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Abstract—Predicting the degradation behaviors is challenging 

and essential for prognostics and health management for proton 

exchange membrane fuel cells (PEMFCs). However, existing 

methods based on data-driven or model-based methods can face 

the problem of significant performance inconsistencies in different 

prediction stages. We investigate the cause and attribute it to the 

ignorance of the voltage recovery phenomena of PEMFCs 

observed during the frequent start-stop processes during practical 

applications. A novel prognostic method is proposed to provide a 

more comprehensive analysis of PEMFC aging that integrates 

data-driven and model-based methods. Specifically, a physics-

based aging model considering voltage recovery (PA-VR) is first 

reported as a model-based method to enhance the prediction effect 

at voltage mutation points. Then, the moving window method with 

iterative function is used to combine the data-driven method with 

the PA-VR model, which realizes the online update of model 

parameters. Finally, the weightings on individual approaches are 

dynamically determined at different stages throughout the 

PEMFC lifecycle. The proposed hybrid method achieves an 

effective improvement in prediction performance by combining 

the overall degradation trend predicted by the PA-VR model and 

the local dynamic characteristics predicted by the data-driven 

method. 

 

Index Terms—Fuel cell, aging prediction, hybrid method, voltage 

recovery. 

I. INTRODUCTION 

Proton exchange membrane fuel cells (PEMFCs) are highly 

efficient and environmentally friendly power sources that make 

them a perfect fit for various modern sustainable applications, 

such as electrified transportation and power-to-gas systems 

[1],[2]. The PEMFC is well-suited for heavy-duty electric 

vehicles because of their lightweight construction and high 

energy efficiency [3],[4]. However, limited lifetime 

significantly hinders their large-scale integration into 

transportation and power systems [5],[6],[7]. Despite 

experimental tests suggesting longer lifetimes, the fast 

degradation of PEMFCs during practical use is attributed to the 

complex and constantly changing operating conditions and the 

absence of well-design prognostics and health management 

(PHM) systems [8]. Developing robust PHM systems is 

essential for extending the remaining useful life (RUL) of 

PEMFCs [9]. Thus, more advanced algorithms can be designed 

for energy management and control purposes [10],[11].  

The prognostic algorithms of PEMFCs can be divided into 

three categories: Data-driven, model-based, and hybrid 

methods [12]. Model-based methods mainly adopt the 

mechanistic and empirical aging models. For example, Zhang 

et al. [13] proposed a model to describe the relationship 

between the external environment and the internal state of fuel 

cells. The unscented Kalman filter (UKF) was used for damage 

tracking and aging prediction of the PEMFC. Since fuel cells 

have highly complex and uncertain aging mechanisms, it is very 

challenging to establish a reliable mechanistic or physics-based 

aging model for real prognostic applications. Therefore, the 

empirical aging model-based prognostic method is more widely 

preferred for the degradation prediction of fuel cells in practice. 

For instance, Jouin et al. [14] proposed a prognostics 

framework that combines particle filtering with empirical 

models. Then, the RUL of the PEMFC is estimated through the 

probability distribution. Unfortunately, these empirical models 

cannot directly reflect the internal aging-related parameters. 

Therefore, the semi-empirical model considering the internal 

parameters of PEMFC becomes the research focus. A semi-

empirical model was proposed in [15] by considering the 

degradation of components and validated on four datasets based 

on the particle filter. Another semi-empirical model was 

investigated in [14]. The health index and the uncertainty in the 

degradation process are estimated by the extended Kalman 

filter (EKF), and finally, the RUL is calculated. The voltage 

recovery phenomena are often ignored in model-based methods 

[14],[15],[16],[17].  

In recent years, data-driven methods have received 

increasing research attention due to the advancements in 

artificial intelligence and data science. These methods use deep 
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learning to build black-box models that can predict the RUL of 

PEMFCs without the need for an aging mechanism [18]. For 

example, based on a relevance vector machine (RVM), a 

remaining life prediction model of PEMFC was proposed by 

Wu et al. [19], who proved its advantages over the classical 

support vector machine (SVM) in a small training set. 

Furthermore, Zhou et al. [20] proposed a novel multi-stage 

prognostic approach to predict fuel cell performance and RUL 

accurately. Liu et al. [21] proposed a recurrent neural network 

(RNN) method that employed regular interval sampling and 

locally weighted scatterplot smoothing for data reconstruction 

and smoothing. The method subsequently utilized the long 

short-term memory (LSTM) approach for prediction, which 

improved the prediction accuracy by 28.46% compared to the 

BP neural network (BPNN). Based on reference [21], Long et 

al. [22] proposed a gated recurrent unit (GRU) with similar 

processing steps to LSTM but has a better performance. 

