data taken from the high-order P2D
solution, a mapping function X +— ) is parameterized by
a DNN, and the loss is minimized down to machine zero
using an optimizer. The downside of this hybrid scheme
is that it depends on a vast amount of training data and
has to include all battery internal states, of which most are
not measurable but can only be obtained by physics-based
models. Nevertheless, we train and present such a model
with a never-before-seen current profile.

4.3 Training Details

The MINN model offers a new path to generating ap-
propriate battery models by seamlessly blending the fea-
tures of first-principle-based models with neural network
architecture, which retrains the individual advantages of
physics-based and data-driven approaches. In practice, be-
cause certain neural network parameters 6 may lead to un-
physical states in (#)-(7), we rectify the dynamic, algebraic
and output functions f, g and Y by introducing rectified
exponentials during training, e.g. the rectified square root,
VT reLu = v/max(0, z). In addition, we make the electrolyte
concentration strictly non-negative. This is done when cal-
culating the model outputs of all four benchmarking mod-
els.

The DNN in the MINN architecture consists of three
hidden layers with the same number of nodes as the other
models. The gradient of the loss function is computed using
forward mode AD as implemented in ForwardDiff.jl package
in Julia [51]. We have noticed that although reverse mode
approaches are more efficient in most cases, they are not
compatible with the solvers used. Gaussian error linear
unit activation is used to mitigate training issues such as
vanishing gradients usually associated with RNN [52]. All
models in the benchmarks are trained with an AdamW
optimizer [53]. The learning rate is set to 0.001, and the
training ends when the loss function flatlines. Generally,
a wide-scale separation in the internal states and model
output leads to the imbalance of loss function components.
We scale the input-output data by characteristic time and
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internal state scales in order to approximate the widely
separated scales in a single DNN.

5 RESULTS AND DISCUSSION

This section evaluates the proposed MINN and compares it
against the benchmarking models introduced in Section [4]
The results of the comparative study are characterized by
the model prediction accuracy, data efficiency, physical in-
terpretability, and computational cost. It is worth noting
that real-world battery applications could be complicated
and in a wide range of usage conditions that may never be
included in any training dataset. However, a reliable battery
model must be able to generalize to out-of-sample usage
profiles so that the levels of battery safety and degradation
governed by physical states are not under- or overestimated.
To test this critical ability of the referred models, we delib-
erately limit the range of conditions used to generate the
training dataset.

5.1 Performance under Predefined Control Input

For a predefined control input, such as a constant charge
current, the developed DNN, PINN, NODE, and MINN
battery models are trained using the first 300 seconds of
a P2D spatial-temporal solution under 1C charge starting
from 30% SOC. Testing is conducted from 300 seconds to
1200 seconds. As shown in Fig.[5p—e, all four models capture
the trend of the time evolution for spatially resolved elec-
trolyte concentration. However, the MAPE of the electrolyte
concentration in Fig. indicates that the MINN model
outperforms the other three models. In particular, the NODE
predictions diverge significantly from the P2D reference for
the testing data. This divergence may be due to the fact
that, although NODE approximates a dynamic system, it
does not incorporate domain-specific equations relevant to
a battery system. It is well known that electrolyte depletion
can lead to safety risks such as lithium dendrite formation
and pathological pathways in the battery’s aging trajec-
tory [54]. Inaccurate predictions of electrolyte concentration
will severely undermine the effectiveness of health-aware
BMS.

For anode potential, the DNN model also shares the
limitation of being model-agnostic. As seen in Fig. [f], the
anode potential predicted by the DNN model is unreliable
across temporal and spatial coordinates. Both the baseline
DNN and NODE models fail to accurately forecast the
anode potential trajectories for the testing data. The error
in plating potential, shown in Fig. , is a critical metric for
battery models, as large errors may lead to lithium plating
during fast charging applications.

