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Abstract—Battery management system (BMS) is essential for 

the safety and longevity of lithium-ion battery (LIB) utilization. 

With the rapid development of new sensing techniques, artificial 

intelligence and the availability of huge amounts of battery 

operational data, data-driven battery management has attracted 

ever-widening attention as a promising solution. This review 

article overviews the recent progress and future trend of data-

driven battery management from a multi-level perspective. The 

widely-explored data-driven methods relying on routine 

measurements of current, voltage, and surface temperature are 

reviewed first. Within a deeper understanding and at the 

microscopic level, emerging management strategies with multi-

dimensional battery data assisted by new sensing techniques have 

been reviewed. Enabled by the fast growth of big data technologies 

and platforms, the efficient use of battery big data for enhanced 

battery management is further overviewed. This belongs to the 

upper and the macroscopic level of the data-driven BMS 

framework. With this endeavor, we aim to motivate new insights 

into the future development of next-generation data-driven 

battery management. 

Index Terms—Battery management system, data-driven, 

battery sensing, battery big data, lithium-ion battery 

 

I. INTRODUCTION 

nergy storage systems (ESSs) are playing a crucial role 

in future energy systems with high requirements for 

power quality and resilience. ESSs are the kernel of 

electrified transportation, smart grid, industrial cyber-physical-

social systems, and residential communities. This has been 

witnessed by the rapid growth of global energy storage and 

electric vehicle (EV) deployments. 

Amongst others, lithium-ion battery (LIB) is promising 

attributed to the high power/energy density and low self-

discharge rate [1]. The global demand is expected to reach 1156 

GWh by 2026 with the world-wide growth of EVs and the 

stationary energy storage [2]. However, the performance of 

LIBs are difficult to ensure, considering their complicated 

electrochemical nature. Both the hostile environmental 

condition and the abusive operation can risk violating the 

physical limits of LIBs,  leading to a chain of detrimental side 
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reactions. Direct consequences of this include quick depletion 

and even safety hazards in the most severe cases. Therefore, a 

reliable battery management system (BMS) is indispensable for 

the practical use of LIB systems. 

BMS has been a vast area of intensive studies, incubating a 

myriad of algorithms and system design methodologies. A 

general architecture of the presently-used BMS can be referred 

to Fig. . Relying on onboard measured current, terminal voltage 

and temperature, the BMS is expected to complete the tasks of 

state monitoring, balancing, fault warning and life prognostic. 

Each of the mentioned tasks has been widely studied over the 

years, giving rise to many review works regarding the state of 

the art, e.g., state estimation [3], fault diagnostic [4], lifetime 

prognostic [5], thermal management [6], cell balancing [7], and 

charging management [8].  

The existing BMS algorithms can be generally classified into 

mechanism-based and data-driven approaches. The former 

emphasizes the modeling of complicated physical processes of 

LIB [9], which are further used to design the management 

algorithms. The major challenge of mechanism-based methods 

is rooted in the high complexity, along with the enhanced ability 

to explain the multi-physical processes in LIB. In contrast, the 

latter category focuses primarily on the optimal mining of the 

measurable signals from the LIB systems [10]. The data-driven 

management is foreseeably promising, with the increased 

availability of huge amounts of operational data and emerging 

artificial intelligence (AI) techniques. To this end, this review 

article focuses primarily on the present progresses and future 

trend of data-driven battery management technologies.  

The data-driven battery management methods, especially for 

those used for battery state estimation and health prognostic, 

have been reviewed in recent works [11-13]. However, almost 

all the works lay their summaries within the commonly-used 

BMS architecture as shown in Fig. 1. However, several key 

technical bottlenecks exist for the present battery management 

technologies. First, the data available for management is confined 

to the battery current, cell voltage and surface temperature. 

Unfortunately, the performance, safety and longevity of LIB are 

X. Liu is with the School of Electrical Engineering, Xi’an University of 

Technology, Xi’an 710048, China (e-mails: liuxh@xaut.edu.cn) 
Y. Li is with the Department of Electrical Engineering, Chalmers University 

of Technology, Sweden (yangli@ieee.org) 
L. Du is with the Department of Electrical Engineering, Temple University 

(ldu@temple.edu). 

F. Gao is with School of Energy and Computer science, University of 

Technology of Belfort-Montbeliard, Belfort, France (fei.gao@utbm.fr), 

E 

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3301990

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on August 20,2023 at 22:14:00 UTC from IEEE Xplore.  Restrictions apply. 

mailto:weizb@bit.edu.cn
mailto:liuxh@xaut.edu.cn


2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

determined by the inner coupled physics. These are further 

linked closely to the inner parameters and statues, like the inner 

temperature, potential, pressure, strain, gas, etc. The lack of 

inner information barriers the accurate judgement of the status 

of inner active components. This is recognized as a primary 

challenge for the present BMS technologies. Second, the 

battery big data is available nowadays along with the rapid 

growth of EV and grid-tied energy storage markets. The big 

data covering the whole lifetime under various application 

scenarios are quite valuable for the future battery management. 

Nevertheless, relevant experience is extremely rare in the 

present stage. Several challenging technologies should be 

addressed for the big data-driven management, like the 

improvement of data quality, transmission of huge amount of 

data, data mining methods, cyber-security, and platform 

technology. Focusing on the aforementioned barriers, new 

possibilities have been opened for future battery management 

along with the extensive investigations of LIB.  

First, the sensing of LIB has been moving from the external 

signals to the internal ones. This is essential since the LIB 

performance is dominated by the inner physics linked closely 

to the inner statues. The internal sensing can therefore provide 

insightful information for more efficient battery management. 

The LIB sensing from traditional approaches towards internal 

measurement has been reviewed by Wei et al. [14]. The specific 

review emphasizes the sensing techniques, while their potential 

contribution to enhancing battery management has not been 

sufficiently disclosed and discussed.  

Second, the fast growth of big data and machine learning 

techniques has opened new paradigms for future data-driven 

management. The spring-up of big data platforms and the 

associated infrastructures enable the acquisition and storage of 

huge amounts of battery data for deep learning and analysis. 

With the availability of LIB big data, future data-driven 

management can be quite different from the traditional module- 

or pack-level management. To date, the data-driven 

management techniques within the emerging big data 

environment have not been systematically reviewed. 

To bridge the aforementioned gaps, this review aims to 

motivate new insights into the future data-driven management, 

which incorporates multi-level data utilization from the internal 

sensing to the cell/module/pack-level measurements, and 

finally towards the battery big data, as illustrated in Fig. 2.  
 

 
Fig. 1. Architecture of commonly-used BMS 
 

II. DATA-DRIVEN BATTERY MANAGEMENT 

A. State Estimation 

Direct monitoring of battery states using different sensing 

technology such as current, voltage and temperature sensors is 

not enough for high-performance battery management [15]. In 

this context, how to effectively estimate the states within a 

battery becomes crucial in real applications. With the rapid 

development of machine learning and computing technology, 

data-driven methods have been explored to estimate various 

battery states in the literature [16]. The key battery internal 

states generally consist of state-of-charge (SoC), state-of-

energy (SoE), state-of-power (SoP), temperature, and state-of-

health (SoH), as illustrated in Fig. 3 [17]. 

It is noted that SoC, SoE, and SoP vary in a short-term 

timescale level due to the rapid-changing electrochemical 

parameters [18]. In contrast, due to intermediate heat transfer 

and thermal characteristics of LIB, the battery temperature 

changes much more slowly with a middle-term timescale level. 

Furthermore, as the capacity degradation and the resistance 

increase occur slowly in the whole life of LIB, the SoH presents 

a long-term timescale property. 

a) State estimation within the short-term timescale 

With the advantages of being flexible and mechanism-free, 

data-driven methods have been widely adopted to estimate 

battery states within the short-term timescale level, including 

SoC, SoE, and SoP [19]. For battery SoC estimation, machine 

 
Fig. 2. Data-driven management with multi-level data utilization: from the internal sensing to the battery big data. 

