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A B S T R A C T   

Proton exchange membrane fuel cells (PEMFCs) are essential modern sustainable energy generation devices. 
Since such an electrochemical system has a limited lifetime, accurately estimating its performance degradation is 
critical for practical applications. When a large amount of measurement data is available, many nonlinear 
forecasting methods can be used to predict the performance degradation of a PEMFC system, and the prediction 
accuracy can be improved by optimizing the structure and parameters of the algorithm. However, the voltage 
recovery phenomenon would pose a challenge to the classical data-driven methods. In this work, we propose a 
novel hybrid data-driven PEMFC performance prediction framework by exploring the extensive degradation 
information buried in the voltage decay data. With complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN), the raw voltage data are first decomposed into sequences of multiple time scales. 
Then, the linear and nonlinear components in the decomposed sequences are predicted by autoregressive inte-
grated moving average (ARIMA) and the attention-based gated recurrent unit (GRU), respectively. Comparative 
studies show that the proposed method can improve the prediction performance by 42.6%–84.2% on FC1 and 
35.0%–90.6% on FC2, compared to state-of-the-art algorithms on the basis of an open-source dataset of PEMFCs.   

1. Introduction 

1.1. Background and literature review 

Hydrogen-based proton exchange membrane fuel cells (PEMFCs) 
play a key role in modern sustainable and carbon-free energy systems 
[1–4]. The PEMFC is a clean power generation device that is environ-
mentally friendly, lightweight, and has high power density. Therefore, it 
has been used in some areas, such as the military and transportation. 
However, the aging phenomenon and lifespan of PEMFC limit its further 
commercialization and large-scale applications [5–7]. 

Existing PEMFC prediction methods are mainly divided into data- 
driven and model-based methods [5]. Based on sufficient life data, the 
data-driven method could predict the aging process and the remaining 
lifetime of PEMFC, which belongs to the black box model, without 
considering the aging principle. Mainstream data-driven methods are 

mainly based on neural networks. Javed et al. [8] proposed the method 
of summation wavelet-extreme learning machine, which was verified on 
the data of the whole process from start to failure of the PEMFC stack 
with a useful life of 1750 h. A recurrent neural network (RNN) method 
was proposed by Liu et al. [9]. It used regular interval sampling and 
locally weighted scatterplot smoothing to realize data reconstruction 
and data smoothing. Using Long short-term memory (LSTM) improved 
the prediction accuracy by 28.46% compared to the backpropagation 
neural network (BPNN). Long et al. [10] used similar processing steps 
proposed in Ref. [9] to demonstrate that the gated recurrent unit (GRU) 
outperforms LSTM. Hua et al. [11] used an improved method of RNN 
named echo state network (ESN) for prediction. Specifically, the hidden 
layer in ESN was replaced by a randomly generated library reflecting the 
dynamic topology of neurons to improve the prediction effect. In addi-
tion to neural networks, data-driven methods include other methods as 
well. Wu et al. proposed a PEMFC remaining life prediction model based 
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on a regression vector machine, where the advantages over the classical 
support vector machine in a small training set were shown. Ibrahim et al. 
[12] proposed a univariate prediction method on the basis of the 
discrete wavelet transform. Four methods were used to fit data features 
and for data reconstruction, achieving the prediction. Wang et al. [13] 
proposed a stacked LSTM model with two dropout parameters. They 

used a unique optimization algorithm to obtain the optimal model pa-
rameters which achieve the fitting of the PEMFC system degradation. 

However, the data-driven method lacks consideration for the diverse 
aging factors of PEMFC, so the researchers also pay attention to many 
model-based approaches that can better reflect the physical and chem-
ical processes involved [14,15]. For example, based on the principle of 

Fig. 1. Framework of the proposed hybrid framework for PEMFC performance prediction.  
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electrochemical reaction, Zhou et al. [16] established a multi-physics 
aging model to predict the performance degradation of PEMFCs by 
considering the losses due to ohmic effects, reaction activity, and re-
actants mass transfer. Jahromi et al. [17] and Futter et al. [18] consid-
ered the aging of PEMFC from the component level and explained the 
aging principle of the catalyst layer and proton exchange membrane. A 
method based on pattern recognition was proposed by Liu et al. [19], 
which used an empirical model to extract static features from polari-
zation curves, and then extracted the dynamic features from electro-
chemical impedance spectroscopy using expert knowledge and 
parametric modeling. Usually, only the most relevant features were 
selected from the entire extracted feature set. 

