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G R A P H I C A L A B S T R A C T
� Internal resistance-operating condition
model to assess humidity state.

� Impact trends of operating conditions on
water management state.

� Impact weights of each operating con-
dition on water management state.

� Optimal operating combination for the
best water management state.

� Higher efficiency and accuracy
compared to response surface method-
ology results.
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A B S T R A C T

The water content of proton exchange membrane fuel cells (PEMFCs) affects the transport of reactants and the
conductivity of the membrane. Effective water management measures can improve the performance and extend
the lifespan of the fuel cell. The water management state of the stack is influenced by various external operating
conditions, and optimizing the combination of these conditions can improve the water management state within
the stack. Considering that the stack's internal resistance can reflect its water management state, this study first
establishes an internal resistance-operating condition model that considers the coupling effect of temperature and
humidity to determine the variation trend of total resistance and stack humidity with single-factor operating
conditions. Subsequently, the water management state optimization method based on the ANN-HGPSO algorithm
is proposed, which not only quantitatively evaluates the influence weights of different operating conditions on the
stack's internal resistance but also efficiently and accurately obtains the optimal combination of five operating
conditions: working temperature, anode gas pressure, cathode gas pressure, anode gas humidity, and cathode gas
humidity to achieve the optimal water management state in the stack, within the entire range of current densities.
Finally, the response surface experimental results of the stack also validate the effectiveness and accuracy of the
ANN-HGPSO algorithm. The method mentioned in this article can provide effective strategies for efficient water
management and output performance optimization control of PEMFC stacks.
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Nomenclature

N Number of single cells
Rstack Total internal resistance, Ω
Rf Activation resistance, Ω
Rm Ohmic resistance, Ω
Rd Concentration loss resistance, Ω
R ideal gas constant, J/(mol⋅K)
F Faraday constant
i Current density, A/cm2

Tstack Stack temperature, K
RHstack Relative humidity of stack, %
Wstack Stack water content
tm Thickness of proton exchange membrane, μm
S Electrochemical reaction area, cm2

Cg Total concentration of reactants, mol/L
Deff Water transfer coefficient, J/(mol⋅K)
Wproduce Amount of water produced by the reaction
MH2O Water vapor molar mass, g/mol
Winlet Intake water content
Woutlet Exhaust water content
mH2,in Humidification hydrogen quality, g
RHgas Gas relative humidity
psat Saturated vapor pressure, atm
MH2

Hydrogen molar mass, g/mol
PH2

Hydrogen inlet pressure, bar
mO2,in Humidification oxygen quality, g
Mair Air molar mass, g/mol
V Intake flow, L/min
Vm Pair molar volume of gas in standard state, L/mol air inlet

pressure, bar

Vstack Volume of the stack, cm3

t Exhaust emission time, s

Greek
α Electrochemical reaction constant
γ Adjustment factor
δ Thickness of diffusion layer, μm
η Learning rate
σ Convergence factor
λ Membrane water content
μ Number of transferred electrons
τ Number of moles of transferred ions
ω Connection weight
β Conductivity coefficient

Subscript
a Anode electrode
c Cathode electrode

Superscript
i Index of elementary unit, i ¼ 1, 2, ⋅⋅⋅, n
j Index of elementary unit, j ¼ 1, 2, ⋅⋅⋅, n
h Index of elementary unit, h ¼ 1, 2, ⋅⋅⋅, n
k Index of elementary unit, k ¼ 1, 2, ⋅⋅⋅, n

Abbreviations
PEMFC Proton exchange membrane fuel cell
ANN Artificial neural network
HGPSO Particle swarm optimization with grey wolf optimization

and reverse learning
CPSO Chaos particle swarm optimization
PSOGA Particle swarm genetic algorithm
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1. Introduction

The demand for clean and efficient energy is continuously growing in
today's society. Proton exchange membrane fuel cell (PEMFC) transforms
chemical energy into both electrical and thermal energy, and not only has
general advantages such as cleanliness and high energy conversion effi-
ciency, but also has characteristics such as working temperature close to
room temperature, fast start-up time, and no electrolyte leakage or
corrosion [1]. Based on these advantages, PEMFCs are considered as an
ideal solution for future portable and mobile power sources [2]. How-
ever, PEMFC system is a nonlinear, multivariable, and strongly coupled
complex system, and its output performance is affected by multiple fac-
tors, including different PEMFC system operating conditions [3]. Due to
the sensitivity of PEMFC to changes in electrical current, changes in
operating conditions may cause membrane dryness or water flooding
states, seriously affecting the stability and output performance of PEMFC,
and even shortening their remaining lifespan [4]. Excessive internal
water content in the stack can hinder reactant transport, while membrane
dryness can reduce the proton exchange membrane conductivity, and in
severe cases, cause irreversible membrane damage [5]. Therefore,
studying the impact of different operating conditions on PEMFC output
performance and optimizing the combination of operating conditions to
achieve the best water management state can provide a basis for
formulating the best water management strategy, enhance the output
performance and stability of fuel cells, and extend their lifespan [6].

To investigate how various operating conditions affect the perfor-
mance of PEMFC and optimize the control strategy of operating condi-
tions to achieve efficient water management, it is necessary to first
2

establish a model that accurately reflects the actual performance of
PEMFC. The output characteristic models of PEMFC are mainly divided
into mechanism models, empirical models, and semi-empirical models
based on their establishment principles. Mechanism models are mainly
based on the internal mass transfer, heat transfer, and electrochemical
reaction processes of the fuel cell. Nalbant et al. [7] studied the effect of
temperature, humidity, and membrane material changes on the output
performance of PEMFC in high-temperature environments by establish-
ing a one-dimensional steady-state model of anode mixed reaction gas.
Jahnke et al. [8] investigated the degradation mechanism of stack output
performance by establishing a coupled relationship model between stack
temperature, water content, and pressure. Vivona et al. [9] established a
2D output characteristic model for PEMFC in high-temperature envi-
ronments to study the effect of cathode reaction gas concentration and
humidity on stack output performance. Kahveci et al. [10] developed a
three-dimensional model to investigate the performance of PEMFC with
curved flow channels and examined how operating pressure and tem-
perature humidity affect the output performance. Multidimensional
mechanism models can accurately reflect the internal reaction process of
the stack, but the derivation process is cumbersome and some parameters
are difficult to obtain directly. Empirical models are simple formulas
obtained from experimental data that explore output characteristics rules
while ignoring internal reaction mechanisms. Semi-empirical models are
constructed by using empirical formulas to replace some of the complex
reactionmechanisms in mechanismmodels, combining the advantages of
mechanism models and empirical models, with high accuracy and
reduced computational complexity. Giner-Sanz et al. [11] established a
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semi-empirical equivalent model by studying the effect of stack tem-
perature and humidity on membrane water activity, which can simulate
stack output characteristics well. The output performance model
described above mainly relies on external circuit data such as output
voltage and current as reference indicators. However, these data pri-
marily indicate the external output features of the fuel cell and cannot
effectively characterize the internal water and thermal management
status of the stack or the relationship between them. Different external
operating conditions determine different water management states inside
the stack. Working under normal conditions ensures the stack obtains
good and stable output performance. However, working under abnormal
conditions, such as membrane dryness or flooding, which affects the
internal electrochemical reactions, will cause significant changes in the
internal resistance. Therefore, selecting the internal resistance as the
reference indicator for output performance can more intuitively reflect
the internal water management status. Khan et al. [12] modeled the
membrane water content and internal resistance of PEMFC system by
combining the load current and temperature, and proposed an internal
resistance model that can be used for output state control and fault
diagnosis systems in PEMFC. Tiss et al. [13] developed a new nonlinear
state space dynamic non-isothermal model based on the internal resis-
tance and the mass and energy equations, to investigate how liquid water
in the gas diffusion layer affects the dynamic characteristics of the bat-
tery. Niya et al. [14,15] analyzed and studied the impedance character-
istics of ohmic losses in PEMFC under high-frequency conditions, and
proposed an impedance model to describe the reaction process inside the
stack. In Refs. [16,17], establishing a membrane electrode water trans-
port model based on the internal resistance, and proposing a water bal-
ance control strategy for water flooding faults. The equivalent circuit
models established in the above references using the internal resistance
as the reference indicator all contain an important physical quantity of
relative humidity. However, in the actual operation process of PEMFC
stacks, the internal relative humidity of the stack is difficult to measure
and control directly. Therefore, in this paper, by analyzing the water and
thermal reaction mechanism inside the stack and the water transfer
process, the corresponding external operating conditions are used to
replace the difficult-to-measure relative humidity. Based on the coupling
relationship between humidity and temperature, an internal
resistance-operating condition model for PEMFC stacks is established to
intuitively reflect the water management status inside the stack, and
provide a model basis for directly adjusting the water content inside the
stack by changing the external operating conditions.