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3301990

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on August 20,2023 at 22:14:00 UTC from IEEE Xplore.  Restrictions apply. 



3 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

learning methods such as deep neural network (DNN) [20], 

support vector regressor (SVR) [21], and XGBoost [22] have 

been adopted to derive suitable data-driven models for effective 

battery SoC estimation. Meanwhile, some data-driven methods 

are also developed to estimate battery SoE. For instance, based 

on the wavelet NN-based model and particle filter estimator, 

battery SoE is estimated rapidly with good accuracy in [23]. 

After quantifying the relationship between battery SoC and 

SoE, a dual forgetting factor-based adaptive extended Kalman 

filter (AEKF) is developed to effectively estimate battery SoC 

and SoE jointly under dynamic operating conditions for 

different batteries [24]. Ma et al. [25] propose a long short-term 

memory (LSTM) DNN-based data-driven method to achieve 

joint estimation of battery SoC and SoE, where its accuracy and 

robustness outperform the SVR, random forest (RF) and simple 

recurrent NN.  
 

 

Fig. 3. Diagram of data-driven-based battery state estimation. 
 

The data-driven method for SoP estimation is still limited 

[26]. The SoP estimation boils down to determine the maximum 

power of battery under certain physical constraints [27-29]. 

Therefore, the SoP estimation can be used directly for the fast 

charging of LIB [30, 31]. A typical study on data-driven SoP 

estimation is referred to [32]. A softmax NN-based strategy is 

proposed to estimate the SoP. The AI methods like dynamic 

programming [33] and deep reinforcement learning (DRL) [34-

36] have also been used for the maximum power determination 

of LIB. Wei et al. [37] proposed a multi-constrained maximum 

power estimation method based on an electrical-thermal-ageing 

model for data generation and the deep deterministic policy 

gradient (DDPG) algorithm for solution. Within a similar 

framework, Yang et al. [38] proposed an soft actor-critic 

(SAC)-Lagrange algorithm to obtain the maximum charging 

current that satisfies the physical constraints. Furthermore, the 

side reactions of LIB were taken into account, and the 

maximum power estimation was realized with the SAC 

algorithm. A general framework of the DRL-based maximum 

power estimation is shown schematically in Fig. 4. It is worth 

noting that the models are involved as an environment for the 

DRL-based optimization [39]. However, the DRL-based 

estimator can be purely data-driven, provided that sufficient 

battery data are available. In the case, the data pool containing 

massive battery data acts as a “real-world environment”, so that 

the effort for modeling can be mitigated. 

b) State estimation within the middle-term timescale 

The data-driven strategies to benefit battery temperature 

estimation have been studied in the literature [40]. An 

electrochemical-thermal-NN model, as illustrated in Fig. 5, is 

combined with the unscented Kalman filter to jointly estimate 

the SoC and inner temperature in [41]. A data-driven method 

combining the RBF NN and the filtering method is used to 

estimate the inner temperature with higher robustness than the 

linear NN model [42]. A data-driven method combining LSTM 

and transfer learning is proposed to estimate the inner 

temperature of LIB under various current profiles in [43]. 

Overviewing the existing works, machine learning techniques 

have been increasingly used for temperature estimation due to 

their independence to complicated thermal characterization. At 

the same time, their combination with model-based approaches 

can be a trend to improve the estimation performance [40]. 
 

 
Fig. 4. General framework of the DRL-based maximum power 

estimation methods. 
 

 
Fig. 5. Framework of electrochemical-thermal-NN model for joint 

estimation of battery SoC and inner temperature [32]. 
 

c) State estimation within the long-term timescale 

The SoH belongs to a slow-varying state and is influenced by 

many ageing factors [44, 45]. Typically, the SOH can be 
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characterized by both the capacity and the internal resistance, 

depending on the specific utilization scenario [46]. Since the 

association between these factors and SoH is highly nonlinear, 

data-driven solutions have become a powerful tool for SoH 

estimation. Estimation methods with direct use of BMS 

measurements are appealing without tedious data pre-

processing. Roman et al. [47] developed a machine-learning 

pipeline for SoH estimation by combining parametric and non-

parametric algorithms. Tang et al. [48] established a balancing 

current ratio-based data-driven solution to estimate the SoH, 

which reduced the dependence on cell-level models. To tackle 

the risk of low data quality and quantity, Bamati et al. [49] 

developed a nonlinear autoregressive with exogenous inputs 

recurrent NN for SoH estimation. The estimation accuracy was 

well ensured with randomly- missed observation data points.  

Incremental capacity analysis (ICA) and differential voltage 

analysis (DVA) have also been widely employed for the ageing 

analysis and SoH estimation of LIB. One challenge of DVA 

method is that the peaks and valleys in DV curves cannot be 

easily identified [50]. Moreover, the DV trajectory is referred 

to the capacity, which however fades over time. By comparison, 

the ICA approach transfers the voltage plateaus into observable 

peaks. Specifically, the mitigation of IC peaks and valleys over 

time can reflect the ageing mechanisms of LIB, such as the loss 

of lithium inventory (LLI) and the loss of active material 

(LAM). Therefore, the features of IC curve can be utilized as 

health indicators (HIs) to estimate the battery SoH. This can be 

realized by mapping the HIs directly to the capacity [51, 52] or 

using fusion algorithms like Gaussian process regression (GPR) 

[53] and the Bayesian model [54].  

A major challenge of the ICA method is the need of complete 

constant-current (CC) charging which is hardly available in a 

real-world environment. This is because the LIB systems, 

regardless of EV or storage application, are typically recharged 

before being depleted to a very low SoC. To mitigate this 

barrier, Wei et al. proposed a series of estimation methods 

relying on heavily-partial charging data applicable to wide 

scenarios. The methods promised high accuracy with easily-

available data from the CC charging within narrow SoC ranges 

[55], CC-CV transient stage [56], and early CV charging data 

[57]. Moreover, the transfer learning has also been exploited in 

the literature to improve the estimation performance in practical 

complicated environment [58]. 

d) Future trend: rapid estimation for large-scale utilization 

In typical battery storage applications, hundreds or thousands 

of cells are connected in parallel and series to meet the 

requirement of high power and energy. The cell inconsistency 

in large-scale applications becomes apparent and poses a big 

challenge for data-driven state estimation. For example, when 

the battery pack in an EV has reached its EoL during the first-

life application, the cells within the pack need to be sorted and 

regrouped for further second-life applications. A major 

challenge for second-life applications is to estimate the states of 

hundreds/thousands of cells rapidly and accurately, since the 

cells present remarkable inconsistencies. It should be noted that 

the second-life application of batteries is becoming increasingly 

important as the number of retired batteries is increased 

significantly. Reports show that the volume of retired LIBs 

from EV will reach more than 12 million tons by 2030 [59]. In 

this context, it is essential to develop appropriate data-driven 

solutions that can extract the information of state inconsistency 

among cells, and estimate the battery states accurately and 

rapidly using limited measurements.  

B. Life prognostic 

The prognostics of battery future ageing information such as 

future capacity trend or battery lifetime is also of extreme 

importance to ensure high-performance battery operation, as 

illustrated in Fig. 6. Given the importance and necessity, there 

have been extensive works on developing data-driven methods 

for reasonably predicting the future aging of batteries in terms 

of capacity trend and lifetime [60]. Herein the battery future 

capacity trend refers to the future trajectory in which the battery 

capacity fades, while the battery lifetime stands for the time a 

battery reaches its EoL under a specific operating condition. 