However, these methods require a large amount of experimental 

data to train the models and cannot make predictions based on 

fuel cell mechanisms. Furthermore, Wang et al. [23],[24] found 

that the performance of LSTM and GRU in multi-step 

prediction was unsatisfactory. The lack of real-time data during 

the prediction phase prevents model updates and causes the 

predicted results to converge to a horizontal line, rendering 

degradation trend prediction unachievable. 

As a means of addressing the limitations of individual 

approaches, hybrid methods have emerged as a popular area of 

research. By combining the strengths of multiple techniques, 

hybrid methods offer a more comprehensive and effective 

solution [25]. Ma et al. [26] used LSTM to predict the voltage 

value as the observed value for EKF. Using the EKF, the voltage 

prediction value is determined by the PEMFC of internal aging 

parameters. Zhou et al. [27] proposed a hybrid forecasting 

architecture based on the moving window (MW) method and 

verified it under three datasets simultaneously. In [18], the 

degradation of fuel cells is divided into irreversible and 

reversible degradation processes, and the Kalman filter and 

neural network were used to predict degradation, respectively. 

This hybrid method could get detailed voltage recovery 

information and aging trends. Wang et al. [28] propose a hybrid 

prediction framework that combines a semi-empirical model 

and a data-driven method (DDM) with a sliding window. The 

semi-empirical model predicts the overall degradation trend, 

while the DDM predicts local change performance, achieving 

accurate short-term and long-term predictions in total. Tian et 

al. [29] proposed a hybrid prediction method that combines 

nonlinear autoregressive neural network (NARNN) with LSTM 

recurrent neural network. The decomposition of aging data 

based on empirical mode decomposition (EMD) enabled 

targeted selection of data-driven methods for prediction, 

leading to improved prediction accuracy. 

In the methods mentioned above, the accuracy of the 

prediction is often inversely proportional to the length of the 

prediction period. Real-time updating of model parameters is 

crucial during prediction, particularly when dealing with 

limited data storage and computational capabilities. The 

predictive accuracy can be improved by constantly adjusting 

the model parameters based on incoming data, and the system 

can adapt to changing conditions under continuous processes. 

However, real-time updating strategies can encounter problems 

with frequent start-stop processes, creating vastly different 

operating conditions between stages affected by voltage 

recovery (VR). It was found that the voltage recovery can be 

characterized by a double exponential trend over time, which 

be combined with a model-based method to enhance the 

prediction accuracy [23].  

In order to achieve the optimal level of prediction accuracy 

at each stage, a hybrid approach that leverages the best 

characteristics of individual methods is often the most effective. 

Building on the challenges and opportunities outlined above, 

this study presents an innovative online prediction framework 

for fuel cells. The framework combines a physical aging (PA) 

model, which takes into account the VR phenomenon and is 

based on empirical equations to capture overall decay trends, 

with a GRU model that enhances nonlinear predictive 

performance. Furthermore, in order to enhance the predictive 

accuracy of nonlinear information, this study incorporates an 

attention mechanism into the GRU model. This mechanism 

allows the model to focus on the most critical information in the 

input sequence, thus improving the overall accuracy of 

predictions. To ensure that predictions are made in real-time, a 

moving window method is used in combination with the 

attention-enhanced GRU model. This approach enables the 

model to process incoming data in small, overlapping windows, 

allowing for continuous online prediction. The weight 

assignment calculation of each model is also optimized to 

improve the accuracy and efficiency of the prediction process. 

The proposed methods improve the prediction accuracy by 

specifically addressing the following problems: 

1) Combining the PA-VR model with an adaptive 

unscented Kalman filter (AUKF) mitigates the effect of 

frequent start-stop points on local prediction. 

2) By incorporating the GRU with the attention 

mechanism, the general nonlinear trends not covered in the 

models can be considered.  

3) With dynamic weight assignment, high robustness is 

introduced so that the advantages and disadvantages of the PA-

VR and GRU models are optimally balanced. 

The rest of the paper is organized as follows. In Section II, 

the hybrid prediction method and the models involved are 

introduced. In Section III, the raw data sources and 

experimental configurations are presented. In Section IV, the 

prediction results are presented and discussed. The concluding 

remarks are given in Section V. 

II. HYBRID PROGNOSTIC METHOD 

A. Hybrid Prognostic Framework 

The proposed hybrid prediction framework is shown in Fig. 

1. It consists of three steps: 1) Windowing the data; 2) Iterative 

training of model parameters for PA-VR model and GRU; 3) 

Computing weights for hybrid forecasting. Specifically, first, an 

online data acquisition platform is used to collect output voltage 

data. Second, the data preprocessing and window division are 

performed simultaneously, and real-time measurements are also 

used as the input of the PA-VR and the GRU for model 

retraining. Finally, the weights for different methods in each 
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window are calculated to obtain a final hybrid prediction result. 

With the moving window, the model parameters can be 

iteratively updated for real-time aging predictions. 