In the model-based methods, most parameters are assumed to be 
constant to simplify the modeling process. However, since many aging 
mechanisms have not been well studied and the aging models are usu-
ally not proven, the model accuracy is usually not guaranteed under 
various operating conditions [19]. PEMFC has complex working mech-
anisms, and factors such as internal electrochemical reactions and 
external operating conditions would cause highly varying aging be-
haviors. Ma et al. [20] showed that the internal electrochemical re-
actions would change the temperature, gas flow, and solution conditions 
inside the fuel cell, leading to aging in electrodes, gas diffusion layers, 
catalyst layers, and proton exchange membranes. In addition, factors 
such as the movement and operating temperature would also affect the 
mechanical structure of the fuel cell, resulting in a decrease in output 
performance. However, due to material and design differences, the 
above factors have different influences on the aging process of each 
component. Moreover, aging time scales vary significantly between 
different fuel cell components, necessitating multi-time-scale modeling. 
For example, for rapidly aging components, the prediction model should 
be able to sufficiently adapt to reflect its rapid change trend while it is 
not needed for the slow aging process. 

It should be noted that the voltage recovery phenomena in PEMFC 
are often ignored in model-based approaches. However, Chu et al. [21] 
performed a 2500h durability test on each of the three fuel cell stacks, 
showing that the aging of some components that lead to fuel cell per-
formance degradation is reversible. Changes in the operating conditions 
may lead to a significant performance recovery in the components and 
the entire PEMFC system [22–25]. Considering the system output 
voltage, the overall performance of PEMFC shows a downward trend 
over time, but it would show a local mutation due to component per-
formance recovery. 

1.2. Research gap and contributions 

The existing data-driven methods of PEMFC performance prediction 
lack the consideration of the aging mechanisms. On the other hand, 
since the working mechanisms of PEMFC are complicated, a physics 
model is usually challenging to be established and used in practical 
applications [20,26]. Furthermore, neither of these two categories of 
methods considers aging time scales with voltage recovery phenomena. 
Indeed, the results in recent works such as [27–29] show that the pre-
diction accuracy of data-driven methods could be further improved by 
combining with the changing trend of the data with linear and nonlinear 
characteristics. The voltage of PEMFC shows an overall downward trend 
and local recovery, which can be divided into linear information 
reflecting the global downward trend and nonlinear information 
reflecting the local recovery phenomenon. In general, the aging of the 
PEMFC system is the outcome of the aging of individual components. 
Therefore, it is beneficial to account for differences in the aging time 
scales of components. 

This paper thus proposes a hybrid framework data-driven method to 
cope with the aging timescale differences in components and voltage 
recovery phenomenon in PEMFCs. Inspired by recent works for wind 
speed [30] and battery capacity [31] prediction using signal decompo-
sition methods, the PEMFC aging data in this work are first divided into 

multiple sequences to reflect the different aging time scales of compo-
nents. Next, each decomposed sequence is further divided into linear 
and nonlinear parts, reflecting the overall downward trend and local 
recovery phenomena within each aging time scale. Then, the two forms 
of sequences are predicted by a linear time-series method and a 
nonlinear machine learning approach to improve the prediction effect. 
Moreover, the attention mechanism is introduced in the machine 
learning method to improve the prediction accuracy of the nonlinear 
information. Finally, the predictions for each aging timescale are sum-
med to obtain an overall prediction result. The main novelty of the 
proposed framework is summarized as follows:  

1) The proposed hybrid framework data-driven method has high 
adaptability to the data. After the PEMFC data is decomposed into 
different time scales, the data of each time scale is further separated 
into linear and nonlinear information, and the corresponding 
methods are used to predict these two parts for better predictive 
performance. 

2) The complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) method is used to decompose the aging trends 
of multiple time scales in the raw fuel cell aging data. CEEMDAN is 
convenient for independent prediction and analysis of each aging 
time scale.  

3) Using the GRU method with an attention mechanism as a prediction 
method for nonlinear trends further improves the prediction effect. 

The paper is organized as follows. First, Section 2 introduces the 
methodology of the hybrid framework for the data-driven method. 
Then, Section 3 presents the data processing. Next, in Section 4, the 
prediction results of the proposed method are analyzed and compared 
with the results of peer research. Finally, the corresponding conclusions 
are given in Section 5. 

2. Methodology 

2.1. Prediction framework 

In this work, the output voltage data are used to show the perfor-
mance of the PEMFC system. Fig. 1 illustrates the framework of the 
proposed method. 

In the proposed framework, the PEMFC voltage data are first 
decomposed into n intrinsic mode function (IMF) sequences by the 
CEEMDAN. The nth IMF sequence is also called the residual sequence. A 
fixed-step moving average (MA) method is used for each decomposed 
sequence to separate the data with linear and nonlinear information. For 
the linear data, the autoregressive integrated moving average (ARIMA) 
is used for prediction. Meanwhile, the GRU with the attention mecha-
nism is used for nonlinear information extraction. Next, the linear and 
nonlinear prediction results are combined to obtain each IMF sequence’s 
prediction. Finally, adding up the prediction results of all IMF sequences 
yields the final prediction. 