Several studies have examined how individual operating conditions
affect the internal water content of PEMFC based on established output
characteristic models or equivalent circuit models, providing a basis for
adjusting the PEMFC water management status by changing the oper-
ating conditions. Futter et al. [18] created a transient two-dimensional
physical continuum framework model to evaluate the performance of
polymer electrolyte membrane fuel cells and investigated the effect of
different ion concentration gradients on the fuel cell water management
status. Kim et al. [19] explored the correlation between the oxygen
diffusion rate in the catalyst layer and the distribution of liquid water
within the fuel cell. Salahuddin et al. [20] examined the impact of
enhancing the surface hydrophobicity of the gas diffusion layer on the
water management status and electrochemical performance of the cell.
Hernandez et al. [21] evaluated the impact of current ripple generated by
external electronic devices on the water management status and output
performance of fuel cells. In Refs. [17,22], analyzing the water transfer
process within the fuel cell, and constructing an equivalent model
considering inlet relative humidity, temperature, and reactant pressure
to investigate the impact of relative humidity on the performance of PEM
fuel cells. In addition, since the PEMFC system involves multiple external
operating conditions and the internal water-thermal states are coupled
with each other, the water management status of PEMFC is influenced by
a combination of various external operating conditions. Therefore, it is
imperative to horizontally analyze the impact of various operating
3

conditions on water management status based on the established internal
resistance-operating condition model, clarify the degree of influence of
each operating condition, and provide optimal operating condition
combinations, so as to achieve the goal of improving the
output capability of PEMFC by working at an optimal water management
status.

Orthogonal experiment and response surface methodology are com-
mon experimental design methods for studying multiple factors and
levels [23]. In Refs. [24,25], the impacts of operating temperature,
relative humidity, and anode inlet pressure on PEMFC capability were
studied using orthogonal experimental design, and the optimal operating
parameter levels were determined. Kanani et al. [26] designed experi-
ments using response surface methodology to model and investigate the
impacts of temperature, humidity, and anode/cathode inlet flow ratio on
stack power, and optimized the output power parameters. Mocoteguy
et al. [27] used orthogonal experimental design to study the effect of
stack temperature and humidity and the hydrogen/oxygen stoichiometry
ratio on water management, and demonstrated that the stoichiometry
ratio has a compensating effect on stack temperature and humidity. Some
researchers used multiple-factor and multiple-level experimental design
to explore the impacts of operating temperature, inlet pressure, and inlet
flow ratio on relative humidity and stack performance [28–30]. Although
experimental design methods can obtain the optimal combination of
multiple factors, the experimental process is cumbersome, leading to low
efficiency in obtaining optimal results. Moreover, the process of changing
operating conditions to achieve different water management states
inevitably results in PEMFC stack damage, such as membrane drying or
flooding, which limits the application of these methods. The use of
artificial intelligence optimization algorithms based on experimental
data and precise PEMFC equivalent models to replace orthogonal
experimental design or response surface methodology is a promising
solution to determine the impact weights of input elements and the
optimal operating parameter combination to achieve the goal of opti-
mizing output performance. Chen et al. [31] proposed a multi-input and
multi-output fuzzy control method for PEMFC thermal management by
selecting cathode temperature and relative humidity as control objec-
tives and setting cooling water flow rate and inlet gas humidity as control
variables. In Refs. [32,33], using the support vector machine (SVM)
regression process based on the PEMFC model and parameterizing
identification results to study the impact weights of elements such as
temperature, anode–cathode inlet pressure, and membrane water con-
tent on the output capability of the fuel cell. Nanadegani et al. [34]
constructed a PEMFC output voltage model about the anode–cathode gas
coefficient, relative humidity, and load current using artificial neural
network algorithm (ANN) and optimized the stack output performance
based on the model. Laribi et al. [41] optimized the impedance model of
PEMFC using ANN and applied the model to investigate the impact of
inlet temperature and humidity on fuel cell water management state.

Combining the nonlinear fitting ability of neural networks and the
global optimization ability of particle swarm optimization algorithm, it is
possible to efficiently and accurately obtain the extreme values of the
model within the specified range, as well as the optimal input combi-
nation corresponding to the extremum. In this paper, an internal
resistance-operation conditions model of PEMFC stack is established, and
the impact of various operating conditions is determined by fitting the
model using the artificial neural network (ANN) algorithm. Then, the
reverse learning particle swarm optimization algorithm with grey wolf
optimization (HGPSO) is used to perform extremum optimization and
obtain the corresponding optimal operation condition combination. The
main contributions of this paper can be summarized as follows: (1)
Establishing a quantified relationship between the internal relative hu-
midity of PEMFC and the external operable conditions, and constructing
an internal resistance-operational condition model based on the
temperature-humidity coupling relationship; (2) Utilizing the internal
resistance-operational condition model and the Artificial Neural
Network- Reverse Learning Particle Swarm Optimization with Grey Wolf
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Optimization (ANN-HGPSO) algorithm to determine the influence
weights of different operational conditions, such as working tempera-
ture, cathode inlet pressure, anode inlet pressure, cathode inlet humidity,
and anode inlet humidity on the water management status, and rapidly
obtaining the precise optimal operational condition combination for the
best water management state in a non-destructive manner; (3) Verifying
and comparing the results of the influence weights of operational con-
ditions and the optimal operational condition combination obtained by
the ANN-HGPSO algorithm with those obtained by the Response surface
methodology experiment, demonstrating the accuracy of the ANN-
HGPSO optimization algorithm.

The remaining sections of this article are organized as follows:
Modeling presents the establishment of the internal resistance-operation
condition model. Model verification and simulation analysis describes
the validation process of the model and the simulation analysis of each
factor. The ANN-HGPSO optimization algorithm mainly introduces the
principle and implementation process of the ANN-HGPSO optimization
algorithm. Results and discussion provides the implementation results of
the ANN-HGPSO algorithm and validates the feasibility and accuracy of
the algorithmwith response surface verification experiments. Finally, the
last chapter concludes the entire paper.