Under the hybrid prediction framework, less training data are 

needed for online operation. The corresponding weighting 

factors can be dynamically adjusted by iteratively inputting 

real-time data to update the models of each method. The 

forecast duration at each step can be easily changed with 

different window horizons. Furthermore, the proposed method 

could predict the aging process more accurately during start-

stop operation, providing more valuable information for 

decision-making. 

B. Model-Based Prediction Method 

a) PA model: The PA model predicts the primary aging trend of 

fuel cells. The stack voltage is modeled by considering the 

polarization parameters [30]: 

 

0

ln ln 1cellstack ocv

L

i i
V n E Ri aT bT

i i

    
=  − − + −     

   

 (1)

  
Fig. 1. Proposed Hybrid prediction framework for PEMFC aging prediction. 

 

 

where Vstack is the output voltage, i is the current density, T is 

the operating temperature, and ncell is the number of cells. a and 

b are the Tafel constant and the concentration constant, 

respectively. Eocv is the open-circuit voltage, i0 is the exchange 

current density, R is the area-specific resistance, and iL is the 

limiting current density. 

Over the fuel cell lifetime, Eocv and i0 can be treated as 

constants. R and iL may change significantly under different 

currents due to the degradation of the membrane and bipolar 

resistance [31]. Therefore, R and iL are selected as the aging 

parameters of the model. Moreover, Bressel et al. [32] found 

that a single parameter α can characterize the changing rate of 

R and iL during the aging process. α can also reflect the 

downward trend in voltage, i.e., 

0
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where β represents the aging rate of α, the least squares method 

can be used to determine α based on the polarization curve at 

the initial time [15]. Combining (1) and (2) yields the PA model 
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  (3) 

b) PA-VR model: A recovery in the output voltage of fuel cells 

can always be observed after the start-stop operation, which 

leads to a degree of bias in predictions. Since the PA model (3) 

only describes irreversible aging behaviors, it can only be used 

to predict the overall downward trend in the terminal voltage 

during aging, whereas the information regarding voltage 

recovery due to reversible aging mechanisms is ignored [33]. 

Therefore, a VR model is needed for enhanced voltage 

prediction. 

By extracting the features of the existing VR phenomenon, 

VR can be predicted at any start-stop point using the VR model. 

A double exponential empirical model is adopted [34]: 

 ( ) ( )1 2 3 4Rec( ) exp expt r r t r r t=   +    (4) 

where r1-r4 are VR model parameters, which can be obtained 

by fitting the difference in predicted and measured voltage data 

between start-stop points. 

The PA-VR model is obtained by combining (3) and (4): 

 ( ) Rec( )   

      ( )        otherw s
( )

i e

a c

a

V
V t t t t

V t
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+ =
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where tc represents the time of the preset start-stop point. 

With the VR model determined during the training phase, 

only the prediction part needs to be changed. Fig. 2 illustrates 

the workflow of the VR model. According to the model 

parameters obtained in the training process, the state 

information is transmitted through the empirical model. When 

the start-stop point tc is reached during the prediction process, 

the VR model is added. 
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Fig. 2. Flow chart of combing PA and VR. 

 

c) AUKF: To extract the aging parameters, the system can be 

converted to a nonlinear discrete-time system with sampling 

interval Δt (1 h in this work) 
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where k = t/Δt is the discrete-time index, state  ,
T

x  =  

consists the aging parameters in (2), y = V is the measured 

voltage, and the input u = i is the current density. n and v are the 

process and measurement noises, respectively. A is the state 

transition matrix, and h is the measurement function determined 

by (3)-(5). This discrete-time state-space equation is given as 
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To reduce the influence caused by non-stationary noise in 

the process and measurement, covariance matching is used to 

adjust the covariance matrices adaptively. The main steps of the 

AUKF algorithm are given as follows: 

1) Initialization 
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2) The unscented transformation is used to generate (2n+1) 

sigma points: 
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3) Update of predicted state 
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4) Compute the Kalman gain, and update the system state 

and error covariance from measurements: 
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C. Data-Driven Prognostic Method 

GRU is to improve the effect of long sequence prediction 

[35]. As shown in Fig. 3(a), GRU has two gate functions: the 

update gate z(t) and the reset gate r(t). The GRU is described 

by 

  ( ) ( ( 1), ( ) )zz t W H t X t= −  (17) 

  ( ) ( ( 1), ( ) )rr t W H t X t= −  (18) 

  ˆ ( ) tanh( ( ) ( 1), ( ) )HH t W r t H t X t= −  (19) 

 ˆ( ) (1 ( )) ( 1) ( ) ( )H t z t H t z t H t= − − +  (20) 

 ( ) [ ( ) ]Y YY t W H t b= +  (21) 

where Wz, Wr, and WH are the network weights of the update 

gate, reset gate, and candidate states, respectively. z(t) is the 

update gate; r(t) is the reset gate; and H(t) is the hidden state. It 

can be seen from (17) that GRU can forget and select using the 

same gate z(t) (LSTM needs to use multiple gates) and realizes 

the optimization of the structure. The output Y(t) of the current 

neuron is obtained by (21). 