2.2. CEEMDAN 

The CEEMDAN is significantly improved from the original empirical 
mode decomposition (EMD) by overcoming the mode-mixing problem 
[32]. We use the CEEMDAN to decompose the raw PEMFC voltage data y 
(t) into sequences with different aging time scales. The steps are as 
follows: 

Step 1: Add j (j = 1, 2, …, k) Gaussian white noise to the raw voltage 
data, and a series of new sequences obtained can be expressed as: 

yj(t)= y(t) + ε0vj(t) (1)  

where yj(t) represents the new sequence; ε0 is a coefficient that 
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determines the signal-noise ratio; and vj(t) is the Gaussian white noise. 

Step 2: Obtaining a CEEMDAN decomposition sequence for raw 
voltage data: 

IMF1=

∑k

j=1
IMFj1

k
(2)  

where IMF1 is the first IMF sequence of y(t) decomposed by CEEMDAN, 
and IMFj1 is the first IMF sequence of the yj(t) decomposed by EMD. The 
residual sequence r1(t) of the y(t) decomposed by CEEMDAN is 
expressed as: 

r1(t)= y(t) − IMF1 (3)   

Step 3: Replace y(t) in Step 1 with r1(t), and repeat the above steps 
one and two to get the first IMF sequence of r1(t) decomposed by 
CEEMDAN, which is the second IMF sequence of y(t) decomposed by 
CEEMDAN. 
Step 4: Repeat Steps 1 to 3 to obtain multiple IMF sequences of the 
raw voltage data y(t) until the final residual sequence rn-1(t) is a 
monotone function and cannot be decomposed. Then the raw voltage 
data y(t) can be expressed as: 

y(t)=
∑n− 1

i=1
IMFi + rn − 1(t) (4)  

where the nth IMF sequence equals the residual sequence rn-1(t). 

2.3. Prediction method 

2.3.1. Moving average 
The n decomposed IMF sequences obtained from CEEMDAN repre-

sent the aging trends on different time scales. These sequences contain 
linear and nonlinear information that can be used to predict the aging 
behavior [28,29,33], and we use moving average (MA) to decompose 
the sequences to improve the prediction accuracy, i.e., 

lt =
1
m

∑t

i=t− m+1
yi (5)  

rt= yt − lt (6)  

where m is the step size. lt contains linear information with a stable 
downward trend, and is suitable for forecasting using linear methods. rt 
is the nonlinear component that represents the local fluctuation infor-
mation, and it should be used for nonlinear forecasting methods. 

2.3.2. Autoregressive integrated moving average 
Based on the linear component, an ARIMA model is trained for each 

IMF sequence. The ARIMA treats the value yt at the current moment as a 
linear function f of past observations, i.e., 

yt = f (yt − 1, yt − 2,⋯, yt − p, εt − 1, εt − 2,⋯, εt − q) (7)  

where yt-1, yt-2, …, yt-p are the past voltage measurements and εt-1, εt-2, 
…, εt-q are measurement errors with zero mean and constant variance. In 
particular, p and q are the autoregressive order and the moving average 
order, respectively, and their values are determined during model 
training. As a linear method, it is necessary to ensure that the data input 
into ARIMA is stable. Otherwise, a pre-difference process is essential. 
The parameter d is the order of the difference process. When the dif-
ferential process is not required, d is taken as 0. In summary, p, d, and q 
are the three most important parameters of ARIMA. 

2.3.3. GRU with attention mechanism 
Compared to widely used LSTM, GRU has many advantages in 

improving the effect of long sequence prediction and it is therefore 
adopted for nonlinear sequence prediction [34]. The structure of the 
traditional GRU is shown in Fig. 2 and is governed by. 

zt= σ(Wz ⋅ [ht − 1, xt]) (8)  

rt= σ(Wr ⋅ [ht − 1, xt]) (9)  

h̃t= tanh(WH[rt⊙ ht − 1, xt]) (10)  

ht=(1 − zt)⊙ ht − 1+ zt ⊙ h̃t (11)  

where Wz, Wr, and Wh are the network weights of the update gate, the 
reset gate, and the candidate states, respectively. 

In Eq. (10), the reset gate combines the previous neuron’s hidden 
state ht-1 with the current neuron’s input xt to obtain a candidate hidden 
state ~ ht. ~ht mainly contains the input of the current neuron, so the 
function of the reset gate can be understood as remembering the current 
neuron’s input. In Eq. (11), the update gate controls the ratio of the 
previous neuron’s hidden state ht-1 to the current neuron’s hidden state 
ht. It can be seen from Eq. (11) that GRU can use the same gate to forget 
and select (whereas LSTM needs to use multiple gates), thus achieving 
an optimal structure. 

The attention mechanism is introduced into the GRU to improve the 
prediction performance of the nonlinear information in the IMF se-
quences. The attention mechanism can generally be used before or after 
the GRU method. However, using it before the GRU method would cause 

Fig. 2. GRU structure diagram.  