2. Modeling

Various operating conditions, including the fuel cell temperature,
exert a substantial impact on the water management condition of the fuel
cell. Different water management states correspond to different total
internal resistances of the PEMFC, which in turn affect the performance
of the cell. In order to ensure that the fuel cell operates in the optimal
water management state at all times, and to reduce the internal resistance
and improve the power generation efficiency, it is essential to optimize
and regulate the external operational parameters of the fuel cell. Estab-
lishing a precise correlation between the internal resistance and oper-
ating conditions of the fuel cell is critical to achieve optimal water
management conditions in the fuel cell. This paper establishes an internal
resistance-operating condition model that considers the coupling rela-
tionship between temperature and humidity, and quantitatively analyzes
the relationship between external operating conditions and the water
management state of the fuel cell.
2.1. Model of internal resistance characteristics

The Randles equivalent circuit model is used to reflect the internal
resistance characteristics of the fuel cell stack [33], as shown in Fig. 1.
The total internal resistance of the stack Rstack mainly consists of acti-
vation resistance Rf, ohmic resistance Rm, concentration difference
resistance Rd, and double-layer capacitance Cdl. Therefore, the DC in-
ternal resistance of the PEMFC stack can be approximately expressed by
the following formula:

Rstack ¼ N ⋅
�
Rf þ Rm þ Rd

�
(1)
Fig. 1. Randles equivalent circuit model.

4

According to the electrochemical reaction kinetics, the hydrogen-
oxygen reaction at the fuel cell electrode is a multi-step and multi-
electron transfer reaction. In the initial stage of the reaction, it is
necessary to overcome the activation energy barrier of the reactants to
transform them frommolecular to ionic states and release a large amount
of energy. The charge transfer internal resistance Rf, which is the acti-
vation internal resistance, is the fundamental reason for the activation
energy barrier. According to Tafel's equation, the activation internal
resistance is related to the electrochemical reaction rate, temperature,
current density, and other parameters [35]. The activation internal
resistance can be approximated as:

Rf ¼ R
αμFi� exp½1; 268ð1=303� 1=TstackÞ � (2)

The source of ohmic internal resistance Rm is the resistance of the cell
materials to the movement of charges. In PEMFC, the equivalent
impedance is mainly composed of the resistance experienced by the
protonic positive charge passing through the exchange membrane, which
is related to the thickness of the proton exchange membrane, the relative
humidity and temperature inside the stack [36]. The numerical rela-
tionship can be expressed by the following formula:

Rm ¼ tm
ð0:513; 9λ� 0:326Þ � exp½1; 268ð1=303� 1=TstackÞ � (3)

In order to maintain PEMFC in normal operating conditions, it is
necessary to continuously deliver reactants and remove products from
the fuel cell. In this process, concentration gradients are formed inside
the components, which is the main reason for the occurrence of con-
centration loss internal resistance Rd. The concentration loss internal
resistance is related to temperature, diffusion layer thickness, total con-
centration of reactants, etc [37], and can be represented by the following
formula:

Rd ¼ RTstackδ

SCgDeffn2F2
(4)

As a supplement to these formulas:

n¼ �βτ2F�RT��i=2 (5)

Furthermore, the water migration coefficient Deff can be expressed as
[36]:

Deff ¼ 10�6 exp½2; 416ð1=303� 1=TstackÞ � �
�
2:563� 0:33λþ 0:026; 4λ2

� 0:000; 671λ3
�

(6)

The membrane water activity λ is related to the humidity RHstack of
fuel cell stack [38], and can be expressed by the following formula:

λ¼ 0:043þ 17:18RHstack � 39:85RH2
stack þ 36RH3

stack (7)

The internal humidity parameter RHstack in the above model equa-
tions is difficult to directly measure and temperature has a significant
impact on humidity. Therefore, by considering the water transfer process
inside the stack, a temperature and humidity coupling model is estab-
lished to obtain the quantitative relationship between humidity and the
changeable operating conditions outside. This allows for the develop-
ment of an internal resistance-operating conditions model, which facili-
tates the exploration of the optimal operating combination under the best
water management state in subsequent studies.
2.2. Internal resistance-operating condition model

The humidity RHstack in the fuel cell is mainly determined by the
amount of water in the stack. The change in the water content at time t
inside the stack is related to the water content of the reactant gas entering
the stack Winlet, the water content of the exhaust gas leaving the stack



Fig. 2. Water transfer process inside the fuel cell.

Table 1
Range of fuel cell parameters and operating conditions.

Stack parameters Value Stack parameters Value

N 12 RHgas
c (%) 30–90

S (cm2) 180 PH2
(bar) 1–3

tm (μm) 51 Pair (bar) 1.5–4.5
Tstack (K) 333.15–393.15 Va (L⋅min-1) 30
RHgas

a (%) 30–90 Vc (L⋅min-1) 75
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Woutlet, the water produced by the reaction Wproduced, and the water
transferred inside the stack Wdrag and Wdiffusion, as shown in Fig. 2 [21].

Drawing from the assessment of the water transport mechanism in the
fuel cell, it can be deduced that the moisture content within the stack
remains in a relatively steady state. The total water contentWstack within
the stack can be expressed as the following equation:

Wstack ¼Wproduced þWa
inlet þWc

inlet �Wa
outlet �Wc

outlet (8)

The amount of water generated by the reaction Wproduced can be
expressed as [39]:

Wproduced ¼ MH2O �NiS
�
2F (9)

The anode inlet water content Winlet
a is related to the humidified

hydrogen mass and the ratio of hydrogen humidity, and hydrogen gas
and water vapor in the humidified hydrogen gas both satisfy the ideal gas
equation [40]. Therefore, the anode inlet water content W.inlet can be
expressed by the following formula:

Wa
inlet ¼

mH2 ;in �MH2O �
�
RHa

gas � psat
�

MH2O �
�
RHa

gas � psat
�
þMH2 �

�
pH2 � RHa

gas � psat
� (10)

The cathode inlet water content Winlet
c is related to the mass and

humidity ratio of the humidified air [40]. Thus,W.inlet can be represented
by the following formula:

Wc
inlet ¼

mO2 ;in �MH2O �
�
RHc

gas � psat
�

MH2O �
�
RHc

gas � psat
�
þMair �

�
pair � RHc

gas � psat
� (11)

The total water content in the exhaust can be approximately repre-
sented by combining the absolute humidity with the ideal gas state
equation. Water vapor mixed with a small amount of unreacted hydrogen
is discharged as exhaust from the anode exhaust, while water vapor
mixed with unreacted air is discharged from the cathode exhaust.
Therefore, the total exhaust water content can be expressed as:

Wa
outlet þWc

outlet ¼
	
MH2O � psat
RTstack



Va � i �Vm

2F

�
þMH2O � psat

RTstack



Vc � i �Vm

4F

��
� t

(12)

Assuming that water inside the fuel cell exists in the gaseous state, the
total water content Wstack in the stack is related to the fuel cell humidity
RHstack as follows [41]:
5