The attention mechanism is introduced into the GRU to 

improve the prediction performance. Theoretically, the 

attention mechanism can be used before or after the GRU 

method. However, using it before the GRU method would cause 

part of the attention to be distracted by other features, resulting 

in a decline in the effectiveness of the method. So this paper 

uses the attention mechanism after the GRU method [36]. The 

input layer processes the input voltage data into multiple feature 

vectors for GRU training. Then the feature vectors are inputted 

into the hidden layer for the GRU model training to get the 

initial output vectors. In order to obtain a reasonable attention 

distribution, the initial output vectors are used as the input 

vectors of the attention mechanism, and the attention weight 

parameters are calculated. Finally, the final predicted value is 

obtained by the output layer. The structure of GRU with 

attention mechanism (GRU-A) is shown in Fig. 3(b). 

The numbers of input, hidden, and output layers of the GRU 

are selected as 1, 2, and 1, respectively. The input layer has 60 

neurons, each with 100 weights and 100 biases. The first hidden 

layer has 100 neurons, and each neuron has 80 weights and 80 

biases. The second hidden layer has 80 neurons, each with 10 

weights and 10 biases. Finally, the output layer has 10 neurons, 

each containing 1 weight parameter and 1 bias parameter. 

Introducing the attention mechanism to the GRU increases the 

attention calculation without affecting the parameter settings of 

other links in the GRU. 
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Fig. 3. (a) Basic GRU structure. (b) GRU with the attention mechanism. 

D. Moving Window Method 

With the MW method, the PA-VR model and the data-

driven model can be iteratively trained the by the latest data. 

The MW method provides dynamic weights and thresholds of 

each model to increase the prediction accuracy. To achieve 

iterative training in degradation prediction, the input dataset is 

continuously updated through the MW, as shown in Fig. 4. 

 
Fig. 4. Moving window method. 

 

Each step is composed of three parts: the training phase 

(green area), the update phase (yellow area), and the prediction 

phase (red area). In the green area, the PA-VR model and GRU-

A are trained by the measured data in each prediction process. 

In the yellow area, the weight factor of each method is 

calculated based on the newly measured and predicted data. The 

hybrid prediction result is obtained in the red area by combining 

each method with its corresponding weighting factor. 

To illustrate the MW method, three consecutive MWs are 

defined in the Kth step as N, N+1, and N+2. In the first step, the 

output voltage data is preprocessed, and the window is divided. 

To incorporate aging information of the current stage, the PA-

VR model and the GRU-A model are both trained by the real-

time data collected in the current window N. When the PA-VR 

model predicts the start-stop point tc in the future windows N+1 

and N+2, the VR model needs to be added, and the remaining 

voltage predictions must be performed simultaneously in these 

windows. Then, weight calculations are performed on the actual 

and predicted value of window N+1, respectively. Finally, the 

hybrid prediction result is obtained by combining the weight 

factor with the predicted value in window N+2. During the K=1 

step, the real values of the two windows are used to calculate 

the weight for the training and updating parts of the model. 

However, each of the remaining steps only requires the input of 

one window length online. The flowchart of the hybrid 

prediction framework is shown in Fig. 5. 

 

 
Fig. 5. Flow chart of proposed hybrid method 

 

In the update phase, the real-time voltage data are compared 

with the predicted value of each method in the current period, 

which is used to calculate the weight of each method in the 

hybrid process at the current step. Considering that M models 

are used in the hybrid framework, leading to the following 

expression. 
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where l  represents the weight factor of the l-th model in the 

hybrid model framework (for the present investigation, l = 1 for 

the PA-VR model, l = 2 for the GRU-A model, and M = 2) at 

the current step K. Furthermore, y is the measured voltage and 

,
ˆ

eva ly   represents the predicted voltage from the l-th model. 

After the weight factors are obtained, normalization and 

weighted summation are performed to obtain the fused 

prediction:  
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III. DATA DESCRIPTION 

The aging datasets used in this paper are collected for static 

load and dynamic load, respectively [37]. PEMFC is tested for 

1100 hours under a static load and 1000 hours under a dynamic 

load. The first fuel cell, FC1, undergoes an aging test under a 
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constant current density of 0.7 A/cm², while the second fuel cell, 

FC2, is tested under the same current density with a frequency 

of 5 kHz and a current ripple of 10%. Considering that the raw 

voltage data may contain some noise and sharp peaks, the 

calculation time would increase due to the large number of 

points collected. Each data point is 1 hour apart. 