The PINN battery model is capable of following the
trend of the spatial-temporal solution, as demonstrated in
the electrolyte concentration and anode potential plots. This
capability is due to the model’s loss function being informed
by the P2D equations. The testing error of PINN in Fig.
and Fig. Pg is due to the fact that the physical loss term
(33) in the loss function is only a soft constraint [35]. It is
also important to note that DNN and PINN cannot be used
for solutions with different initializations. For example, if
the initial condition is altered, both DNN and PINN yield



completely unreliable results. On the other hand, NODE
and MINN benefit from sequence-to-sequence learning, en-
abling them to account for changes in initial conditions. To
illustrate this, we designed an additional test where the
initial condition of the testing data differed from that of
the training data, the results of which are shown in the
Supplementary Information.

The internal state trajectories shown in Fig.[f|have signif-
icant implications for battery health and safety diagnostics
and must be accurately captured by the deployed model for
next-generation BMS. The MINN battery model consistently
captures all local states and model outputs, as illustrated
by the spatio-temporal plots in Fig. B and pl. Furthermore,
it can adapt to different initial conditions because MINN
learns the dynamics of the physical system rather than the
solution trajectories of an autonomous system. Moreover,
the MINN model features physically meaningful states and
parameters that can be adapted to battery aging.

5.2 Performance under Dynamic Control Input

To evaluate the effectiveness of the MINN model for learn-
ing battery dynamics, e.g., excited by a prior unknown
input profile, we use an arbitrary vehicle driving cycle
to generate testing data. A challenging training dataset is
purposefully chosen to evaluate MINN's generalizability on
unseen testing data. As shown in Fig.[6] the training dataset
consists of 49 snapshots generated by the P2D model with
the initial SOC fixed at 30% and a sinusoidal input signal
lasting only two seconds and bounded by 1C. By contrast,
a highly dynamic current is used in the testing where the
initial SOC is set to 90% and the maximum current reaches
5C.

For an ideal case where all internal battery states are
measurable, the DD-ROM is developed, whereby part of
the model states are obtained by a relationship learnt from
sampling the state trajectories of the P2D model. In com-
parison, the training of the MINN model involves only
the experimentally measurable output of the P2D model,
including the terminal voltage, lithium plating potential and
SOC. Thanks to the built-in, problem-specific recurrent unit,
it does not require the acquisition of the internal state data.

Accurate prediction of the system outputs, including the
terminal voltage, plating potential and SOC, is important to
advance BMS functionalities, such as power capability pre-
diction [56] and health-aware fast charging [10, 57]. Table
shows the computational complexity, training dataset and
numerical accuracy of the above three battery models in pre-
dicting these outputs, while Fig. [/lg displays the trajectory
of the plating potential. Both the MINN model and DD-
ROM model show high accuracy in the terminal voltage,
achieving generalization errors of less than 12 mV. In Fig.[7g,
the black dashed line at 0 V highlights the critical level
below which the lithium plating is triggered. To predict such
plating potential, the MINN model is as good as the DD-
ROM which is developed under the hypothetically available
information of all battery states. Regarding SOC prediction,
the MINN model has greater accuracy than the DD-ROM,
with a generalization error of only 0.06%. Other testing
data generated at various initial conditions other than 85-
90% SOC have also been considered, which has yielded
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similar results in predicting the model outputs and further
confirmed the superiority of MINN over DD-ROM. This
achievement by MINN with only the measurement data
for training is practical during real-world battery usage. In
fact, the upper limit of the accuracy of MINN is not the
first-principle model used in this benchmark but the battery
system itself.