RHstack ¼ Wstack �RTstack

MH2O � psat �Vstack
(13)
As a supplement to the model formulas above, the saturation vapor
pressure Psat is only related to the operating temperature Tstack, and their
quantitative relationship can be expressed as follows [35]:

lg psat ¼ �2:179þ 0:029; 5Tstack � 9:184� 10�5T2
stack þ 1:445� 10�7T3

stack

(14)

Combining Eqs. (13) and (8) and taking into account thewater content of
each part, the relationship between the external operating conditions of
PEMFCand thehumidityRHstack canbe expressedby the following equation:

RHstack ¼
0
@ NAi
2F � psat þ

mH2 ;in �RHa
gas

ðMH2O �MH2 ÞRHa
gas � psat þMH2

�
pH2 � RHa

gas � psat
�

þ mair;in �RHc
gas

ðMH2O �MairÞRHc
gas � psat þMair

�
pair � RHc

gas � psat
�
1
A

⋅



4FR �Tstack

4F½Vstack þ ðVa þ VcÞt � � 3AVmt � i
�

(15)

By considering the influence of RHstack as a parameter and substitut-
ing Eq. (15) into Eq. (7), the relationship between membrane water ac-
tivity λ and external operating conditions can be expressed as follows:

λ¼ 0:043þ 17:18ξ1ðξ2 þ ξ3 þ ξ4Þ� 39:85ξ1
2ðξ2 þ ξ3 þ ξ4Þ2

þ 36ξ1
3ðξ2 þ ξ3 þ ξ4Þ3

ξ1 ¼
4FR � Tstack

4F½Vstack þ ðVa þ VcÞt � � 3AVmt � i

ξ2 ¼
NAi

2F � psat

ξ3 ¼
mH2 ;in �RHa

gas

ðMH2O �MH2 ÞRHa
gas � psat þMH2

�
pH2 � RHa

gas � psat
�

ξ4 ¼
mair;in �RHc

gas

ðMH2O �MairÞRHc
gas � psat þMair

�
pair � RHc

gas � psat
�

(16)

Based on the coupling relationship between temperature and hu-
midity, build the internal resistance-operation condition model. Inte-
grating the previously established internal resistance model and the
humidity-operation condition model, a resistance-operation condition
model with the total internal resistance of fuel cell as the output and
several operation conditions affecting the fuel cell output, such as battery
temperature, cathode and anode inlet humidity, cathode and anode inlet
pressure, as the input, is obtained.

3. Model verification and simulation analysis

3.1. Model verification

Based on the experimental data of PEMFC stack provided in refer-
ences [21,42,43], the basic parameters of the stack and the ranges of
various operating conditions are selected as shown in Table 1. Two sets of



Fig. 3. The variation of internal resistance with current density. (a) Activation
resistance. (b) Concentration loss resistance. (c) Ohmic resistance.
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experimental data corresponding to RHstack and T of 50%/100% and
353.15K/393.15 K, respectively, are selected to verify the effect of stack
humidity and temperature on the internal resistance. The relevant
parameter S in the established internal resistance-operating condition
model is changed to 4.4 cm2 and the input data corresponding to the
operating conditions are used. The model simulation process is
completed through Simulink to obtain the R–I curve of each part of the
simulated model and the comparison results with experimental data are
shown in Fig. 3. From Fig. 3, it can be observed that the activation
resistance rapidly decreases with increasing current density in a low
current density environment, and then gradually stabilizes. The con-
centration loss resistance increases gradually with increasing current
density, while the ohmic resistance is relatively stable at different current
densities. Furthermore, alterations in humidity exert a greater influence
on the internal resistance of the fuel cell than fluctuations in operating
temperature. Simulation outcomes from the model align closely with
empirical data, affirming the accuracy of the established model.

3.2. Simulation analysis

When the fuel cell temperature is 340 K, and the anode and cathode
inlet pressures are 2 bar and 3 bar, respectively, and the inlet humidity to
both anode and cathode is 60%, the curves of the fuel cell internal
resistance Rstack and fuel cell humidity RHstack versus current density are
shown in Fig. 4(a). From Fig. 4(a), it can be observed that as the current
density increases, the fuel cell internal resistance Rstack initially decreases
rapidly, then tends to stabilize before gradually increasing, while the fuel
cell humidity RHstack monotonically increases. This is determined by the
internal resistance characteristics of each component. At the low current
density stage of the initial electrochemical reaction, the reactants un-
dergo a transition from molecular to ionic state, driving the transfer of
electrons, which must overcome activation energy barriers. At this stage,
the total internal resistance is mainly determined by the magnitude of the
activation internal resistance. In the subsequent medium current density
stage, the ohmic resistance gradually tends to stabilize. At high current
density stage, the electrochemical reaction intensifies, the amount of
reactant gas increases, and the concentration gradient increases. At this
point, the concentration loss internal resistance accounts for a relatively
large proportion of the fuel cell total internal resistance. In response to
this phenomenon, this article divides the current density into three re-
gions: low, medium, and high, and selects representative current density
values of 0.2 A/cm2, 0.5 A/cm2, and 1.0 A/cm2 to evaluate the water
management status based on the changes in Rstack. By optimizing the
operable conditions and selecting the optimal combination of operating
conditions at different current densities, Rstack is always kept to a mini-
mum, thereby improving the power generation efficiency of PEMFC.

To investigate the impact of different operating conditions on the
water management status of PEMFC, considering the difficulty of directly
measuring and controlling the actual fuel cell humidity RHstack, this study
selects five factors: the operating temperature Tstack, the anode inlet
pressure PH2

, the cathode inlet pressure Pair, the anode inlet humidity
RHgas

a , and the cathode inlet humidity RHgas
c for exploration. Firstly, the

value of a single factor is changed within a certain range, and the change
trend of the internal resistance Rstack with the corresponding operating
condition is observed. Through the vertical analysis process of single
factors, the approximate value range of each factor at the optimal water
management state is determined. Fig. 4(b) to Fig. 4(f) represent the
corresponding change trends of the fuel cell internal resistance when
various operating conditions change under different current density
environments.

1) The impact of temperature variation on the water management status
is investigated in this part. Fig. 4(b) illustrates the fluctuations in
stack resistance concerning the operating temperature range of
323.15–363.15 K. The anode and cathode inlet pressures are 2 bar
and 3 bar, respectively, and both inlet humidities are 60%. The stack
6

operates at low, medium, and high current densities. It can be
observed that, at medium current density, the total resistance initially
increases and then decreases with the increase of working tempera-
ture. Nevertheless, under low and high current density, the aggregate



Fig. 4. Variation curves of internal resistance with different operating conditions. (a) Current density. (b) Operating temperature. (c) Anode inlet pressure. (d)
Cathode inlet pressure. (e) Anode inlet humidity. (f) Cathode inlet humidity.
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resistance decreases and eventually stabilizes as the operating tem-
perature rises. Additionally, the decrease in total internal resistance is
more pronounced in high current density conditions. This is because
the increase in temperature enhances the activity of the catalyst, ac-
celerates the electrochemical reactions and proton migration rate,
and ultimately improves the output efficiency of the PEMFC;

2) The impact of changes in anode and cathode inlet pressure on the
water management state is depicted in Fig. 4(c) and (d). At the
7

operating temperature of 340 K, the anode inlet pressure is varied
between 1 bar and 3 bar while the cathode inlet pressure remains
constant at 3 bar. Both anode and cathode inlet humidity are set at
60%. The system is subjected to operation at low, medium, and high
current densities, and the resultant fluctuation in the internal resis-
tance of the stack is graphically depicted. Fig. 4(d) depicts the change
in the internal resistance of the stack with respect to the anode inlet
pressure of 2 bar while the cathode inlet pressure is varied between 1