During the operation of PEMFCs, it is necessary to interrupt 

the operation for electrochemical impedance spectroscopy (EIS) 

and polarization curve tests, resulting in multiple start-stop 

points. As shown in Fig. 6, at the above-mentioned start-stop 

points, the output voltage of the fuel cell will recover 

significantly [38].  

 
Fig. 6. Voltage degradation curve. 

IV. RESULTS AND DISCUSSION 

Predictive models can be evaluated based on two commonly 

used criteria. They are the mean absolute percentage error 

(MAPE) and root mean square error (RMSE): 
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where ( )y t   is the measured voltage; ˆ( )y t   is the voltage 

predicted; ( )y t  is the average value; and N is the number of 

voltage data. 

A. Performance of the PA-VR Model 

To present the advantages of the PA-VR model, different 

models with AUKF are used for prediction under static and 

dynamic load conditions, respectively. Meanwhile, the MW 

method is added to the PA-VR model, and the model parameters 

can be updated iteratively, further improving the prediction 

accuracy. Experiments are conducted under static and dynamic 

loads to analyze the impact of voltage recovery on the 

prediction effect. 

 

 
(a) 

 
(b) 

Fig. 7. Model-based prediction results of (a) FC1 and FC2. 
 

As shown in Fig. 7(a), the experiment under static load on 

FC1 is conducted over 1100 hours. Based on the PA-VR model, 

the prediction starts at 652 h, and three future start-stop points 

are included. The effect of the prediction is shown as the red 

curve. Both the yellow and brown curves are PA model 

predictions. The difference is that the prediction starts before 

and after the fifth start-stop point (658 h). The RMSEs of the 

PA model (before) and PA-VR model are 0.0562 and 0.0087, 

respectively, which reduced by 84.5%. The prediction points of 

the yellow and brown are only 10 hours apart (prediction point 

before the start-stop point: 652 h, prediction point after the 

start-stop point: 662 h). However, the prediction results have a 

significant deviation. The yellow curve is below the actual data 

(blue line), making fuel cell aging tracking impossible. Even 

though the brown curve tracks the aging trend better than the 

yellow curve, it cannot predict fluctuations in the voltage 

caused by recovery. The partially enlarged picture in Fig. 8 

shows that the red curve predicts the recovery voltage of the 

start-stop point and follows the future aging trend. Using the 

data of the start-stop point, the parameter information of the 

recovery phenomenon can be extracted by the PA-VR model.  

In Fig. 7(b), the red curve shows the prediction effect based on 

the PA-VR model beginning at 495 h. The starting points of the 

yellow and brown prediction curves are before and after the 

fifth start-stop point (515 h). The RMSEs of the PA model 

(before) and PA-VR model are 0.0681 and 0.0185, respectively, 

which reduced by 72.8%. The yellow and brown prediction 

curves have quite different trends depending on the prediction 
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starting point. The recovery voltage cannot be presented in the 

PA model, which hinders the estimation of the aging index α 

when the voltage has just been recovered, resulting in a poor 

prediction effect of the brown curve. The prediction for the 

brown curve is almost horizontal, which is unreasonable for 

fuel cell aging. The yellow curve has been below real data, 

which cannot accurately predict future aging trends. The detail 

of Fig. 7(b) shows that the red curve effectively predicts the 

recovery voltage and follows the aging trend, which means the 

PA-VR model is capable of accurately predicting the voltage 

recovery process of the start-stop point.  

To further illustrate the influence of the selected prediction 

points on the prediction results of the PA model, Fig. 8 shows 

the changes in the aging parameter α and its rate of change β 

with time for FC1 and FC2. It can be observed from the figure 

that the values of α are not the same at different time points, and 

the difference in values before and after the start-stop point is 

greater. However, in the prediction phase, the future aging trend 

is evaluated based on the last aging parameter obtained in the 

training phase. Therefore, the choice of the prediction starting 

point significantly influences the PA model’s prediction effect, 

which cannot reflect voltage recovery information. Meanwhile, 

the prediction error of the PA-VR model will accumulate over 

time. Therefore, using more measured data over time can help 

adjust the aging parameters of the model, and selecting a 

moderate prediction step size helps achieve accurate online 

predictions. Hence, the MW is used to update aging parameters 

and adjust prediction step sizes iteratively. 

 

 
(a) 

 
(b) 

Fig. 8. Value of aging parameters for (a) FC1 and (b) FC2. 

B. Effect of the Moving Window 

To guarantee continuous updating of model parameters, the 

PA-VR model is enhanced by adding an MW with N = 10. Fig. 