Fig. 3. Schematic diagram of GRU with the attention mechanism.  
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part of the attention to be distracted by other features, resulting in a 
decline in the effect of the method [35]. Thus, this paper uses the 
attention mechanism after the GRU method. First, the input voltage data 
is converted to multiple feature vectors for GRU training. Then, the 
feature vectors are used for GRU model training to get the initial output 
vectors. In order to obtain a reasonable attention distribution, the initial 
output vectors are used as the input vectors of the attention mechanism, 
and the corresponding attention weight parameters are calculated. 
Finally, the final prediction result is obtained. The structure of GRU with 
the attention mechanism is shown in Fig. 3. 

The numbers of input, hidden, and output layers of the GRU are 

selected as 1, 2, and 1, respectively. The input layer has 60 neurons, each 
with 100 wt and 100 biases. The first hidden layer has 100 neurons, and 
each neuron has 80 wt and 80 biases. The second hidden layer has 80 
neurons, each with 10 wt and 10 biases. Finally, the output layer has 10 
neurons, each containing 1 wt parameter and 1 bias parameter. Intro-
ducing the attention mechanism to the GRU increases the attention 
calculation without affecting the parameter settings of other links in the 
GRU. 

3. Data preprocessing 

3.1. Data description 

The data used in this work were obtained from the IEEE PHM 2014 
Data Challenge, which has been widely used as a benchmark dataset for 
fuel cell voltage decay prediction. The dataset contains the aging test 
data of two PEMFC stacks, denoted by FC1 and FC2. The FC1 aging test 
simulates static working conditions, running for 1154h at a steady 
current of 70 A. The FC2 aging test simulates quasi-dynamic working 
conditions, running 1020h at 70 A dynamic current and 7 A oscillating 
current. The overall voltage changing trends for two fuel cells over the 
first 1000h with 1h intervals are shown in Fig. 4. 

To measure the physical state of the fuel cell’s internal components, 
the fuel cell is periodically shut down [20]. During these periods, some 
components inside the fuel cell recovered, resulting in a voltage recov-
ery [21–24]. The phenomenon of voltage recovery complicates the aging 
mechanism of fuel cells and makes the prediction more difficult. 
Nevertheless, based on the decomposition idea and the hybrid frame-
work, the proposed method predicts this voltage recovery better. 

3.2. CEEMDAN decomposition 

The decomposition results of FC1 and FC2 based on CEEMDAN are 

Fig. 4. Relationship between voltages and time of FC1 and FC2.  

Fig. 5. CEEMDAN decomposition results of FC1.  
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Fig. 6. CEEMDAN decomposition results of FC2.  

Fig. 7. FC1 sequence prediction results.  
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shown in Figs. 5 and 6. The nine IMF sequences of the FC1 represent the 
aging conditions of different aging time scales with different trends and 
ranges. The residual (IMF8) drops from 3.33 to 3.24, and it reflects the 
most dominant aging trend. IMF0-IMF7 are relatively small with 
nonlinear trends, which may reflect the fuel cell’s local change charac-
teristics and recovery phenomena. Specifically, the components IMF2 to 
IMF7 have a changing trend similar to a periodic function. Although the 
exact correspondence between the IMF sequences and the internal 
components of fuel cells is unclear, it can still be considered that the 
changing trends of these IMF sequences include the overall aging trends 
and local recoverable phenomena of the components. On the other hand, 
the local changes of IMF0-IMF1 are not regular but impulsive. Further 
investigation is required to determine whether recovery phenomena or 
unexpected noises cause these trends. 

For FC2 data, ten IMF sequences are obtained. Like FC1, the residual 
(IMF9) is the largest component with a clear downward aging trend 
among these sequences. On the other hand, IMF0 to IMF8 vary period-
ically, which may reflect the components’ aging trend and recovery 
phenomenon. Likewise, the significance of impulse-function-like trends 
in IMF1 must be further determined. 

4. Results and discussion 

The prediction effects of various methods are evaluated and 
compared based on three metrics: mean absolute error (MAE), root 
mean square error (RMSE), and mean absolute percentage error 
(MAPE), i.e., 

MAE =
1
N

∑N

i=1
|yi − ŷi| (12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)2

√
√
√
√ (13)  

MAPE =
100
N

⋅
∑N

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (14)  

where N is the number of test data, yi is the real value, and ŷi is the 

predicted value. 

4.1. FC1 prediction results 

This section analyzes the prediction results using the proposed 
method on FC1 data. Then, comparisons are made with various methods 
to demonstrate the advantages of the hybrid framework with the 
attention mechanism. 

4.1.1. Analysis of hybrid-attention 
In this section, the prediction results of the proposed method on FC1 

data are analyzed. In detail, the first 500h of data are used to train the 
proposed model, and then this model is tested on the last 500h. Raw 
voltage data are decomposed into sequences of multiple aging time-
scales. Then, the sequences are further decomposed into linear and 
nonlinear components, and corresponding predictions are made using 
ARIMA and GRU methods with attention mechanisms. The prediction 
results for the sequences are shown below. 