Fig. 5. Schematic diagram of the ANN structure.
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bar and 5 bar. It is observed that, for a constant current density, the
internal resistance decreases gradually as the anode and cathode inlet
pressure increases. This trend can be ascribed to the escalation in the
effective partial pressure and gas solubility of hydrogen and oxygen,
which stems from the amplified anode and cathode inlet pressure,
correspondingly. This results in an acceleration of the diffusion rate of
the reactant gases inside the stack, thus reducing the membrane
transport resistance and enhancing the overall efficiency of the stack;

3) The impact of anode and cathode inlet humidity variations on water
management is discussed. Fig. 4(e) depicts the fluctuations in the
internal resistance of the stack under low, medium, and high current
densities, with the anode and cathode inlet pressures being main-
tained at a constant level at 2 bar and 3 bar, respectively, and the
anode inlet humidity ranges from 10% to 100% and the cathode inlet
humidity is fixed at 60%, at the operating temperature of 340 K.
Fig. 4(f) depicts the fluctuations in the internal resistance of the stack
under low, medium, and high current densities, with the anode and
cathode inlet pressures being maintained at a constant level at 2 bar
and 3 bar, respectively, and the anode inlet humidity is fixed at 60%
and the cathode inlet humidity ranges from 10% to 100%, at a
operating temperature of 340 K. It is apparent that the internal
resistance reduces and subsequently levels off with the increase in the
anode and cathode inlet humidities, when current density is held
constant. This is because the increase in anode and cathode inlet
humidities leads to an increase in themembrane water content, which
in turn enhances proton conductivity and improves the output effi-
ciency of the stack.

Taking into account the operability range of the fuel cell and the ra-
tionality of model validation, the results of the single-factor simulation
analysis and experimental data are considered, a range of values for each
operating condition is selected for the subsequent exploration of the
optimization method for the best water management state. Specifically,
the selected ranges for operating conditions are: operating temperature
of 330–350 K, anode inlet pressure of 1–3 bar, cathode inlet pressure of
1.5–4.5 bar, anode inlet humidity and cathode inlet humidity of
30%–90%.

4. The ANN-HGPSO optimization algorithm

The extremum-seeking optimization method of the artificial neural
network (ANN) combined with the gray wolf optimization-based reverse
learning particle swarm optimization (HGPSO) algorithmmainly consists
of two parts: regression fitting of the ANN model and extremum seeking
optimization of the particle swarm optimization (PSO) algorithm. Firstly,
the internal resistance-operation condition model is used to obtain the
dataset of internal resistance values and corresponding operating con-
ditions. Then, the regression fitting process of the internal resistance
prediction model is completed through the ANN module. The trained
regression model is then used as the fitness function in the global opti-
mization process of the HGPSOmodule, so as to efficiently and accurately
obtain the output extremum of the internal resistance-operation condi-
tion model within the specified interval range, as well as the optimal
input combination corresponding to the extremum.

4.1. ANN regression fitting module

The main structure of the neural network consists of three parts: the
input layer I, the hidden layer H, and the output layer J, as shown in
Fig. 5. The number of neurons i in the input layer corresponds to the
number of inputs of the trained model, which in this paper correspond to
the five selected operating conditions: operating temperature Tstack,
anode inlet humidity RHgas

a , cathode inlet humidity RHgas
c , anode gas

pressure PH2
, and cathode gas pressure Pair. The number of neurons j in

the output layer corresponds to the output of the model, which is the
internal resistance Rstack of the fuel cell. The initial connection weights
8

between the input layer and hidden layer are denoted as ωih, the
connection weights between the hidden layer and output layer are
denoted as ωhj, and the initial biases between the hidden layer and output
layer are denoted asmh and nj. Therefore, the output of the input layer I of
the network is:

yi ¼ xiði¼ 1; 2; 3; 4; 5Þ (17)

The activation function f in the network is chosen to be the commonly
used sigmoid function, then the activation function are represented by:

f ðxÞ¼ 1
1þ e�x

(18)

The output of the network's hidden layer H are represented by:

yh ¼ f

 Xh
h¼1

ωihyi �mh

!
(19)

Similarly, the output of the network's output layer J are represented
by:

yj ¼ f

 Xj

j¼1

ωhjyh � nj

!
(20)

The error can be given by the difference between the expected output
y0 and the actual output yj, and the performance index function of the
error function selected based on the gradient descent method can be
expressed as:

ELoss ¼ 1
2

X1
j¼1

�
y0 � yj

�2 (21)

By applying backpropagation and iteratively adjusting the initial
weights ω, biases mh and nj, and introducing the learning rate η to reduce
the system error, the weights and biases are updated along the negative
gradient direction. The amount of correction for each iteration Δy can be
expressed as:

Δy ¼ �η � ∂ELoss

∂y (22)

The updated expression for initial bias nj of the output layer can be
represented as:

n
0
j ¼ � η � ∂ELoss

∂yj
� ∂yj

∂
 Pj

j¼1
ωhjyh � nj

! �
∂
 Pj

j¼1
ωhjyh � nj

!

∂nj
þ nj (23)
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Similarly, the updated expression for connection weight ωhj between
the hidden layer and the output layer can be represented as:

ω'
hj ¼ �η � ∂ELoss

∂yj
� ∂yj

∂
 Pj

j¼1
ωhjyh � nj

! �
∂
 Pj

j¼1
ωhjyh � nj

!

∂ωhj
þ ωhj (24)

The updated expression for initial bias mh of the hidden layer can be
represented as:

m
0
h ¼ � η � ∂ELoss

∂yj
� ∂yj

∂
 Pj

j¼1
ωhjyh � nj

! �
∂
 Pj

j¼1
ωhjyh � nj

!

∂yh
� ∂yh∂mh

þ mh (25)

The updated expression for connection weight ωhj between the input
layer and the hidden layer can be represented as:

ω'
ih ¼ �η � ∂ELoss

∂yj
� ∂yj∂yh

� ∂yh∂ωih
þ ωih (26)

The model undergoes training and iterative adjustment by utilizing
the data within the training set, aiming to achieve a level of output that
satisfies the predefined error threshold. By calculating the corresponding
layer-to-layer weights ω of the neurons for different input factors in the
trained model, the weight of the impact of different input factors on the
output results can be obtained. Finally, the regression performance of the
neural network model is evaluated using test set data, and the model
fitting effect can be quantified by metrics such as mean relative error
(MRE), mean square error (MSE), root mean square error (RMSE), and
squared correlation coefficient (R2).

4.2. HGPSO extremum-seeking optimization module

The PSO algorithm achieves global optimization by iteratively
adjusting the initial particles to approach the previously searched
optimal solution in the swarm. However, traditional PSO algorithms
suffer from slow convergence and the tendency to get trapped in local
optima. To address these issues, the HGPSO algorithm used in this study
incorporates opposition-based learning (OBL) and grey wolf optimization
(GWO) on the basis of the PSO algorithm. This approach enhances the
global search capability of the algorithm while optimizing the local
search rate and accuracy near the optimal solution. As a result, the
HGPSO algorithm is more efficient and accurate in completing the
extreme optimization process.