9(a) shows the prediction results of FC1. The red curve 

represents the prediction of the PA-VR model at 652 h 

(consistent with Section IV-A). The green curve represents the 

prediction results with MW, and the starting point for the 

prediction is 50 h. In the PA-VR model, more data are used (0-

652 h) to train the model. With the MW method, the degradation 

model is dynamically updated with the updated measurement 

data during degradation prediction. Thus, the prediction is 

iterated from 50 h onwards. To analyze the advantages of the 

MW method, the prediction results with MW are also analyzed 

from 652 h to compare with those of the PA-VR model. As 

shown in the partially enlarged picture, the forecast trend (green 

curve) is no longer a simple continuous curve after adding the 

MW method but rather a gradual rise or fall in the prediction. 

 
(a) 

 
(b) 

Fig. 9. Prediction results with MW of (a) FC1 and (b) FC2. 

Fig. 9(b) shows the prediction results of FC2. The red curve 

represents the prediction results of the PA-VR model for the 

starting point at 505 h. The green curve represents the 

prediction results with MW, and the prediction starts at 50 h. To 

analyze the advantages of MW, its prediction results are 

compared with those of the PA-VR model. Due to the large 

voltage fluctuations under dynamic loads, the PA-VR model 

cannot predict voltage fluctuations during the aging process, 

even though the voltage recovery phenomenon of the start-stop 

point can be handled. In Fig. 9(b), the green curve in the 

enlarged part shows that the MW improves the voltage trend 

prediction.  

Although the number of predictions increases, the 

prediction effect has been dramatically enhanced. The PA-VR 

model with the MW method can only track the overall aging 

trend (irreversible aging) but not the detailed information 

(reversible aging). The data-driven methods can predict 

detailed degradation information, including voltage 

fluctuations and stochastic information under operating 

conditions. For robustness and accuracy, it is essential to 

combine data-driven methods. 

C. Analysis of the hybrid prognostic method  

Considering both reversible and irreversible aging, the 

hybrid prognostic method with the MW is expected to obtain 

better results. To further demonstrate that the hybrid method 

can predict with fewer data, this section uses data from two time 

periods of the fuel cell: FC1 (500h-1100h) and FC2 (500h-

1000h). The length of the training set is uniformly set to 100h. 
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The horizon of MW in each method is N =10. AUKF combines 

Bayesian theory for state estimation. Therefore, the aging 

indicator obtained is the optimal estimate value. However, the 

output results of the neural network model fluctuate within a 

certain range and are not a single deterministic value. In this 

section, the prediction of GRU-A is repeated fifty times, and the 

median of the prediction is calculated and plotted as a green line. 

 
(a) 

 
(b) 

Fig. 10. Comparison of each prediction method results of (a) FC1 and (b) 

FC2. 

Fig. 10(a) shows the hybrid prediction results of FC1. The 

hybrid prediction (red curve) is consistently positioned between 

the PA-VR model (yellow curve) and the GRU-A (green curve). 

When the training data for the model is limited, the GRU-A can 

still produce good results in multi-step predictions. In addition, 

the estimation results of the GRU-A are calculated based on 

multiple prediction results, which minimizes the uncertainty of 

the prediction results and leads to more accurate estimation 

results. The GRU-A effectively predicts voltage fluctuations 

and captures detailed degradation information over long 

periods without start-stop points. However, it is difficult for the 

data-driven method to predict the recovery voltage at the start-

stop point, which the PA-VR model could effectively address. 

Meanwhile, the proposed hybrid method can increase the 

weight of the relatively accurate method to ensure high-

accuracy results. By weighting the results, the inaccurate 

predictions of a single method are always balanced. 

As shown in Fig. 10(b), the hybrid method would be even 

more effective under dynamic conditions. In the partially 

enlarged diagram, the proposed hybrid method has a superior 

prediction effect under dynamic loads, while the GRU-A shows 

an upward fluctuation trend during 960 h-1000 h. The data-

driven approach enables the hybrid method to reliably predict 

voltage fluctuations without start-stop points. Generally, the 

hybrid method with MW can achieve accurate prediction near 

the start-stop point (830 h), and it also performs well in the 

period 960 h-1000 h.  

To quantify the superiority of the hybrid method, Table I 

shows RMSE and MAPE (Tp=600 h). Compared to GRU-A, the 

hybrid method reduces the RMSE and MAPE of FC1 by 26.7% 

and 20.3%, respectively. For FC2, RMSE and MAPE of the 

hybrid method are reduced by 35.4% and 35.7%, respectively. 

The prediction accuracy has dramatically improved by 

combining the MW with the hybrid method. Considering both 

reversible and irreversible aging simultaneously, the hybrid 

method achieves significant accuracy improvements under 

dynamic load conditions. 

The models have been executed in MATLAB 2021a on a 

laptop computer with a processor of 3.10 GHz and 16 GB RAM. 