Fig. 7 shows the true and predicted IMF0 to IMF8 sequences, and the 
corresponding errors are given in Table 1. It should be noted that the 
calculated MAPEs are not included for comparison since they are much 
smaller than MAEs and RMSEs. The small MAE and RMSE results 
demonstrate the high precision of this prediction. Especially for IMF0 
and IMF1, most of the predicted values closely match the real values. 
Although the true value locally exhibits positive and negative pulse 
characteristics according to Eq. (12) and Eq. (13), the excellent pre-
diction effect at other times reduces the adverse effects of this charac-
teristic, making the calculated error metrics of IMF0 and IMF1 lower. 
Compared with IMF0 and IMF1, although the errors from IMF2 to IMF8 
are slightly higher, the changing trends of the real value and the pre-
dicted value are the same. 

As shown in Fig. 8 and Table 2, there is a good correlation between 
the predicted and real voltages of the FC1. As a result of the accumu-
lation of forecast trends in each IMF subsequence, the overall forecast 
curve largely inherits the advantage of high precision, as well as some 
errors in some subsequences. Specifically, Fig. 8 shows that the pre-
dicted value at 820h is slightly higher than the corresponding real value, 
where this high probability results from the prediction error of the IMF3 
subsequence. Likewise, IMF0 and IMF1 are most likely responsible for 

Table 1 
FC1 sequence prediction errors( × 10− 3).  

IMF 0 1 2 3 4 5 6 7 8 

MAE 0.009 0.010 0.064 0.141 0.305 0.154 0.196 0.112 0.098 
RMSE 0.054 0.093 0.064 0.295 0.385 0.277 0.311 0.211 0.184  

Fig. 8. FC1 final prediction results.  
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the slight error of the overall forecast curve at the peak at 990h. 
The RMSE error curve depicted in Fig. 8 provides a visual repre-

sentation of the trend of cumulative prediction error with aging time. 
Notably, during the interval from 510h to 820h, a discernible downward 
trend is observed in the RMSE values. This drop means that under the 
root sign on the right-hand side of Eq. (13), the denominator grows 

faster than the numerator. The denominator N increases linearly with 
the aging time. Therefore, it can be deduced that the sum of squared 
errors represented by the numerator grows slowly, which indicates that 
the proposed method exhibits stable prediction errors. 

It is worth highlighting that the sharp voltage fluctuations at 660h, 
820h and 990h all have a considerable impact on RMSE. It is obvious 

Table 2 
FC1 multi-training length prediction errors.  

Train (h) Metric ARIMA LSTM GRU Hybrid-LSTM Hybrid-GRU Hybrid-Attention 

500 MAE 0.001315 0.001492 0.001085 0.000920 0.000863 0.000688 
RMSE 0.002589 0.002047 0.001548 0.001247 0.001178 0.000882 
MAPE 0.040604 0.046141 0.033562 0.028436 0.026631 0.021125 

600 MAE 0.001391 0.001166 0.001113 0.000852 0.000844 0.000666 
RMSE 0.002777 0.001981 0.001639 0.001154 0.001159 0.000939 
MAPE 0.043026 0.036094 0.034450 0.026344 0.026115 0.020590 

700 MAE 0.001415 0.001407 0.001343 0.001080 0.000862 0.000631 
RMSE 0.002952 0.002154 0.001892 0.001452 0.001201 0.000821 
MAPE 0.043828 0.043564 0.041592 0.033458 0.026713 0.019541 

800 MAE 0.001785 0.001568 0.001186 0.001169 0.001029 0.000692 
RMSE 0.003562 0.002278 0.002360 0.001597 0.001450 0.000957 
MAPE 0.055318 0.048631 0.036793 0.036262 0.031914 0.021474  

Fig. 9. Individual predictions for multiple methods of FC1.  

Fig. 10. Predictions for hybrid methods of FC1.  
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that the RMSE increase at 820h is the largest, which indicates that when 
the voltage fluctuation is too large, the prediction error of the proposed 
method increases significantly, leading to a degradation in prediction 
performance. 

4.1.2. Comparative study of multiple methods 
This section illustrates the advantages of the proposed hybrid 

framework from two aspects. The first 500h of data are used for training 
of the proposed model to demonstrate the superiority of the hybrid 
framework. Then, the data of the first 600h, 700h, and 800h are used for 
training to prove the applicability of the proposed method further. 

4.1.2.1. Analysis of hybrid framework. To demonstrate the superiority of 
the proposed framework, it is necessary to discuss the performance of 
each method separately. Fig. 9 presents the prediction effect of each 
method independently. The best prediction performance of the methods 
is used for the comparative analysis of hybrid framework predictions in 
Fig. 10. 