The PSO algorithm consists of a population X ¼ （X1, X2, …,Xq）
composed of q particles, where vector Xk represents the position of the k-
th particle in the search space D. By selecting the target function as the
fitness function, the fitness value corresponding to each particle's posi-
tion Xk can be calculated. The velocity of the k-th particle is denoted as
Vk ¼ [Vk1,Vk2,…,VkD]T, and its personal best position is represented as Pk

¼ [Pk1,Pk2, …,PkD]T. The global best position of the population is Pg ¼
[Pg1,Pg2, …,PgD]T. During each iteration, the inertia weight ωp, accelera-
tion coefficients c1 and c2, and two uniform random numbers r1 and r2 in
the interval [0,1] are introduced. s represents the current iteration
number, and Smax is the maximum number of iterations. The updating
formulas for particle velocity Vkd and position Xkd can be expressed as:

Vsþ1
kd ¼ωpVs

kd þ c1r1
�
Ps
kd �Xs

kd

�þ c2r2
�
Ps
gd �Xs

kd

�
(27)

Xsþ1
kd ¼Xs

kd þ Vsþ1
kd (28)

After each position update, particles need to recalculate their corre-
sponding fitness value and the individuals update their individual and
global best positions by evaluating the fitness of their new solution
9

against the fitness values of their respective individual and global best
positions. This iterative process allows particles to gradually approach
the optimal position within the given function range.

To address the issues of the traditional PSO algorithm in the process
of particle updates, different opposition-based learning strategies are
applied to individual particles in the population at different stages of
iteration. The beta distribution is introduced to perturb the inertia weight
ωp. The change in the inertia weight is controlled using a random dis-
tribution, and an adjustment factor γ is introduced to make the distri-
bution of ωp more reasonable. This enhances particle diversity and
expands the search range of the population, while also providing good
local exploitation capabilities. The function formula for the beta distri-
bution and B(b1,b2) the update formula for the dynamic inertia weight ωp
can be expressed as:

Bðb1; b2Þ ¼
Z 1

0
sb1�1ð1� sÞb2�1ds; b1 > 0; b2 > 0 (29)

ωp ¼ ωmin þ ðωmin þ ωmaxÞcos


2π

s
Smax

�
þ γBðb1; b2Þ (30)

The gray wolf optimization algorithm, on the other hand, selects the
positions of the three best individuals u, v, and w based on the ranking of
the population particles. These positions, denoted as X1, X2, and X3,
respectively, serve as guides for the iterative search process of the algo-
rithm. Based on the principles of GWO, coefficient vectors A, B, and C are
introduced, along with the convergence factor σ and two random
numbers r3 and r4, uniformly distributed in the interval [0,1]. Xp repre-
sents the target position, and X(s) denotes the position of the three best
particles in the s-th generation. The iterative update of the particle po-
sitions in the population is guided by the three high ranking particles Xu,
Xv, and Xw, and can be described by the following formula.

X1 ¼Xu þ A1Bu (31)

X2 ¼Xv þ A2Bv (32)

X3 ¼Xw þ A3Bw (33)

Xðsþ 1Þ ¼ X1 þ X2 þ X3

3
(34)

The update formulas for coefficient vectors A, B, and C are:

A ¼ 2σr3 � σ (35)

B ¼ 

CXp � XðsÞ

 (36)

C ¼ 2r4 (37)

The convergence factor σ controls parameter A, which in turn affects
the particle search range. Therefore, the beta distribution is also intro-
duced to guide the nonlinear change of the convergence factor, so that
the particle search range meets the demands of different iterations. It can
improve the convergence rate of the algorithm in the early stage of
iteration and the local search accuracy in the later stage. This improved
convergence factor σ updating strategy can be expressed as:

σ ¼ 2� 2 cos


π

s
Smax

�
� 0:1Bðb1; b2Þ (38)

4.3. Implementation of ANN-HGPSO optimization algorithm

The implementation of the ANN-HGPSO algorithm mainly involves
two modules: regression fitting and extremum-seeking optimization. The
algorithm implementation process is shown in Fig. 6. The ANN regression
model, which has been trained, is utilized to compute the fitness value of



Fig. 6. Implementation process of ANN-HGPSO algorithm.
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particles within the PSO algorithm. The specific implementation steps are
as follows.

4.3.1. ANN regression fitting module
Step 1: Construct training and testing sets. Based on fuel cell internal

resistance-operating conditions model, N sets of data samples are ob-
tained. Choose n sets as the training set and the remaining (N–n) sets as
the testing set;

Step 2: Initialize the connection weights ωih between the input layer
and the hidden layer, and the connection weights ωhj between the hidden
layer and the output layer. Also, initialize the initial biases for the hidden
and output layers as mh and nj, respectively;

Step 3: Select the activation function and perform forward propaga-
tion to calculate the hidden layer output yh and output layer output yj;

Step 4: Calculate the error between the expected output y0 and the
actual output yj, and select the performance metric function ELoss for the
error function based on the gradient descent method;

Step 5: Backpropagate the error to update the connection weights ωih
between the input layer and the hidden layer, the connection weights ωhj

between the hidden layer and the output layer, and the initial biases mh
10
and nj of the hidden and output layers, respectively. Repeat this process
until the desired error is achieved;

Step 6: After feeding the test set data into the regression model,
quantitatively evaluate the regression fitting performance of the model
by comparing the predicted data obtained from the trained regression
model with the experimental data using performance metrics such as
MRE, MSE, RMSE, and R2;

Step 7: By stacking the interlayer weights ω corresponding to
different input factors in the regression model, the weight of the impact
of distinct input factors on the output can be derived.

4.3.2. HGPSO extremum-seeking optimization module
Step 1: Initialize the population size, population dimension D,

maximum number of iterations Smax, particle position Xk, acceleration
factors c1 and c2, inertia weight ωp, and other relevant parameters;

Step 2: Compute the fitness values for the particle positions in the
population, then select three best individuals u, v, and w from the pop-
ulation based on their fitness values. Store their corresponding particle
positions in X1, X2, and X3 respectively. Update the personal best and
global best solutions based on the updated fitness values;



Fig. 7. Predicted results of the model. (a) 0.2 A/cm2. (b) 0.5 A/cm2. (c) 1.0
A/cm2.
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Step 3: Introduce the reverse learning strategy to the population
particles. For the non-optimal particles, update and save their positions
as Xnew1;

Step 4: For the optimal particles, they follow the search iteration
strategy of the grey wolf optimization algorithm, and the updated posi-
tions are saved as Xnew2. Xnew1 and Xnew2 are merged to obtain the new
particle positions Xnew in the population;

Step 5: Update the corresponding fitness value of the particles based
on their new positions, sort them and select some high-ranking particles
to form a new population. Then update the individual best solution and
global best solution;

Step 6: Iterate step 3 to step 5 in a loop until the termination condition
is met, and obtain the optimal fitness value corresponding to the global
extremum.

5. Results and discussion

5.1. Regression fitting and analysis of impact weights

Based on the internal resistance-operation conditions model, five
random values within a specific range are selected as input parameters,
including the operating temperature Tstack, anode inlet pressure PH2

,
cathode inlet pressure Pair, anode inlet humidity RHgas

a and cathode inlet
humidity RHgas

c . Five hundred data samples are obtained under low,
medium, and high current density conditions of 0.2 A/cm2, 0.5 A/cm2,
and 1.0 A/cm2, respectively. The data are divided into two parts: 350
training sets and 150 test sets, and the training and prediction processes
of the ANN model are completed. The error-related evaluation parame-
ters are listed in Table 2, and the prediction effect is shown in Fig. 7. The
excellent correspondence between the forecasted data of the ANN model
and the experimental data is evident, indicating a well-fitted regression
of the model.