From the perspective of computational efficiency, the PA-VR 

model requires less time compared to GRU-A. The PA-VR 

model is based on its own optimal estimation using AUKF, 

which has the efficiency of an unscented transform and adaptive 

parameter adjustment. On the other hand, GRU-A, essentially 

an RNN, is a deep learning model with a large number of 

parameters, and the selection of hyperparameters can also 

increase time costs. It is noteworthy that the computational 

efficiency of the hybrid method is basically the same as that of 

GRU-A, because the hybrid result is a weighted combination of 

the output from each individual method. As the aim of our work 

is to predict several tens of hours ahead, the time cost of the 

hybrid framework is acceptable and will not affect the 

maintenance operations of the personnel after the prediction. 
TABLE I.  

COMPARISON WITH A SINGLE METHOD 

Dataset Strategies RMSE MAPE 
Time

（s/MW） 

FC1 

PA-VR model 0.0095 0.0019 0.059 

GRU-A 0.0101 0.0021 14.806 

Hybrid 

prediction 
0.0074 0.0015 15.955 

FC2 

PA-VR model 0.0101 0.0024 0.055 

GRU-A 0.0127 0.0028 14.032 

Hybrid 

prediction 
0.0082 0.0018 15.124 

D. Analysis of different window lengths 

Selecting an appropriate window length can ensure accurate 

degradation prediction while providing sufficient diagnostic 

time for upcoming faults. With a longer window horizon N, 

more measured data would be used to train the model, resulting 

in a more accurate model. However, increasing the prediction 

length would reduce the accuracy of the results. Hence, 

different N (10, 20, 50) and forecast starting points (500 h, 600 

h, 700 h, 800 h) are used in this section for analysis. 
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Fig.11. Prediction error of FC1 (a) RMSE (b) MAPE. 

 

Fig. 11(a) shows the comparison results under different N 

for FC1. For RMSE and MAPE, the prediction error with N = 

10 is the smallest at different forecast starting points. It 

represents a higher forecast accuracy in each period. Compared 

with a case with N = 50, the RMSE is lower by 19.5-20.4% and 

the MAPE decreased by 26.3-28.6%. For the N = 50, Fig. 11(b) 

shows that the numerical fluctuations of the adjacent prediction 

starting points are more pronounced, which means the longer 

the horizon, the less stable the forecast. 

  
Fig.12. Prediction error of FC2 (a) RMSE (b) MAPE. 

 

Fig. 12 shows the comparison results under different N for 

FC2. For RMSE and MAPE, the forecasting error for N = 10 is 

the smallest at different forecast starting points. The larger 

prediction error of FC2 is caused by the more fluctuating 

voltage of the dynamic load. Compared to N = 50, the RMSE 

of N = 10 has decreased by 26.3%~40.6%, and the MAPE 

decreased by 29.6%~48.7%. In addition, FC2 exhibits an 

apparent recovery phenomenon between 800 h to 1000 h. 

However, N = 10 is a more accurate predictor than other 

horizons in this period because of the reasonable window length. 

When the fuel cell voltage fluctuates significantly, 

appropriate predicted step sizes can guarantee better prediction 

accuracy because it ensures the correlation between the two 

adjacent steps. Thus, better predictions can be achieved by 

adopting different window lengths for different types of fuel 

cell aging processes. The aging condition of the current fuel cell 

can be analyzed based on real-time data input. Generally, a 

significant fluctuation in the data often indicates a fault or 

instability in the system, and N needs to be reduced regularly to 

detect the fault [26]. Instead, the window length can be 

appropriately increased to predict the long-term trend of the 

equipment under historical operating conditions, and the 

control strategy can be adjusted following the expected trend. 

For the fuel cell data referenced in this paper, N = 10 can 

achieve a more accurate prediction while ensuring an 

appropriate prediction step size. 

E. Comparison with other methods 

Based on the moving window prediction, it is essentially an 

advanced multi-step prediction. To further validate the 

superiority of the hybrid method, this section compares and 

analyzes it with methods that conduct multi-step predictions in 

other literature. Meanwhile, the prediction results in Section 4.2 

will be used for comparison. The RMSEs of different 

approaches are concluded in Table II.

 
TABLE II.  

COMPARISON WITH DIFFERENT STRATEGIES 

Strategies 
FC1 FC2 

n=10 n=15 n=10 n=15 

LSTM[39] 0.0127 0.0172 0.0103 0.0136 

BI-LSTM[39] 0.0067 0.0089 0.0095 0.0126 

Dil-CNN-A[39] 0.0069 0.0086 0.0090 0.0118 

Proposed hybrid prediction 
MW=10 MW=20 MW=10 MW=20 

0.0073 0.0083 0.0081 0.0096 
TCN-LSTM[40] 0.0099 0.0117   

BPNN-ANFIS[41] 0.0079  0.0123  
SE- NARNN-LSTM[29]   0.0091  

 

 

As shown in Table II, the hybrid method proposed in this 

paper is extensively compared with methods in existing work. 