There are always over-predictions in individual predictions. Around 

the troughs at 820h and 890h, the ARIMA predictions are too low. 
Around the peaks around 660h, 840h, and 990h, the predictions of 
LSTM and GRU are too high, and the result of LSTM is the highest. 
Outside these peaks and troughs, ARIMA’s predicted values are closer to 
the real values, and this phenomenon is most evident in the prediction 
from 920 to 950h. However, it can be seen from the enlarged picture that 
the prediction results of LSTM and GRU are steadier, while the predic-
tion results of ARIMA always have severe fluctuations. 

As a linear method, ARIMA’s predictions are closer to the real value 
but vary more widely. The disadvantages of ARIMA outweigh its ad-
vantages, so its results are not optimal. GRU has a simpler structure and 
performs better among the neural network methods, so it is used as a 
representative of the individual methods for the following comparisons. 

Fig. 10 shows prediction results using a hybrid prediction framework 
to demonstrate its superiority. The hybrid prediction framework consists 
of two parts: a linear part based on ARIMA, a nonlinear part based on 
LSTM or GRU, and finally, the linear and nonlinear components are 
combined. The hybrid framework alleviates the overprediction of the 
peaks and troughs of the individual method. Most evidently, this 
improvement can be seen from the peak predictions for 840h and 990h. 
In the peak prediction at 660h and the trough prediction at 820h and 
890h, the results of the individual method and the hybrid methods are 
close. Likewise, the prediction for 965h–985h is zoomed in for further 
discussion. The predicted value of the hybrid method is closer to the real 
value, which shows that the prediction performance of the hybrid 
method is significantly better than that of the individual method. Neural 
networks are used to predict the regularity recovery trend of nonlinear 
nature. ARIMA is used to predict the linear part, which captures the 
overall stable downward trend and improves the prediction effect. The 
prediction effect of the Hybrid-GRU method is better than that of the 
Hybrid-LSTM method. Thus, the composition algorithm can further 
improve the accuracy of the hybrid framework. 

4.1.2.2. Comparative analysis. Based on the hybrid framework, an 
attention mechanism is introduced into GRU to further improve the 
prediction effect. The first 600h, 700h, and 800h of FC1 data are used to 
train the proposed method and related method. Their prediction results 
are shown in Fig. 11. To intuitively display the performance of each 
method under different training data lengths, the errors are shown in 
Table 2 and Fig. 12 respectively. 

As shown in Table 2, the prediction error of ARIMA is the largest 
under the training length of 600h, 700h and 800h. As FC1 data vary non- 
linearly, neural networks outperform ARIMA. Moreover, as the training 
length increases, the prediction error of ARIMA keeps increasing. When 
the training length is short, the longer test data makes the fluctuation of 
ARIMA prediction results less obvious. Therefore, increasing the 
training length has the adverse effect of this drastic change more 
apparent, leading to an increase in prediction error, which is not seen in 
the LSTM and GRU prediction results. In the proposed hybrid frame-
work, the nonlinear part in the sequence is predicted using the neural 
network-based methods. This improves the prediction accuracy. 

The error comparison shows the superiority of the proposed method 
in this work. With the proposed hybrid framework and attention 
mechanism, the proposed method shows the best prediction perfor-
mance. Compared to the traditional GRU, the prediction effect of the 
Hybrid-LSTM method has increased by 1.4%–23.5%, and the effect of 
the Hybrid-GRU method has increased by 13.2%–35.8%. Furthermore, 
the prediction performance of the proposed Hybrid-Attention method is 
20.3%–32.8% better than that of the Hybrid-GRU method and 36.6%– 
53.0% better than that of the individual GRU method. 

4.2. FC2 prediction results 

Similarly, this section analyzes and shows the prediction effect of the 
proposed method using the FC2 data. Then, the comparison 

Fig. 11. FC1 multi-training length prediction.  
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demonstrates the advantages of the proposed hybrid framework and 
attention mechanism. 

4.2.1. Analysis of hybrid-attention 
In this section, the prediction results of the proposed method on the 

FC2 data are analyzed. The first 500h of data is used to train the pro-
posed model, and then this model is tested on the last 500h of data. The 
raw voltage data are decomposed into sequences of multiple aging time 
scales and are further decomposed into linear and nonlinear parts for 
separate predictions. The prediction results for the sequence are shown 
below. 

The prediction results of IMF0 to IMF9 sequences are shown in 
Fig. 13 and Table 3. Similar to FC1, changes in characteristics like 
positive and negative pulses cannot be accurately predicted in IMF0 and 
IMF1, and the prediction effect cannot neutralize their influence on the 
calculation of the metrics at other times. Compared with IMF0 and 
IMF1, the true and predicted values from IMF2 to IMF9 have the same 
change trend. 