After superimposing the interlayer weightsω of different input factors
corresponding to the neurons in the training model, the magnitudes of
the impact weights of each input element on the output variable, the
stack internal resistance Rstack, can be obtained under low, medium, and
high current density conditions, as shown in Fig. 8. The figure intuitively
reflects that under low current density environment, the order of impact
weight values of five input factors is RHgas

a ＞PH2
＞Tstack＞Pair＞RHgas

c .
Under medium current density environment, the order of impact weight
values of five input factors is RHgas

a ＞PH2
＞Tstack＞Pair＞RHgas

c . Under
high current density environment, the order of impact weight values of
the five input factors is Tstack＞PH2

＞ RHgas
a ＞Pair＞RHgas

c .

5.2. Analysis of the optimal operating condition combination

Based on the neural network training model, the range of values for
the five input variables is limited according to the results in Section 3.2.
The optimal operating condition combination is determined by mini-
mizing the internal resistance Rstack, which indicates the optimal water
management status of the PEMFC. The internal resistance is iteratively
approached towards the minimum extremum within a specified range.
Besides, the iterative process of the ANN-HGPSO algorithm is compared
with that of the ANN-PSOGA and ANN-CPSO algorithms, and the detailed
iteration process is shown in Fig. 9. From the figure, it is evident that the
ANN-HGPSO algorithm used in this study is more stable compared to the
traditional optimization algorithms, ANN-PSOGA and ANN-CPSO. It can
rapidly approach the target extremum with fewer iterations and yields
Table 2
Predicted error parameters.

Current density ( A⋅cm-2) MRE (%) MSE RMSE R2

0.2 0.084 0.52 � 10�7 0.000,72 0.999,31
0.5 0.129 0.794 � 10�7 0.000,89 0.998,62
1.0 0.207 1.35 � 10�7 0.000,79 0.996,81
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superior optimization results. The ANN-HGPSO algorithm demonstrates
advantages in terms of iteration efficiency and computational accuracy.
The optimal input combinations and corresponding minimum predicted
values of internal resistance are obtained at low, medium, and high
current densities. The humidity and actual internal resistance values are
calculated for the corresponding operating condition combinations using
the model described in Section 2. The numerical results are listed in
Table 3.



Fig. 8. Magnitude of input factor impact. (a) 0.2 A/cm2. (b) 0.5 A/cm2. (c) 1.0 A/cm2.

Fig. 9. Iterative process for minimum internal resistance optimization. (a) 0.2 A/cm2. (b) 0.5 A/cm2. (c) 1.0 A/cm2.

Table 3
Optimal input combinations and corresponding extremum results.

Factor T
(K)

PH2

(bar)
Pair
(bar)

RHgas
a (%) RHgas

c (%) Rstack (Ω) (Predicting) Rstack (Ω) (Actual) RHstack (%)

Optimization (0.2) 349.94 1 1.5 84.6 90 0.058,6 0.058,8 38.1
Optimization (0.5) 330 1 1.5 90 90 0.037,8 0.037 69.9
Optimization (1.0) 350 1 1.8 90 90 0.097,3 0.097,2 51.1

Fig. 10. Fuel cell stacks experimental platform.

W. Wan et al. Green Energy and Intelligent Transportation 2 (2023) 100105
5.3. Experimental verification

The accuracy of the optimization results obtained by the algorithm
can be verified using response surface methodology (RSM) experi-
ments. RSM experiments are designed with Box-Behnken models in
low, medium, and high current density conditions, and the corre-
sponding internal resistance values are collected on the fuel cell stacks
using the experimental platform shown in Fig. 10. The experimental
platform primarily consists of a fuel cell testing platform (HTS-125S),
the fuel cell stack, a DC electronic load (AT5800), and an impedance
analyzer (Gamry Reference 3000). The fuel cell testing platform com-
prises a pressure supply system, a humidification system, a temperature
control system, and a monitoring system. By manipulating the oper-
ating conditions such as temperature, inlet pressure, and inlet humidity
using the testing platform, experimental data is collected and subjected
to variance analysis. This analysis enables the derivation of regression
equations and the determination of the optimized combination of
operating conditions. A comparison is then made between these results
and those obtained from the ANN-HGPSO algorithm to validate the
feasibility and accuracy of the ANN-HGPSO method for optimization.
Table 4 shows the levels of operating condition factors used for the RSM
experimental design.

Based on the factors and levels in Table 4, the RSM experiment is
designed using Design-Expert 12.0 software. The fuel cell testing plat-
form utilizes a temperature control system to regulate the temperature,
while the pressure control system is responsible for controlling the inlet
12



Table 4
Factor levels table for RSM experimental design.

Parameters Factors Levels

lowest Medium Highest

T (K) A 330 340 350
PH2

(bar) B 1 2 3
Pair (bar) C 1.5 3 4.5
RHgas

a (%) D 30 60 90
RHgas

c (%) E 30 60 90
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airflow to the anode and cathode to meet the desired pressure re-
quirements. The inlet humidity is controlled by a humidifier to maintain
the defined humidity level in the airflow. Additionally, flow controllers
are used to maintain a constant and stable airflow of 30 L/min and 75 L/
min to the anode and cathode, respectively. During the experiments, a DC
electronic load is employed to control the fuel cell's operating current
density at three different levels: 0.2 A/cm2, 0.5 A/cm2, and 1.0 A/cm2.
The experiments are divided into three groups based on the different
current densities. In each group, the temperature, inlet pressure, and inlet
humidity are adjusted according to the corresponding combinations
specified in the experimental design table. The impedance testing system,
Table 5
Experimental operating conditions and corresponding resistance values.

Test number T (K) PH2 (bar) Pair (bar)

1 340 2 4.5
2 350 2 3
3 350 2 3
4 350 2 3
5 350 2 3
6 330 2 3
7 350 2 4.5
8 340 2 3
9 340 2 3
10 340 2 1.5
11 350 2 1.5
12 330 2 3
13 340 3 3
14 340 2 4.5
15 340 1 3
16 330 3 3
17 340 3 1.5
18 340 2 3
19 350 3 3
20 340 2 3
21 340 2 4.5
22 340 3 4.5
23 340 1 1.5
24 340 1 3
25 330 2 1.5
26 340 3 3
27 340 3 3
28 340 2 3
29 330 1 3
30 340 2 4.5
31 340 2 3
32 340 1 3
33 330 2 4.5
34 340 2 3
35 330 2 3
36 340 2 1.5
37 340 2 1.5
38 340 2 3
39 340 2 3
40 340 1 3
41 340 1 4.5
42 340 2 3
43 340 3 3
44 340 2 1.5
45 350 1 3
46 330 2 3
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connected to a host computer, records and stores the collected internal
resistance values. Furthermore, before and after each experiment group,
a 10-min purge of nitrogen gas is performed to remove any excess re-
sidual water and ensure a more uniform distribution of humidity and
temperature within the fuel cell. As an example, for the state of medium
current density of 0.5 A/cm2, different operating condition combinations
and their corresponding stack internal resistance values are shown in
Table 5.