Capturing the future capacity trajectory can help to better 

understand the ageing of LIB and benefit an efficient operation 

at the early stage [61]. Meanwhile, the accurate lifetime 

prediction can save testing resources after the manufacturing 

stage, and relieve utilization anxiety during the service stage. 
 

 
Fig. 6. Diagram of data-driven based battery ageing trend prediction 

 

a) Prediction of future aging trend 

There are a growing number of literature that adopt machine 

learning technologies to predict the future capacity trajectory of 

LIB based on the data collected both in the laboratory and in 

real operating conditions. A transferred recurrent NN-based 

method is presented in [62] to predict the future calendar 

capacity under both witnessed and unwitnessed storage 

conditions. In [63], a data-driven model is developed for the 

calendar health prognostics of LIB, realizing a satisfactory 

combination of complementary domain knowledge and data. 

Also, after integrating battery’s electrochemical knowledge, 

such as the Arrhenius law, into machine learning, a modified 

GPR-based model is proposed in [53]. This model can predict 

the ageing trajectory of batteries under various operational 

temperatures and depth-of-discharge (DoD) conditions with 

satisfactory results for both one-step and multistep predictions. 

As the aging trajectory has strong time-series characteristics 
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and great uncertainty, machine-learning methods that are 

capable of storing time-sequence information and providing 

probabilistic capabilities are preferred [64]. 

b) Prediction of battery lifetime 

According to recent reports [65], the prediction of battery 

lifetime depends on the analysis of ageing mechanisms to 

extract useful features related to the battery lifetime [66]. To 

achieve this, characterization technologies have been adopted 

to obtain useful measurements such as impedance spectroscopy 

[67] and coulombic efficiency [68] for extracting valuable 

features. After that, machine learning and statistical methods 

are adopted to derive appropriate data-driven models that 

capture the relationship between the extracted features and 

battery lifetime. In [69], a probabilistic data-driven approach 

was developed to diagnose battery health. In [70], a machine 

learning method was developed for LIB lifetime prediction 

based on symbolic regression. This framework is capable of 

inferring physically interpretable models from cell ageing data 

without requiring domain knowledge. In [71], a unified LSTM-

based method was designed to predict the battery lifetime. 

Consistent evaluation of different datasets shows strong 

scalability of the proposed model with less than 10 cycles of 

lifetime prediction. In [72], a data-driven model combining 

LSTM and GPR, as illustrated in Fig. 7, was proposed for 

lifetime prediction. The model can capture the long-term 

dependence of capacity and uncertainty caused by capacity 

regenerations, and thus appeals for both multistep ahead 

prediction and lifetime prediction at the early stage. 
 

 
Fig. 7. Hybrid data-driven model combining GPR and LSTM to predict 

LIB future capacities and lifetime with uncertainty quantification [73]. 
 

c) Future trend 

In spite of the successful use of data-driven approaches for 

predicting the future ageing trend and lifetime of LIBs, there 

are still many aspects that need to be explored to improve the 

performance of the data-driven solutions. 

Early battery lifetime prediction: The early lifetime 

prediction aims to predict the future lifetime of LIB using data 

from only the early operating cycles, where obviously-less 

ageing happens. Although obtaining battery lifetime in the early 

stage is crucial for forecasting the LIB performance and 

benefiting battery design, early lifetime prediction is 

challenging as the information involved in the early cycles is 

quite limited. The early lifetime prediction of the battery is 

rooted in analysing the electrochemical mechanisms in the 

start-up cycles and then extracting informative features closely 

linked to the lifetime of LIB. It was reported that the battery life 

could be predicted with a compact linear regression model after 

extracting appropriate features based on the data from the first 

100 cycles [74]. Inspired by this, future efforts can be drawn to 

extracting more informative features from less cycling data, and 

developing advanced data-driven solutions. Moreover, 

combining the first principle elements [75] or physical models 

[76] with the data-driven approaches is also promising to reduce 

the complexity of lifetime prediction model. 

Battery knee point prediction: The LIB presents more non-

linear aging paths in a form of two-stage capacity reduction if 

cycled extensively after the capacity drops below 80% (second-

life applications). In particular, the capacity degrades initially 

in an approximately linear fashion, followed by a strongly-

enhanced ageing rate. The point at which the capacity 

degradation rate before and after shows a clear difference is 

named the “knee point”. It is critical to predicting the knee point 

of LIB ageing since the battery performance after the knee point 

deteriorates rapidly. However, the works on developing data-

driven solutions to predict the knee point of ageing at the early 

stage are still sparse. Some limited attempts have been reported 

[77]. The lack of knee point prediction would heavily hinder the 

cascading use of LIBs. In this context, it is worthwhile to 

explore feature engineering [78] or deliberate data generation 

solutions [79] to extract appropriate features from early cycling 

data. Effective data-driven solutions are also critical to capture 

the information on the knee point at the initial degradation 

stage. Such information is valuable to better understand the 

dynamics of battery aging in two stages and then design proper 

solutions to extend battery service life.  

Manufacturing information-based lifetime prediction: The 

current data-driven future ageing prediction focuses mainly on 

extracting features in the operation phase to predict battery 

lifetime. Although many advantages have been shown by using 

features from the operation phase, there are still obvious 

limitations especially considering the lack of research into the 

impact of battery manufacturing elements on battery lifetime. It 

should be known that battery manufacturing plays a critical role 

in determining battery health performance, further significantly 

affecting the lifetime of battery. As the battery manufacturing 

line is complex with many intermediate stages (e.g., mixing, 

coating, drying, etc.) and multidisciplinary operations, the 

features and parameters at each stage of manufacturing have a 

significant impact on the lifetime of the battery products [80]. 

Therefore, it is crucial to analyse the parameters within the 

manufacturing line and capture the battery lifetime at the key 

manufacturing stages. In this context, it becomes meaningful to 

develop appropriate data-driven solutions using information 

from the manufacturing stage to predict the battery lifetime. 

This can also be paramount to explaining the effects of 

manufacturing parameters involved. Moreover, with reliable 

manufacturing information-based lifetime prediction, the 

battery manufacturing line can be optimized to help the 

development of long-lifetime battery products. 

C. Cell Balancing 

Cell balancing is an essential and beyond-neglect aspect of 

battery management. Previous studies have shown that cell 

imbalances are common in both series and parallel cell 

connections. The capacity difference between series-connected 
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cells will always be maintained due to the same discharge 

current in the string. The spontaneous-balancing effect between 

parallel connected cells cannot compensate for the uneven 

discharge pressure when continuous discharges [81]. Along 

with the repetitive charging-discharging cycles, the cell 

imbalance becomes increasingly severe because of the 

inconsistent cell aging rate without effective equalization 

measures [82]. In this regard, the aforementioned data-driven 

approaches can provide necessary input for detecting the cell 

imbalance. Specifically, the data-driven SOC estimation can 

provide real-time feedback on the degree of cell imbalance. 

Meanwhile, the SOH estimation and life prognostic can provide 

an essential reference for the adaptive update of critical 

parameters in the equalization strategies. State-of-the-art 

balancing methods can be found in recent works [83]. 

D. Fault diagnostic and safety warning 

The abusive utilization of LIB may trigger a chain of side 

reactions that lead to irreversible damage and even catastrophic 

thermal runaway. Motivated by this urgent need, data-driven 

LIB fault diagnostic and safety warnings have been extensively 

investigated in recent years [84]. Some works are devoted to the 

detection of abnormal cells for coarse screening instead of 

diagnosing the specific type of fault. For example, Qiao et al. 