According to Fig. 14, there is a good correlation between the pre-
dicted and real values of the FC2 voltage. The overall forecast trend 
shows a high degree of confidence. Comparing the RMSE curve in Fig. 14 
with that in Fig. 8, it can be found that the prediction error of FC2 re-
mains stable, although it is larger than that of FC1. And the same as in 
FC1, the sharp voltage fluctuation at 660h and 840h also caused the 

increase of RMSE, resulting in the decline of prediction performance. 
Overall, the proposed method exhibits stable predictive performance for 
the quasi-dynamic working conditions FC2, thus showing the advantage 
of the proposed hybrid attention method. 

4.2.2. Comparative study of multiple methods 
This section further illustrates the prediction performance of the 

proposed hybrid framework on the FC2 data. The applicability of the 
proposed method is demonstrated through experiments using the 
training data of four lengths. 

4.2.2.1. Analysis of hybrid framework. As shown in Fig. 15, individual 
methods still have the disadvantage of over-prediction. Around the 
troughs at 950h and 970h, The ARIMA predictions are too low. Around 
the peaks around 510h and 840h, LSTM and GRU make too high pre-
dictions. However, unlike the situation in FC1, the data for FC2 changes 
more drastically. So, the overprediction of ARIMA is not as significant as 
in FC1. As GRU has the best performance among the individual methods, 
it is used as the comparison object in the hybrid framework method. 

Fig. 16 shows the prediction effect of the hybrid framework on the 
FC2 data. The hybrid framework improves peak and trough prediction 
by combining the linear and nonlinear methods. Around the troughs at 
950h and 970h, the hybrid framework made accurate predictions. 
Around the peaks at 510h and 840h, the overprediction of the hybrid 

Fig. 12. FC1 multi-training length prediction errors.  
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framework is smaller than that of the individual method. Furthermore, 
the hybrid framework improves local prediction accuracy, which is 
more evident using the FC2 data. 

4.2.2.2. Comparative analysis. To further improve the prediction 

accuracy, the attention mechanism is further introduced into the hybrid 
framework, and the prediction results are shown in Fig. 17. To more 
intuitively display the performance of each method under different 
training data lengths, the training error metrics are shown in Table 4 and 
Fig. 18. 

Fig. 13. FC2 sequence prediction results.  

Table 3 
FC2 sequence prediction errors ( × 10− 3).  

IMF 0 1 2 3 4 5 6 7 8 9 

MAE 0.146 0.159 0.281 0.217 0.221 0.214 0.138 0.243 0.035 0.043 
RMSE 0.546 0.859 0.554 0.485 0.382 0.320 0.265 0.593 0.123 0.195  

Fig. 14. FC2 final prediction results.  
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As shown in Table 4, ARIMA has the largest prediction error, which is 
also the case for FC1. Furthermore, as the length of the training length 
increases, the prediction error of ARIMA first decreases and then in-
creases. As the data of FC2 varied more drastically than those of FC1, 
changes in training length have less impact on ARIMA prediction error, 
and this phenomenon is different from those of FC1. Using FC2, LSTM 
and GRU prediction errors are not significantly affected by the training 
length, which is the same phenomenon as in FC1. 

The superiority of the proposed method is significantly demonstrated 
by the prediction errors in Table 4. Compared to the GRU, the prediction 
performance of the hybrid-LSTM is improved by 2.3%–16.4%, and the 
prediction effect of the hybrid-GRU method is improved by 6.1%– 
21.6%. Furthermore, compared to the hybrid-GRU, the hybrid-attention 
method outperforms the other three training lengths, achieving an 
improvement of 35.7%–46.0%. 

4.3. Comparison of the proposed method with the existing methods in the 
literature 

The prediction error of the proposed method in this work is 
compared with the results of the existing methods, and the comparison 
results are given in Table 5. It is worth noting that some prediction 

accuracies are not included in these methods, as indicated by “-“. 
To improve noise immunity, Xie et al. proposed an singular spectrum 

analysis and deep gaussian process (SSA-DGP) method in 2020 [36]. 
Both the SSA-DGP and the proposed method use the data preprocessing 
procedure. However, the proposed method improves the prediction 
accuracy by 77.4%–83.7% in terms of MAE and 83.0%–84.2% in RMSE 
under the 550h and 650h training conditions. 

Wang et al. proposed a bi-directional long short-term memory 
recurrent neural network with an attention mechanism (BiLSTM-AT) 
model in 2020 [37]. Compared to LSTM and LSTM with the attention 
mechanism, the accuracy of BiLSTM-AT has been significantly 
improved. With the hybrid framework, our proposed Hybrid-AT method 
achieves further prediction improvement. Specifically, according to 
MAE, the proposed method improves the prediction accuracy by 56.5%– 
62.5% on FC1 and 61.8%–70.1% on FC2. According to MAPE, the pro-
posed method improves the prediction accuracy by 42.6%–51.0% on 
FC1 and 35.0%–54.6% on FC2. 