Some methods are selected for comparative analysis. 

Benaggoune et al. [39] proposed a data-driven method using 

a multi-step prediction mode and a dilated convolutional neural 

network (Dil-CNN) with an attention mechanism for predicting 

the performance of fuel cells for the first time. For FC1 

prediction, it can be seen that Dil-CNN-A has slightly higher 

prediction accuracy than the hybrid method when the step size 

is 10. At a step size of 15, the RMSE of Dil-CNN-A is 0.0086, 

while the RMSE of the hybrid method at MW = 20 is 0.0083. 

Even with longer step sizes for each prediction, the hybrid 

method still achieves high prediction accuracy. For FC2 

prediction, at a step size of 10, the hybrid method has a 10% 

higher prediction accuracy than Dil-CNN-A. Compared with 

the prediction result of Dil-CNN-A at a step size of 15, the 

hybrid method has an 18.6% improvement at a longer step size 

(MW = 20).  

Zhang et al. [40] proposed a dual neural network cooperative 

prediction method. Based on the temporal convolutional 

network (TCN) for feature extraction, and LSTM is used to 

predict health indicators. From Table 2, it can be found that the 

prediction accuracy of the hybrid prediction framework 

proposed in this paper has an advantage under windows of 

different lengths. Accuracy increases by 26.2% and 29.1% with 

MW=10 and MW=20, respectively. 

He et al. [41] investigated the impact of the historical 
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behavior and operating modes of PEMFC on their future 

performance using back propagation neural network (BPNN) 

and adaptive neuro-fuzzy inference system (ANFIS). By 

calculating the weight of each model based on the 

corresponding prediction accuracy, the effectiveness of each 

factor was highlighted. With a window length of 10 hours, the 

proposed hybrid method improved the accuracy of FC1 and 

FC2 by 7.6% and 34.1%, respectively. 

Tian et al. [29] proposed a hybrid prediction method that 

combines NARNN with LSTM recurrent neural network. The 

aging data was decomposed based on EMD, and the above data-

driven methods were selectively used for prediction, ensuring 

the applicability of both data and algorithms. The proposed 

hybrid method in this paper improved the RMSE by 11.0% with 

a window of 10 hours for the FC2 dataset. 

Compared to data-driven methods, the combination of 

model-based methods can improve prediction accuracy thanks 

to its ability to predict irreversible aging trends. The weight 

update of the moving window method can reduce the adverse 

impact of a single method when it makes poor predictions at a 

certain stage. In addition, the hybrid method uses only a small 

amount of real data (100h) for training in the first process, thus 

enabling online prediction. 

V. CONCLUSION 

Accurate degradation prediction is a prerequisite for 

estimating the RUL of fuel cells. The aim of this study is to 

develop a voltage hybrid prediction framework that combines 

model-based and data-driven methods to achieve more accurate 

predictions with less training data. The superiority of the 

proposed hybrid prediction method is demonstrated on an open-

source dataset. In the model-based method, a PA-VR model that 

considers voltage recovery during the prediction phase is 

proposed. This effectively avoids the randomness caused by 

predicting before and after start-stop points, significantly 

improving prediction accuracy compared to classical physical 

polarization models. Furthermore, using a moving window 

method, the framework dynamically combines the GRU-A and 

PA-VR models. By iteratively updating the model parameters 

and adjusting the weights of the two models online, the 

prediction performance of the hybrid framework is significantly 

improved. The framework also exhibits high prediction 

accuracy at different window lengths. Additionally, the hybrid 

method outperforms the individual methods (PA-VR model and 

GRU-A), especially under dynamic operating conditions, 

reducing RMSE by 23.2% and 35.4% and MAPE by 25.0% and 

35.7%, respectively. 

However, there are still several issues that need to be 

analyzed and addressed in the future. 

1) When predicting based on the PA-VR model using a 

shorter window length, the accuracy results are even better 

GRU-A. However, the model-based prediction is calculated 

based on the aging indicator and its change rate at the last 

moment. Therefore, when the window length is too long, the 

linearly expressed aging indicator cannot adequately reflect the 

voltage fluctuation at this stage, resulting in a poorer prediction 

effect for the PA-VR model. Proposing a new aging expression 

will become a research focus in future work. 

2) Implementing online prediction requires algorithms with 

lower time cost during operation. The running speed of the data-

driven method in the hybrid framework will affect the 

timeliness of online prediction. Further improving this issue can 

better achieve online prediction. 

3) Currently, this article mainly predicts short-term and mid-

term decay. As shown in Figures 10-11, the prediction 

performance of the hybrid method proposed in this article is 

also considerable under longer window lengths. In future work, 

this hybrid framework can be further studied for the remaining 

lifespan of fuel cells. 
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