[85] investigated the anomaly detection of battery packs based 

on the statistical distribution, where the K-means clustering 

algorithm, Z-score method, and 3σ screening method were used 

to detect and find abnormal cells. From the perspective of fault 

category, the overheating, short circuit, and over-

charge/discharge are typical faults associated with many 

reported data-driven diagnostic methods. Moreover, fault-

tolerant estimation and control methods have also been 

investigated to enhance the performance of BMS with the faults 

of auxillary devices [86-88]. 

a) Overheating diagnostic 

Overheating can be directly diagnosed if the temperature and 

local hotspot can be measured. However, the temperature 

sensing resolution in typical BMS is low due to the constraint 

of system complexity and cost. Therefore, the overheating 

diagnostic is dedicated to the accurate estimation of battery 

temperature with BMS measurements [89]. Hussein et al. [90] 

proposed an artificial neural network (ANN) model with 

reduced complexity for sensor-less temperature estimation of 

LIB. Zhang et al. [91] developed a data-driven multi-mode 

thermal propagation forecasting neural network fusion model 

for early over-temperature warning using thermal images and 

discrete BMS data. Li et al. [92] proposed a convolutional and 

long short-term memory neural network (CNN-LSTM) model, 

to predict the temperature of EV batteries accurately. Ojo et al. 

[93] presented an improved LSTM to estimate the battery 

surface temperature. Li et al. [94] proposed a convolution 

recursive diagnostic network for LIB temperature estimation by 

using an adaptive thinning algorithm combined with LSTM and 

time convolution network. Ding et al. [95] developed a meta-

thermal runaway forecasting neural network for LIB. The 

thermal distributions were captured with thermal images and 

low-dimensional temperature and voltage features.  

Generally, the reported data-driven overheating diagnostic is 

realized by accurate surface, or internal temperature estimation 

combined with the machine learning approaches [96, 97]. Such 

methods are favorable for single-cell diagnostic. However, the 

feasibility should be declined for pack-level application, taking 

into account the non-ignorable cell inconsistency and abundant 

parameters for calibration. Diagnostic based on thermal images, 

albeit limited, can be promising for large-scale applications. A 

potential challenge is the elevated cost and space occupancy 

due to the need of thermal image acquisition. The effective 

extraction of thermal features is also challenging due to the low 

resolution of typical thermal imaging techniques.  

b) Short circuit diagnostic 

Short circuit faults are destructive due to the large amount of 

energy loss and the potential to trigger unwanted thermal events 

rapidly. As described in [98], the external short circuit (ESC) 

can cause abnormal heat generation due to uncontrollable 

electrical and thermal dynamics, which can risk triggering 

dangerous thermal runaway. In the case of an internal short 

circuit (ISC), regardless of the cause, an internal current path is 

established between the active materials of the cathode and the 

anode. This further promotes the local current, which leads to a 

quick temperature build-up [99]. To date, the works on short 

circuit diagnostic are relatively limited. Hu et al. estimated the 

current passing the short-circuit path with real-time current and 

cell voltage [100]. With the aid of adaptive filtering techniques, 

the equivalent short circuit resistance can be determined to 

reflect the severity of the short circuit accurately. An ANN-

based diagnostic method was developed to estimate the short-

circuit current and further predict the temperature rise and 

temperature distribution of an ESC cell [101].  

It is worth noting that the ISC remains a major challenge for 

LIB safety management for many years and will remain in the 

future. This is rooted in the fact that the ISC can be formed from 

different sources, including manufacturing defects, abusive 

utilization from the mechanical/thermal/electrical perspective, 

and self-triggering during long-term degradation. In addition, 

the external performance can be highly diverse and uncertain 

for different routes or even a single pattern of ISC. Therefore, 

the diagnostic in a practical LIB pack can be much more 

complicated than the results in laboratory conditions. 

c) Over-charge/discharge diagnostic 

Cells are integrated into a battery pack to achieve the desired 

capacity and power, which easily leads to remarkable cell 

inconsistency and the over-charge/discharge problem [102]. 

This can further induce unfavorable consequences like the 

irreversible capacity loss and safety issues. Based on an 

improved Gaussian mixture model (GMM) and feature fusion, 

Tian et al. [103] proposed a pack inconsistency evaluation 

method to assess the battery characteristics accurately. Relying 

on the spatial-temporal images converted from the LIB 

electrical characteristics, a multi-fault joint diagnosis method 

was proposed for packs using the texture analysis [104]. Zhang 

et al. [105] present a 2-Dimensional Gaussian filter to improve 

the pseudo random sequence method, which contributes to 

measuring the battery impedance accurately for fault diagnosis. 

To date, the diagnostic methods of over-charge/discharge using 

electrical signals are relatively limited. One major difficulty is 

the outer similarity and cross-interference of multiple faults 
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during the diagnostic. 

 

III. MULTI-DIMENSIONAL SENSING-ENHANCED MANAGEMENT 

As overviewed in Section Ⅱ, the data-driven approaches have 

been widely developed for the state estimation, life prognostic, 

and fault diagnostic of LIB. However, the data available for use 

is mostly confined to the battery current, voltage and surface 

temperature. As known, the performance of LIB is dominated 

by the physics linked closely to the inner parameters and 

statues. The lack of inner information is a primary challenge for 

the further improvement of BMS. Motivated by this, new 

sensing techniques applicable to LIB have been focused on in 

recent years to obtain more signals of value to the battery 

management. Moreover, the efficient use of multi-dimensional 

data to enhance the management performance has also been 

studied. This will be an important supplement to the methods 

reviewed in Section Ⅱ, and push the existing management 

system to a microscopic level. This section summarizes the 

progress of emerging sensing techniques for battery use and the 

potential of new information utilization in future BMS. 

A. New sensing techniques for lithium-ion batteries 

The present sensing systems in BMS can only collect macro 

information like current, terminal voltage and surface 

temperature. It is difficult to obtain the inner or micro 

information, such as the strain, pressure, and expansion related 

to the variation of battery states. However, this inner or micro 

information is essential for evaluating the battery’s working 

status. In specific, the inner temperature of LIB is more 

insightful than the surface one, since it reflects better the 

condition of inner active components. The volumetric change 

in cell level is relevant to many important electrochemical 

processes [106]. Considering the potential benefits of 

improving the current BMS, new sensing protocols have been 

studied in recent years to acquire more insightful information 

of LIB for more efficient management.  

To date, the sensing techniques reported for LIB utilization 

can be generally classified into five categories, including the 

electrical, thermal, mechanical, chemical and gaseous types, 

depending on the physical detection objective. The categories 

and some representative sensors are summarized in Fig. 8, 

while more detailed use for battery management will be 

elaborated in the following subsections. It is worth noting that 

the primary focus of this review is the use of new sensing data 

to enhance the battery management. A comprehensive review 

of the battery-oriented sensing techniques will not be elaborated 

herein but the reader can refer to the existing review works [14]. 
 

 
Fig. 8. Categories and representative sensors for battery monitoring 
 

B. New sensing techniques-enabled state estimation 

Commonly-used state estimation methods rely on sensors 

equipped with the BMS. The availability of new sensing 

techniques and the associated signals is promising to provide 

new solutions for high-fidelity state estimation.  

a) Strain sensing-based state estimation: The structural 

change of microscopic lattice induced by lithium intercalation 

and deintercalation will be transformed into the periodic 

expansion and contraction of the cell or electrode, which are 

related strongly to SoC at the macroscopic scale. Therefore, the 

strain signal can be used to provide a new solution and 

potentially improve the existing SoC estimation techniques 

relying on pure electrical signals. This has been a hot topic 

recently, even though relevant studies are still quite limited. 

Based on the strain measured by the FBG sensor, a semi-

empirical model was developed and further incorporated with 

the filtering techniques to estimate the SoC in real time [107]. 

Subsequently, real-time SoC estimation with FBG-based strain 

signals was realized using a dynamic time warping algorithm 

[108]. A model-free SoC estimation method was reported using 

the non-electrical signals in a data-driven fashion. In particular, 

the FBG-measured strain and battery temperature were used as 

the inputs of DNN for accurate SoC estimation [109]. The 

encouraging results observed in these works further validate the 

strong correlation of the strain to the SoC of LIB. 