The experimental data is fitted using multiple regression analysis to
obtain a predictive model for the internal resistance (Y) as a function of
the operating temperature (a), anode inlet pressure (b), cathode inlet
pressure (c), anode inlet humidity (d), and cathode inlet humidity (e).
The model can be expressed as follows:

Rð0:5Þ ¼ 0:048; 3� 0:001; 2aþ 0:002; 6bþ 0:001c� 0:002; 6d � 0:000; 8e
�0:000; 8abþ 0:000; 2acþ 0:000; 3ad � 0:000; 2aeþ 0:000; 1bc
�0:000; 2bd � 0:000; 1be� 0:000; 2cd þ 0:000; 4ceþ 0:000; 2de
�0:000; 2a2 � 0:000; 6b2 � 0:000; 4c2 þ 0:000; 8d2 þ 0:000; 1e2

(39)

Similarly, the experimental design is completed at low and high
current density states, and experimental data are collected on the fuel cell
stack to complete multiple regression fitting. The corresponding
RHgas
a (%) RHgas

c (%) Rstack (Ω)

30 60 0.052,2
90 60 0.045,1
60 90 0.045,8
30 60 0.050,5
60 30 0.047,8
60 30 0.050,3
60 60 0.047,4
30 30 0.052,5
60 60 0.048,3
90 60 0.045,2
60 60 0.044,9
30 60 0.053,2
30 60 0.053,6
90 60 0.046,9
60 90 0.044,7
60 60 0.051,9
60 60 0.048,6
30 90 0.050,6
60 60 0.048,8
60 60 0.048,3
60 30 0.049,2
60 60 0.050,7
60 60 0.044,0
30 60 0.048,3
60 60 0.048,2
90 60 0.048,3
60 30 0.050,9
60 60 0.048,3
60 60 0.044,2
60 90 0.048,3
60 60 0.048,3
90 60 0.043,6
60 60 0.050,1
60 60 0.048,3
60 90 0.048,9
60 90 0.045,6
60 30 0.048,3
60 60 0.048,3
90 90 0.045,9
60 30 0.045,9
60 60 0.045,7
90 30 0.047,1
60 90 0.049,3
30 60 0.049,7
60 60 0.044,3
90 60 0.046,7



Table 6
Ranking of the impact degree of experimental factors.

Current density F-value Influence degree

A: T (K) B: PH2
(bar) C: Pair (bar) D: RHgas

a (%) E: RHgas
c (%)

0.2 1,052.55 1,522.01 240.5 2,030.07 177.55 D＞B＞A＞C＞E
0.5 153.06 743.58 107.88 750.46 72.61 D＞B＞A＞C＞E
1.0 2,351.24 7.9 0.493,3 3.16 0.222,3 A＞B＞D＞C＞E

Table 7
Validation experiment results.

Current density T
(K)

PH2

(bar)
Pair
(bar)

RHgas
a (%) RHgas

c (%) Rstack (Ω) (Predicting) Rstack (Ω) (Actual)

0.2 350 1 1.5 68.4 90 0.059 0.059,3
0.5 333.22 1 1.5 90 89.8 0.04 0.038,5
1.0 350 1 1.67 90 86.4 0.097 0.097,2
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predictive models for the fuel cell stack impedance (Y) in each state are
expressed as follows:

Rð0:2Þ ¼ 0:070; 9� 0:003; 7aþ 0:004; 4bþ 0:001; 8c� 0:005; 1d
�0:001; 5eþ 0:000; 6ac� 0:000; 3ad � 0:000; 5aeþ 0:000; 7bc
�0:001; 8bd � 0:000; 6be� 0:001cd þ 0:000; 6ceþ 0:000; 9de
þ0:000; 7a2 � 0:000; 3b2 � 0:000; 7c2 þ 0:002; 2d2 þ 0:000; 2e2

(40)

Rð1:0Þ ¼ 0:115; 8� 0:026; 2a� 0:001; 5b� 0:000; 4cþ 0:001d þ 0:000;

3eþ 0:005; 3abþ 0:001; 3ac� 0:003; 9ad � 0:000; 9aeþ 0:000;

3bc� 0:000; 6bd � 0:000; 2be� 0:000; 2cd � 0:000; 2ce

þ 0:000; 1deþ 0:008; 6a2 þ 0:001b2 þ 0:000; 1d2 � 0:000; 2e2

(41)

The obtained mathematical models are used to perform variance
analysis on the response values Y at different current densities. The re-
sults show that the models are significant at all current densities, while
the lack-of-fit terms are not significant, indicating that the models are
valid and well-fitted to the actual situation. By ranking the significance
parameters F of each factor through variance analysis, the influence of
each factor can be obtained. The results are shown in Table 6. Comparing
the results of factor influence ranking with the weight analysis results
obtained by the artificial neural network algorithm, it can be found that
the experimental factor influence ranking is consistent with the weight
value ranking obtained by the algorithm, verifying the feasibility of
obtaining influence weight through the algorithm.

According to the regression model, with the response value Y as the
optimization condition, the optimal combination of operating conditions
is selected within the limited range. The verification experiments are
carried out on the fuel cell stacks according to the optimal operating
conditions, and the corresponding actual stack resistances are collected,
as shown in Table 7.

Comparing the results of the validation experiment with the optimi-
zation results obtained by the ANN-HGPSO algorithm in the previous
sections, it is easy to see that under the same current density conditions,
the optimal operation condition combinations obtained by the ANN-
HGPSO optimization algorithm and the response surface experimental
method are basically consistent, and the minimum value of the internal
resistance obtained by the optimization algorithm is more excellent.
Moreover, compared to the cumbersome process of the response surface
experimental method, the predicted values of the extreme values ob-
tained by the ANN-HGPSO algorithm have less differences with the
actual values, and the process is more concise, which further demon-
strates the efficiency and accuracy of the algorithm in optimizing the
operation condition combinations to achieve the optimal water man-
agement state.
14
6. Conclusion

This article has established a PEMFC internal resistance-operation
condition model and verified the accuracy of the model using experi-
mental data. Based on this, the operational condition combination was
optimized using the PEMFC internal resistance as the water management
state indicator to achieve the optimal water management state. The
following deductions can be made.

(1) The internal resistance of the fuel cell stack exhibits a pattern of
initial rapid reduction, gradual stabilization, and subsequent slow
increase with the rise of current density. The activation resistance
experiences a swift decline in the low current density range, while
the ohmic resistance remains essentially constant across the entire
current density spectrum. Meanwhile, the concentration loss
resistance rises with the increase of current density in the high
current density range;

(2) Within a certain range, reducing the operating temperature,
increasing the inlet humidity, and increasing the reactant gas
pressure appropriately can help to reduce the internal resistance
of the fuel cell and improve the output performance of the
PEMFC;

(3) The PEMFC internal resistance-operating condition model based
on ANN regression fitting has high prediction accuracy. The
weights of five operation conditions including operating temper-
ature, anode and cathode inlet pressure, and anode and cathode
inlet humidity obtained by the ANN-HGPSO algorithm, as well as
the optimal operation conditions combination to achieve the best
water management state, are verified by the response surface
experimental results, which reflects the efficiency and accuracy of
the ANN-HGPSO optimization algorithm.
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