To evaluate MINN's capability of predicting the dynam-
ics of internal battery states, the locally distributed elec-
trolyte concentration and solid-phase surface concentration
are examined in spatiotemporal plots. As shown in Fig. [,
MINN is capable of reproducing the electrolyte evolution
accurately along the challenging operating profile with a
MAPE plotted in Fig. of less than 2%. Although DD-
ROM battery model gives less than 1% absolute percentage
error (APE) for the terminal voltage as shown in Fig. [/d,
it under- and overestimates the degree of electrolyte de-
pletion. For example, at around 100 seconds, marked by
a blue isosurface, the DD-ROM model underestimates the
depletion in the anode and yet overestimates it in the an-
ode, separator and cathode starting from 600 seconds (light
orange). Fig. [/h-j depicts the comparative results for the
solid-phase concentration. Here, the colour black represents
the theoretical maximum surface concentration of graphite
particles, near which the movement of lithium ions matches
the intercalation threshold of lattice sites in the anode and
the dendritic growth of lithium is inevitable [58]. The DD-
ROM prediction in Fig. [7j yields larger black areas adjacent
to the anode-separator interface, which means significantly
more lithium plating if one deploys it in the BMS. In
addition, DD-ROM overestimates the surface concentration
in the anode at 500 seconds. When imposing a constraint on
the surface concentration for vehicle battery control, such
overestimation will curtail the energy recovered from regen-
erative braking [59]. However, the MINN model predicts
the critical surface concentration in Fig. [/j as close as the
P2D during the entire process, thereby allowing accurate
monitoring and control of the solid-phase concentration.

5.3 Computational Complexity

In this section, the computational complexities of DD-ROM
and MINN are compared to that of the P2D model. In
general, the computational complexity is dependent on the
system order. To this end, we define the order of the system
as the total number of differential states and algebraic vari-
ables. Consequently, the system order is a result of spatial
discretization. In our previous work [60], we evaluated
different spatial discretization techniques, e.g. finite volume,
finite difference, control volume and spectral methods, for
the accuracy of pulse current responses of the solid-phase
diffusion. It is found that while most of these techniques
capture characteristics in the low-frequency region, some
techniques outperform others with the same system order
for a wider frequency response range. In particular, the spec-
tral method of order three is more accurate than the 10th-
order finite volume method. Although this result cannot be
simply extrapolated to the full P2D equations, the assess-
ment of the computational complexity should be based on
the DAE or ODE systems derived using the same spatial
discretization technique. We have in this regard chosen the
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spectral method for its superior performance. The resulting
system orders of the three battery models in this case study

are shown in Table[l]

Additionally, the computational complexity is also char-
acterized by the Jacobian of these battery models. Since
timescale separation is determined by the condition number

of the Jacobian matrix, we compute the condition numbers
at different time steps of the training sinusoidal response. It
is equal to the ratio between maximal and minimal eigen-
values of the Jacobian, which roughly measures the local
timescale separation. We report in Table [1] the maximum
condition number for the three models. By convention, a
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Complexity Training Generalization error
Model Condition Solution Batter: Voltage | SOC

Metrics | System Solver speedup y Tlplp & o
order number dataset [mV] [mV] [%]

Models (average)
DA o

P2D DAE 130 + 14 (SUNDIALS) 6.0 x 10 1X ™~ o T~ | T~
DD-ROM ODE 130 Rodas4 6.7 x 10° 91X Isrt‘;‘:g‘a,‘ll 988 | 9.87 | 0.635
MINN ODE 82 Rodas4 3.0 x 108 182X Meas‘;ﬁement 6.28 11.6 | 0.059

TABLE 1: Model complexity, data efficiency in training. The generalization error of DD-ROM and MINN battery models
are compared with results of a dynamic driving profile obtained by a high-fidelity P2D model with the LG M50
parameterization (see Supplementary Information: Model Parameterization). The generalization error is measured in root
mean square error (RMSE) against the P2D benchmark. The solver used for the DAE system representing the 144-order
P2D model is a legacy SUNDIALS solver [49], and the stiff solver for DD-ROM and MINN employs a 4th-order A-stable
stiffly stable Rosenbrock method (Rodas4). All models are implemented using the Differential Equations.jl package in