The long-term timescale battery SoH can also be estimated 

by using the strain change of LIB. This is rooted in the fact that 

the capacity loss and strain divergence show a strong 

correlation during the ageing of LIB. Illustratively, cycling 

experiments suggested that the capacity of LIB dropped to 

93.7% after 400 cycles, while the strain difference between the 

fully-charged and discharged states rose from 40 μm/m to 120 

μm/m at the same time [110]. Therefore, the strain can be an 

informative signal to estimate the SoH of LIB with data-driven 

approaches. There have been some initial studies regarding this 

point in the literature. Enabled by the FBG sensing, the strain 

signals at the end of each charging cycle were collected and 

used to estimate the battery SoH in [107]. It was shown that the 

strain-based new estimator was able to predict battery capacity 
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accurately 10 cycles in advance. The variation of peak strain 

during charging was used to correlate with the capacity fade and 

further to estimate the SoH of LIB in [111].  

It is worth noting that different battery states are coupled and 

interact with each other. Therefore, joint state estimation 

utilizing multidimensional data becomes a promising research 

direction. A machine learning framework for SoC and SoH 

joint estimation is proposed in [112]. In particular, the FBG-

measured wavelengths that contain both strain and temperature 

information were input directly to a GPR model to estimate the 

SoC and update the SoH subsequently.  

b) Thermal sensing-based state estimation: The inner 

temperature is essential reflecting the thermal condition of LIB 

and underlies other battery management tasks. As discussed in 

Section II-A, the inner temperature of LIB is commonly 

estimated indirectly with various algorithms using the directly-

measured surface temperature [113-115]. With the availability 

of new thermal sensing techniques, especially for the embedded 

micro-sensors, the inner temperature is possible to be monitored 

directly without complicated algorithms. To date, different 

types of thermal micro-sensors have been used to measure the 

internal temperature of LIB in the literature. Illustratively, the 

inner temperature of LIB was measured with embedded micro-

thermocouples, and a remarkable temperature gradient over 

10 °C was observed in [116]. Under the overcharge condition, 

the internal temperature of the coin cell battery is up to 48.4 °C, 

while the highest external temperature is only 27.9 °C.  

Moreover, the inner temperature sensing can also benefit the 

estimation of other important battery states. A typical work can 

be referred to [117], where the thermal impedance, heat 

generation rate, SoC, and maximum capacity were estimated 

simultaneously based on the data acquired by an embedded and 

distributed temperature sensor. Furthermore, the distributed 

temperature sensor also enables the efficient calibration of 

thermal impedances and accurate thermal state estimation 

[118]. These works also inspire the design of future smart 

batteries for efficient self-state monitoring. 

c) Optical signal-based state estimation: Optical signals 

obtained from the inner environment of LIB also demonstrate a 

strong correlation with the electrochemical and degradation 

states of battery [119]. To date, optical signal-based battery 

management is still less explored in the literature. For the short-

term scale estimation, the graphite lithiation process was 

measured by optical fiber sensors, and the obtained optical 

signals were used as effective indicators to infer the SoC of LIB 

[120]. In a longer timescale, the slope of the optical 

transmittance was observed to be highly relevant to the capacity 

fade of LIB [119]. This demonstrated the feasibility of using the 

optical signals to predict the capacity fade of LIB. Moreover, 

the in-situ fiber optic evanescent wave sensors were embedded 

into the LIB cell to directly measure the metal deposition on 

electrodes [121]. This measurement can also facilitate the early 

warning of lithium dendrites of LIB. 

C. New sensing techniques-enabled fault diagnostic 

The use of new sensors can provide valuable information to 

improve the performance of fault diagnostic. This has been 

witnessed by the initial attempts to use various types of micro 

sensors for the early warning of LIB faults.  

a) Thermal micro sensor-based diagnostic: The temperature 

inhomogeneity can be utilized for timely fault diagnostic with 

embedded thermal micro-sensors. This necessity is rooted in the 

temperature inhomogeneity between the surface and the inner 

temperatures, especially with the occurrence of undesirable 

thermal events. With the occurrence of external short circuit, 

the measured inner temperature rose to 82 °C within 6 s, ~30 °C 

higher and 3 times faster than the surface temperature variation 

[116]. A similar phenomenon can be found in [122]. The 

observed pronounced temperature build-up has been used to 

diagnose the short circuit events more efficiently [116]. Under 

the overcharge condition, the internal temperature of battery is 

up to 48.4 °C, while the external temperature is only 27.9 °C. 

In this case, the internal RTD detected 90% of the maximum 

temperature rise in 7.45 s on average, ~10 times faster than the 

external RTD [123]. This also suggests the possibility of using 

internal thermal sensors for overcharge warning. 

Moreover, the inner temperature has been suggested to be 

several hundreds of degrees Celsius higher than the surface 

during the triggering of thermal runaway events [124]. The fast 

temperature rise is hardly detectable with surface temperature 

sensors within a timescale that allows to shut off the cell before 

the occurrence of serious consequences. Therefore, implanting 

the thermal micro-sensors into the cell is promising for the 

timely warning and protection of thermal runaway. 

Illustratively, the embedded RTDs detected the onset 

temperature of solid-electrolyte interface decomposition 10 s 

earlier than the surface sensors during the overcharge-triggered 

thermal runaway [125]. This suggested that the RTDs were 

effective for the early warning of thermal runaway of LIB.  

b) Reference electrode potential sensor-based diagnostic: 

Lithium plating leads to irreversible capacity fade and even the 

formation of lithium dendrites that pierce the separator and 

cause internal short-circuit, which could lead to thermal 

runaway in severe cases. In this regard, the reference electrode 

method has been frequently used to measure real-time anode 

potential, indicating the occurrence of lithium plating. A three-

electrode LIB with metallic lithium as the reference electrode 

was fabricated to measure the anode and cathode potential in 

[126]. Results showed that the lithium precipitation occurred 

during charging and was exacerbated by high currents or low 

temperatures. Therefore, lithium plating detection method is 

further used to guide the development of fast charging strategy. 

The microprobe Li/Cu reference electrodes were used to 

characterize graphite anodes in [127]. With 6C fast charging, 

the anodic potential dropped to negative, measured by the 

reference electrode. The occurrence of lithium plating was 

verified by post-mortem analyses. A lithium plating-free fast 

charging method was proposed using lithium metal as a 

reference electrode on three-electrode pouch cells [128]. This 

was realized by maintaining the anode potential at a level 

slightly above 0 V vs. Li/Li+. Similarly, a fast-charging strategy 

without lithium precipitation was proposed for a 120Ah large-

format LIB, with the reference electrode used for potential 
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measurement [129]. The capacity decay after 100 cycles was 

similar to that with slow charging. In spite of the successful use 

of reference electrode for strategy development, its use in 

commercial LIBs is challenging due to the quick failure and 

loss of accuracy in LIB inner environment. 

c) Deformation sensor-based diagnostic: With the presence 

of lithium plating, an additional increase in cell thickness can 

be expected for the LIB. Therefore, it is theoretically practical 

to use the space deformation signal to detect the lithium plating. 

The thickness measurement was proposed to detect lithium 

plating for the first time in [130], where a dial indicator was 

installed on the top surface of the pouch cell to measure the 

thickness. During −5 °C charging, the thickness was observed 

to increase progressively due to the lithium plating. 

Subsequently, laser scanning was used to detect the change of 

local cell thickness at multiple locations, which was further 

used to indicate the local lithium plating [131]. The thickness 

variation of LIB was found to correlate strongly with the 

severity of lithium plating. Furthermore, the reversible 

deformation heterogeneity derived from mechanistic 

information was found to be relevant to lithium plating [132]. 

Therefore, the deformation sensing method also shows the 

ability to characterize local degradation inside the battery. 

d) Pressure, strain and gas sensor-based diagnostic: The 

inner pressure is another essential indicator for battery safety. 

The electrolyte of LIB decomposes into gas and causes pressure 

build-up during abusive operations. Motivated by this, the 

pressure sensors have been reported to diagnose the thermal 

runaway more timely than the widely-used thermal sensors 

[133]. In another practice, the internal pressure measured by the 

embedded optical fiber sensor was used to trigger the current 

interruption device [134]. Once the internal pressure reached a 

specific threshold, the current was cut off automatically to 

prevent the LIB from venting and firing. The strain information 

is also useful for fault diagnosis. By employing the FBG 

sensors, the strain was monitored to increase 45μm/m during 

overcharge [110]. Due to the dual sensitivity of FBG to strain 

and temperature, the temperature was also monitored to 

increase by 750 K during the thermal runaway [110].  

Moreover, the growth of lithium dendrite generates hydrogen 

gas. Therefore, the hydrogen sensor can be sensitively used to 

warn the growth of lithium dendrites of LIB. From another 

perspective, CO2 is the main gaseous component of the 

electrolyte decomposition reaction. Motivated by this, the fiber 

optic colorimetric sensor has been utilized to achieve the in-situ 

measurement of the gaseous CO2 inside pouch cells, and this 

contributes to providing a timely warning for the risk of LIB 

overcharging [135].  

D. Future trend 

The acquisition of multi-dimensional sensing data, especially 

for the inner data, is highly valuable for circumventing the 

current challenges encountered by the traditional BMS. This is 

reflected by the following two aspects that can well represent 

the future trend in this field. 

a) Future self-sensing smart battery: With the availability 

of new sensing techniques, the integration of self-sensing smart 

battery can be a future trend. This is mentioned initially in 

BATTERY 2030+ Roadmap of Europe, where the goal of smart 

battery is defined as integrating multi-dimensional sensing into 

each single cell [136]. A conceptional design of the future smart 

battery is shown in Fig. 9. Within this framework, the data 

collected by cell-level sensors are used for self-monitoring and 

management. A wireless communication unit is also demanded 

to transmit the information to the upper-layer controller [81]. In 

this way, the important inner physical parameters can be 

perceived and used for more-refined battery management. A 

smarter and distributed management system can foreseeably 

promise the benefits of enhanced safety and longevity.  

Despite the far-reaching goal of the ultimate smart battery, 

this trend has to be pushed forward by addressing several key 

challenges. Generally, the sensor integration of smart battery 

should meet several prerequisites, i.e., high tolerance to the 

inner battery environment, effective insulation, less impart to 

cell performance and long-term stability. These tasks 

eventually cause a rise of cell manufacturing costs, which 

barriers the quick commercialization of the smart battery. 
 

 
Fig. 9. A conceptual design of future self-sensing smart battery 

 

b) Digital twin-based enhanced management: Considering 

the difficulty of quick commercialization of smart battery, an 

alternative approach easier to implement is to deploy the digital 

twin-based management system leveraging the multi-

dimensional data provided by the new sensors. The basic idea 

is to build refined multi-physical battery models with the 

mechanical, electrical and thermal data given by the 

outer/embedded sensors. The built multi-physical models will 

serve as “virtual cells” within the digital twin framework, which 

can support improved real-time management of LIB. Actually, 

this trend has been reflected in recently-reported works, where 

multi-dimensional sensing data were used to build physical 

models, which were further used for either the inner parameter 

estimation [117] or microscopic state-conscious active control 

of the LIB.  

Nowadays, various technologies related to the digital twin 

such as cloud collaboration could be applied to enrich data-

driven management solutions [137]. Therefore, it is technically 

feasible to build a digital twin-based enhanced battery 

management system fully exploiting the value of multi-

dimensional sensing of battery. 
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IV. BIG DATA BATTERY MANAGEMENT 

With the development of the Internet of Things and cloud 

platform technology, it is possible to record the operating data 

of large-scale batteries for the whole lifetime. The efficient 

mining and analysis of battery big data can be expected to 

provide valuable information for future battery management 

than the data-driven solutions discussed in Section II. Moreover, 

the exploitation of more multi-dimensional data from the cell 

level, as discussed in Section Ⅲ, will also increase the data 

volume useful for battery management remarkably. Taking the 

two aspects into account, the big data technique can play a 

critical role in the future management systems of LIB. 

Therefore, this section overviews the current progresses and 

future trends of big data battery management.  

A. Big data health diagnostic 

As shown in Fig. 10, both the microscopic ageing mechanism 

analysis and the macroscopic health assessment have the 

potential to be realized with big data-driven battery diagnosis.  

a) Ageing mechanism analysis: For the former, the effect of 

capacity fade to the voltage characteristics is typically viewed 

as a critical clue to explain the ageing mechanism. In this case, 

the availability of battery big data can facilitate exploring 

relevant ageing mechanisms. Dubarry et al. [138] analyzed the 

ageing mechanism of LiFePO4, Nickel Aluminum Cobalt 

Oxide and Nickel Manganese Cobalt Oxide 811 batteries using 

big data, where the law of battery ageing was explored through 

ICA. With this method, the individual contributions of LLI and 

LAM to the overall capacity drop were revealed explicitly. 

Moreover, it is known that the loss of electrode material leads 

to a change of the open circuit potential of the electrode. 

Consequently, Tian et al. [139] investigated the law of LLI and 

LAM-induced battery ageing using an empirical OCV model 

with massive OCV data.  

b) Big data health prognostic: In terms of big data battery 

health evaluation, most of the existing methods are oriented to 

the laboratory environment, unable to learn the unpredictable 

driving behavior and complex road/weather conditions in actual 

vehicle applications. The same problems exist considering the 

applications in grid and household energy storage, where the 

load and environmental conditions are also highly uncertain. To 

remedy this deficiency, recently-reported big data diagnostic 

methods incorporate the historical data of both battery 

operation and environmental conditions [140]. Hong et al. [141] 

established a real-world degradation model by fitting the 

degradation factors to the vehicle operating parameters, such as 

the ambient temperature and accumulated mileage. Considering 

the significant effect of temperature on battery life decay, an 

empirical capacity attenuation model was developed with 

temperature offset compensation [142]. Wang et al. [143] 

proposed a data-driven method based on a large amount of real 

EV performance data to diagnose battery charging capacity, 

where a statistics-based approach is used to diagnose battery 

charging capacity anomalies by analyzing the error distribution 

of a large dataset. He et al. [144] proposed a method for 

estimating SoH based on actual data on the behavior of EV 

users, where a locally weighted linear regression algorithm 

based on historical charging data was used to qualitatively 

characterize the capacity decline trend.  

Compared to the empirical methods, the closed-loop 

estimation methods have also been widely explored attributed 

to their high robustness. The associated challenge is the high 

computing complexity due to the involvement of mechanism 

models and high-dimensional computation. Fortunately, the 

development of cloud technology makes it possible to 

implement the battery digital twins, which allow the use of 

complex algorithms within the end-to-cloud framework. Li et 

al. [137] proposed an SoH estimation method based on particle 

swarm optimization to monitor the capacity and power 

attenuation in the cloud server. It is worth noting that the data 

acquisition of BMS is subjected to remarkable noise corruption, 

which can decline the accuracy of estimation. To address this 

problem, a Kalman Filter modified by fuzzy logic was proposed 

to mitigate the impact of noises [145]. As a matter of fact, the 

unknown OCV-SoC relationship challenges the model-based 

capacity estimation algorithms in practical applications. To 

mitigate this barrier, the unknown OCV-SoC function 

coefficients were combined into the state vector and observed 

jointly in [103].  