Julia [B5].
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system is said to be stiff if this number is large, and it In practice, most P2D model implementations feature
requires stabilized stepping, which is potentially computa- additional algebraic state variables that are converged at
tionally costly. each time step by using, e.g. an iterative algorithm. While



these implementations may realize millisecond-scale simu-
lations [14] for static charge and discharge, the solution time
can be prohibitively slow for dynamic driving profiles due
to increasing stiffness. As shown in Table 1} the two hybrid
models, i.e., MINN and DD-ROM, achieve two orders of
magnitude speedup in the solution time for an 800-second
vehicle driving test, of which the MINN battery model has a
slight edge over the DD-ROM model. The significant speed
improvement of the MINN framework compared to DD-
ROM is attributed to its high data efficiency, which allows
for learning the complex dynamics of batteries without the
need for a fixed number of internal states. This unique
feature enables low-order approximations, as demonstrated
by developing an 82-order model in Table [1} in contrast to
DD-ROM, which requires 130 states for similar accuracy.
The remarkable speedup in computational time will make
onboard model-based applications possible, such as online
parameter identification, state estimation and closed-loop
control. Indeed, a vast majority of daily battery usage is
driven by time-varying current profiles, under which the
identifiability of battery models, including the P2D and
MINN, will often be improved significantly compared to
static excitations. Therefore, improving computational effi-
ciency under dynamic operating conditions will help lift the
computational burden of parameterization.

5.4 Discussion on Adaptive Battery Modeling

During battery lifetime, conventional physics-based mod-
eling requires periodic re-parameterization because of the
ever-changing nature of multi-physical battery parameters
due to ageing [61 62]. The need for computationally ex-
pensive re-parameterization undermines the applications of
physics-based models, which are supposed to have min-
imal dependence on data acquisition and training. This
is evidenced by the fact that no mass-produced BMS on
the market today has claimed the usage of physics-based
models. MINN allows for the simplification of DAE-based
structures and may potentially improve the identifiability
of parameters. Accordingly, MINN can then be used for
aging adaptive models for a wide range of intelligent battery
management applications, not only in the short term of
several hours or days, but also over the battery’s entire
lifespan. Numerous examples of such applications include
fast charging, lifetime optimization, thermal fault detection,
and safety prognosis, which are the main challenges of BMS
algorithm design.

6 CONCLUSION

The rapid upscaling of battery-powered electric vehicles
makes it possible to collect big data. Based on the data, a
wave of data-driven models under the hood of machine
learning has recently been developed in the battery commu-
nity. While data-driven surrogate models excel in learning
complex battery characteristics, they inherently lack the
ability to generalize beyond the training data and to pro-
vide a physical interpretation of the internal battery status.
To fundamentally bridge the identified research gap, we
proposed a conceptually novel physics-based deep learning
architecture, MINN, to seamlessly combine the merits of
physics-based and data-driven models.
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MINN stands out through its remarkable accuracy and
acceleration, surpassing state-of-the-art benchmarks across
the full spectrum of system modeling. In comparison with
physics-based simulations, MINN achieved two orders of
magnitude speedup while maintaining comparable accu-
racy. Unlike purely data-driven models, MINN is data-
efficient to train and generalizable to unseen operational
conditions. Its incorporation of physical parameters and in-
terpretable hidden states, by design, facilitates the learning
of system dynamics rather than being limited to input-
output relationships. In contrast to the existing practices
of physics-based machine learning, MINN offers distinct
advantages. Specifically, it can be trained without the need
for internal state data, addressing the limitations of cur-
rent sensing technologies in real-world battery applications.
Furthermore, MINN's unique capability to model general
non-autonomous PDAE systems under any control input
empowers the implementation of advanced and real-time
control strategies for internal states.

The substantial and practical advantages of MINN make
it an exceptional choice for developing the next-generation
BMS, including battery system identification, fault diag-
nostics, safety prognostics, and physics-based control. By
integrating machine learning with physics-based modeling,
the MINN framework offers a powerful tool for analyzing
general dynamic systems commonly found in diverse fields,
such as mechatronics, thermal fluid dynamics, electrical
power systems, and energy storage systems.
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