Recently, the development of AI has opened the possibility of 

intelligent battery health diagnosis. Song et al. [146] analyzed 

the one-year data of a hybrid electric vehicle, and an SoH 

estimation method based on the feedforward neural network 

was established. Most recently, an SoH estimation method 

based on multi-model fusion was proposed for a plug-in hybrid 

vehicle by combining the support vector machine, Gaussian 

process regression, and ANN [147]. A clustering multisource 

fusion-based feature extraction method was proposed to enrich 

the feasible health features, and the XGBoost algorithm was 

used to estimate the SoH with improved accuracy [148]. 

Leveraging the radial basis function neural network model, She 

et al. [149] established an estimation method which described 

the mapping between the IC peak and SoH. Evidently, AI 

techniques are intrinsically powerful for analyzing the inner 

mechanisms hidden behind the large amount of battery 

operating data [150]. The appropriate combination of AI 

techniques and the battery big data can potentially boost the 

performance of battery health diagnostic in the near future. 
 

 
Fig. 10. Battery health diagnosis based on big data 
 

B. Big data fault diagnostic and safety warning 

The existing big data battery safety warning methods can be 

classified according to the used algorithm and data dimension, 

as summarized in TABLE I. As can be seen, the traditional 

statistical methods generally include the entropy and correlation 

analysis. They are efficient but preferable to be utilized for one-
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dimension data analysis. By comparison, the machine learning 

methods, including both supervised and unsupervised learning, 

are superior for multi-dimension data processing, even though 

the algorithmic complexity elevates in accordance. 

a) Statical analysis: Battery voltage has always been an 

important signal that conveys abundant fault information, albeit 

inexplicit. It is typically hard to distinguish the subtle voltage 

abnormity during the early incubation stage of battery fault. 

Therefore, statistical analysis was applied to improve the 

usability of voltage measurements. In particular, the entropy 

analysis is widely used. The Shannon entropies of voltage were 

calculated and the Z-scores of Shannon entropy were evaluated 

to detect and predict the battery fault in [6]. With an improved 

relative entropy-based data-driven approach, Sun et al. [151] 

developed a short-circuit detection method for LIB pack. Hong 

et al. [84] applied a modified multiscale entropy to calibrate the 

sensitivity factor and abnormal coefficient, which were further 

utilized to diagnose the thermal runaway of LIB.  

Alternatively, the abnormal detection can also be realized by 

correlation analysis. To be specific, a voltage correlation 

coefficient-based method was proposed in [152] to detect the 

battery fault. The voltage correlation coefficient of every 

adjacent cell pair was calculated and used for fault diagnostic 

with a pre-defined threshold. Furthermore, Lai et al. [153] 

reported an SoC correlation coefficient-based method to 

diagnose the early-stage ISC fault. The estimated SoC and the 

correlation coefficient were calculated in a moving window to 

ensure reasonable real-time performance. 

Other methods belonging to the scope of statistical analysis 

have also been studied for LIB fault diagnostic. Illustratively, 

based on the interleaved measurement, Zhang et al. [154] 

proposed a multi-fault detection method, where the calculated 

voltage and temperature residuals were evaluated by 

cumulative sum test, and the entropy method was used to 

capture the battery fault. Wang et al. [155] proposed a statistical 

method to evaluate cell inconsistencies based on a large amount 

of real-world EV deployment data. Liu et al. [156] assessed the 

voltage consistency of EV batteries, where a web-based method 

for assessment of battery pack compliance status based on big 

data is developed based on the statistical method of outlier 

values. Chang et al. [157] proposed a micro-fault diagnostic 

method based on the consistency of the evolution of the relative 

battery position over several charging segments.  

b) Machine learning approaches: Compared to the statistical 

analysis, machine learning approaches are promising for big 

data LIB fault diagnostic attributed to the superiority in multi-

dimension data processing [158]. Unsupervised learning has 

been attempted for this purpose in the literature. The 3σ multi-

level screening strategy and the local outlier factor algorithm 

are proposed in [159] for voltage abnormity detection and 

clustering. In [160], the discrete Fréchet distance of temperature 

measurements and the standard deviation of voltage 

measurements are calculated in a real-time manner. Hence, the 

local outlier factor is utilized to realize fault clustering and early 

warning of battery thermal runaway. 

Supervised learning has also been studied and validated in the 

literature for the big data LIB diagnostic. Hong et al. [161] 

proposed a machine learning-based fault diagnosis method by 

using the LSTM NN to prognose the voltage abnormity. 

Furthermore, a battery fault diagnosis method based on the 

combination of a neural network and an equivalent circuit 

model was proposed in [162], which uses a pre-selected model 

to reduce the calculation time. In [92], a long short-term 

memory neural network is combined with a coevolutionary 

neural network to predict battery temperature and detect battery 

abnormal heat generation with multi-dimension inputs of 

vehicle state, driving behavior, and local weather. 

c) Hybrid approaches: In addition to the statistical and 

machine learning methods, hybrid approaches have also been 

studied and proved with expected performance for fault 

diagnostic. A three-layer statistical fault detection method was 

proposed in [163]. The cells with the highest and lowest voltage 

in a pack were distinguished in the first layer. The 3σ criterion 

was used in the second layer to screen the risky cells and 

calculate the cluster center, which was used in the third layer to 

identify faulty cells by the K-means method. By combining 

multi kinds of kernel function, a kernel principal components 

analysis-based method was proposed in [164] to detect the ISC 

fault of LIB. The kernel principal components analysis was 

adopted to calculate the fault indicator with voltage 

measurements of LIB. Jiang et al. [165] developed a state 

representation-based method for fault diagnosis and thermal 

runway warning of LIB pack using the normalized battery 

voltages. The state representations contributed to easing the 

fault detection by enlarging the voltage abnormity. 

It is hard to figure out which category of methods is better for 

the big data fault diagnostic of LIB. However, with the rapid 

development of big data platform, cloud computation, and 

machine learning techniques, the big data-driven diagnostic of 

LIB is clearly recognized as a promising solution, since the 

demand for massive data storage and fast processing can be 

expected to be fulfilled in the near future. 

The big data-based management of battery packs has also 

shown a great potential and possibilities for regional electric 

vehicle networks and power systems. This has been reported in 

the recent works, although quite limited. By implementing the 

big data-based management, vehicle operations can be better 

coordinated, power distribution can be optimized, and energy 

waste can be reduced [166, 167]. 

It is worth noting that the cybersecurity is vital to the big data-

based battery management. A two-step process is generally 

required to defend against the cyberattacks. The first step is 

characterized by the quick detection of the fake data, while the 

subsequent step entails implementing corrective measures to 

mitigate the impact of the attack. Dey et al. [168] proposed a 

filter-based approach for the detecting the abnormal data 

dynamically. A multi-objective criterion was employed and 

validated with the superiority in terms of attack detectability. 

Guo et al. [169] designed a physics-guided machine learning 

method to detect the cyberattacks imposed to EVs, which 

demonstrated a high accuracy for detection under various 

driving scenarios. Kim et al. [170] analyzed the potential threats 

of BMS from cyber and physical attacks. On this premise, 

attack-defensive strategies were developed with the adoption of 

the blockchain technology. Generally, the cybersecurity 

problems involved in EVs and BMSs have been emergingly 

studied in recent years, giving rise to a variety of approaches 
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for detecting the injection of fake data so that the corrective 

actions can be implemented to mitigate the impact of the attacks. 
 

TABLE I 

BIG DATA SAFETY WARNING CATEGORIES 

 1-Dimension Multi-Dimension 

Traditional 

statistical 

Method 

Entropy  [6, 84, 151] - 

Correlation 

Coefficient 
[152, 153] - 

Other [154-157] - 

Machine-

learning 

Method 

Supervised - [92, 161, 162]  

Unsupervised - [159, 160] 

Hybrid Method - [163-165] 

 

C. Big data platform 

Big data platform (BDP) is a kind of network platform that 

provides services in the form of massive data storage and 

resource sharing. BDP is the fundamental element of the future 

big data battery management systems. Generally, there are five 

components of BDP, i.e., data source, data transceiver system, 

big data infrastructure system, big data analysis system, and 

data visualization, which are shown schematically in Fig. 11. In 

recent years, BDP has received more and more attention from 

both the academic community and industry attributed to their 

unique advantages of huge data volume, high timeliness, and 

fast service request response.  
 

 
Fig. 11. General components and structure of BDP. 
 

Data source underlies the big data-driven battery management, 

and thus serves as the kernel of BDP. It is well recognized that 

the data sharing and big data utilization has been a trend over 

the world for more efficient and intelligent industrial 

application. Narrowing the focus to the battery management, 

China government has set up the National Monitoring and 

Management Center for New-Energy Vehicles. Massive battery 

operating data are collected from the new-energy vehicles and 

stored in the data center. Another example can be refered to the 

big-data platform established by the Mitsubishi heavy 

industries group, which can realize the operating data collection, 

data analysis, demand prediction, and operation optimization 

for the large-scale LIB application [171].  

Data transceiver system aims to present the information from 

the data source to the big data-base system, which can be 

viewed as the intermediaries of BDP. Furthermore, the big data 

infrastructure can transfer the data from one endpoint to another. 

Apache Map Reduce is a typical framework for distributed 

processing [172]. Meanwhile, Apache Spark is an open-source 

distributed framework for big data processing with good 

adaptivity to machine learning solutions [173].  

To achieve the efficient data utilization, the big data analysis 

system provides a variety of interfaces for data exchange. The 

system is oriented toward the de-privatization, normalization, 

filtering, and consolidation of the imported big data. 

Technically, it also works on the tasks of data preprocessing, 

data cleaning, data remedy and slicing [174]. Based on the 

CHAIN framework, Yang et al. [175] presented a cloud-based 

battery management system, where the battery data were 

collected and analyzed for fault diagnostic and failure warning.  

Visualization is mostly a graphical display of data, which can 

help to integrate multiple data points together. This component 

facilitates the quick understanding of data relationships, and 

more-easily identification of events not easily perceived [176]. 

Generally, big data visualization is realized with different 

construction methods according to different data types. As 

described in [177], there are three common methods for data 

visualization, i.e., tree map, circle packing, and parallel 

coordinates. Chen et al. [178] presented a VizLinter framework 

to help users detect flaws and rectify already-built but defective 

visualizations. It consists of two components: a visualization 

linter to inspect the legitimacy of rendered visualizations, and a 

visualization fixer to automatically correct the detected 

violations according to the linter. Chou et al. [179] developed a 

modern PRS data replication solution to achieve efficient data 

aggregation for heterogeneous storage structures. 

The cloud computing and IoT technology can be used to 

ensure the data transmission and real-time sharing [180]. By 

storing data in the cloud and using IoT technology to collect and 

transmit data, real-time sharing and transmission of data can be 

achieved. Moreover, the use of blockchain technology can 

ensure the security and integrity of data. At the same time, 5G 

technology can provide faster and reliable data transmission 

with lower latency [181]. Furthermore, digital twin technology 

can create a virtual model of the battery pack in the cloud [182]. 

By simulating and analyzing the operation status of the battery 

pack, the lifetime and performance of the battery pack can be 

predicted, and thus better maintenance plans can be developed. 

It is worth noting that the data privacy is critical to the big data-

based management. In this regard, the encryption and access 

control technology have been used in practical applications 

[183]. By encrypting the data or adopting the access control 

mechanisms, only authorized users can get access to the battery 

big data so that the data security can be enhanced. 
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D. Future trend 

The battery management-oriented BDP has been widely 

focused in recent years. Illustratively, a full-function big data 

platform has been successfully launched and operated for the 

purpose of battery management. The Contemporary Amperex 

Technology Co., Limited (CATL) company has established an 

enterprise-level battery BDP. The system collects and stores the 

full-lifetime data of battery R&D, testing, production, operation 

and failure analysis. Based on the collected data, the BDP 

supports intelligent battery data analysis, state monitoring, and 

safety assessment via data mining and AI techniques. It is 

foreseeable that the deployment of BDP for enhanced battery 

management will be a major trend in the future. 

However, it is worth noting that the battery system generates 

massive data in a short period under the large-power energy 

storage scenarios such as EVs and energy storage plants. This 

requires the BDP with the capabilities of fast data storage and 

processing, i.e., the high-speed BDP [184]. The key 

technologies of high-speed BDP are summarized in Fig. 12. 

Existing works have exhibited the realization of high-speed 

database management using distributed storage, clustered 

processing, and intelligent data management. Furthermore, 

combined with the data management methods like big data 

warehouse and service sharing, a high-speed data storage 

framework is expected to be realized with efficient "storage-

generalization-usage" coordination. In terms of fast data 

processing, the available AI approaches can realize the 

intelligent software platform and distributed hardware platform 

for big data based on multi-intelligence collaboration [185]. 

The combination of software and hardware platforms 

constitutes an AI-analysis platform for big data with the 

potential for exponential data processing in seconds.  
 

 
Fig. 12. Key technologies towards a high-speed BDP 
 

V. DISCUSSIONS 

The data-driven battery management have been extensively 

explored for many years. Existing methods generally rely on the 

current, voltage and surface temperature for management 

within the cell or pack level. Challenging this mindset, the big 

data-driven technology can be a promising direction for the 

future battery management with enhanced performance. With 

battery big data covering the whole lifetime and various 

working scenarios, a variety of management tasks can see new 

solutions, especially for the challenging health evaluation, 

lifetime prediction, abnormal diagnostic and risk pre-warning. 

A potential challenge of the big data-driven management is 

still the lack of battery inner information. To this end, the 

embedded sensing technology can be a good supplement to 

remedy this deficiency. The smart cell with embedded sensors 

may have a long way for commercialization. However, the lab-

scale embedded sensing tests and data can provide important 

support for building refined battery models or management 

strategies. These models and strategies can be combined with 

the battery big data tehnique, for instance within a digital twin 

framework, for more efficient performance analysis, life 

prediction and fault diagnostic. 

In summary, based on the present management technologies, 

big data-driven management is highly prospective for the future 

enhanced management of LIBs. Within this scope, the 

emerging battery-embedded sensing techniques can provide 

important models and data support to extend the value of big 

data, and in accordance improve the performance of future 

battery management. 
 

Ⅵ. CONCLUSION 

This review article overviews the recent progress and future 

trend of data-driven battery management from a multi-level 

fashion. The primary conclusions are drawn as follows: 

1) The data-driven battery management has been extensively 

studied over the past decade, giving rise to myriads of methods 

regarding multi-timescale state estimation, life prognostic, fault 

diagnostic and fast charging. However, some critical challenges 

exist for future investigation, like the rapid state estimation for 

large-scale batteries, early-stage lifetime prediction, knee point 

prediction of quick degradation, and manufacturing 

information-incorporated lifetime prediction. 

2) The emerging sensing techniques open new paradigms for 

the future data-driven battery management. To date, electrical, 

thermal, mechanical, chemical and gaseous sensors have been 

reported for use in LIBs. Enabled by this, alternative data-

driven methods for state estimation, life prognostic, and fault 

diagnostic have been developed. Following these progresses, 

the development of smart battery and digitial twin smart 

management system are viewed as the future trend. 

3) Big data-driven battery management is promising due to 

the fast advances of big data technologies. To date, statistical 

and machine learning approaches have been developed for 

battery big data-driven management, but relevant works are still 

in the nascent stage. Moreover, some critical challenges for big 

data deployment still exist, like the development of high-speed 

BDP and more efficient data mining methods. 
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