In 2019, Liu et al. [38] proposed an Adaptive neuro-fuzzy inference 
system based on subtractive clustering (ANFIS-SC), which could 
improve the prediction effect by adjusting the model parameters. This 
method combines the neural network with the fuzzy reasoning system, 
and its superiority is validated by comparing it with the Elman neural 

Fig. 15. Individual predictions for multiple methods of FC2.  

Fig. 16. Predictions for hybrid methods of FC2.  
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network. However, under the condition of 500h training length, the 
proposed method improves the prediction performance by 73.5% based 
on RMSE and 74.3% based on MAPE. 

To strengthen the prediction results for small data sets, Deng et al. 
proposed a variational auto-encoded deep gaussian process method in 
2022 [39]. Further, under the 600h of training length, the proposed 
method improves the final prediction performance by 86.9% based on 
MAE and 90.6% based on RMSE. 

The proposed Hybrid-Attention method shows a better prediction 
performance than the existing mainstream methods. Due to the hybrid 
framework and the introduced attention mechanism, the proposed 
method accounts for the difference in aging time scale and the distinc-
tion between the linear and nonlinear portions of the prediction model. 
As a result of these steps, the final prediction performance has been 
improved. 

5. Conclusion 

In this paper, a novel hybrid framework is proposed for predicting 
PEMFC voltage decay by fully exploiting the characteristics of voltage 
decay data. A large number of performance studies have been carried 
out to verify the performance of the Hybrid-Attention, and the conclu-
sions are as follows:  

1) ARIMA and attention-based GRU are adopted to predict the linear 
and nonlinear sub-sequences obtained from CEEMDAN. Further-
more, the attention mechanism improves the prediction accuracy on 
nonlinear subsequences, improving the overall prediction 
performance.  

2) The superiority of the proposed method has been verified on the 
open-source dataset of PEMFC. For static working conditions FC1, 
the RMSE of the proposed method ranges from 8.21E-4 to 9.57E-4. 
For quasi-dynamic working conditions FC2, the RMSE of the pro-
posed method ranges from 1.01E-3 to 2.57E-3.  

3) Compared with four state-of-the-art data-driven algorithms, the 
overall prediction accuracy of the proposed method can be improved 
by 42.6%–84.2% on FC1 and 35.0%–90.6% on FC2. 

The proposed method will be extended for a long-term prediction in 
the future, and more accurate linear/nonlinear forecasting methods will 
be applied. 
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[5] Z. Hua, Z. Zheng, E. Pahon, M.-C. Péra, F. Gao, A review on lifetime prediction of 
proton exchange membrane fuel cells system, J. Power Sources 529 (2022), 
231256, https://doi.org/10.1016/j.jpowsour.2022.231256. 

[6] Dafeng Zhu, Bo Yang, Yuxiang Liu, Zhaojian Wang, Kai Ma, Xinping Guan, Energy 
management based on multi-agent deep reinforcement learning for a multi-energy 
industrial park, Appl. Energy 311 (2022), 118636, https://doi.org/10.1016/j. 
apenergy.2022.118636. 

[7] Dafeng Zhu, Bo Yang, Liu Qi, Kai Ma, Shanying Zhu, Chengbin Ma, et al., Energy 
trading in microgrids for synergies among electricity, hydrogen and heat networks, 
Appl. Energy 272 (2020), 115225, https://doi.org/10.1016/j. 
apenergy.2020.115225. 

[8] K. Javed, R. Gouriveau, N. Zerhouni, D. Hissel, Improving accuracy of long-term 
prognostics of PEMFC stack to estimate remaining useful life, in: 2015 IEEE 
International Conference on Industrial Technology (ICIT), IEEE, Seville, 2015, 
pp. 1047–1052, https://doi.org/10.1109/ICIT.2015.7125235. 

[9] J. Liu, Q. Li, W. Chen, Y. Yan, Y. Qiu, T. Cao, Remaining useful life prediction of 
PEMFC based on long short-term memory recurrent neural networks, Int. J. 
Hydrogen Energy 44 (2019) 5470–5480, https://doi.org/10.1016/j. 
ijhydene.2018.10.042. 

[10] B. Long, K. Wu, P. Li, M. Li, A novel remaining useful life prediction method for 
hydrogen fuel cells based on the gated recurrent unit neural network, Appl. Sci. 12 
(2022) 432, https://doi.org/10.3390/app12010432. 

[11] Z. Hua, Z. Zheng, M.-C. Pera, F. Gao, Data-driven prognostics for PEMFC systems 
by different echo state network prediction structures, in: 2020 IEEE Transportation 
Electrification Conference & Expo (ITEC), IEEE, Chicago, IL, USA, 2020, 
pp. 495–500, https://doi.org/10.1109/ITEC48692.2020.9161581. 

[12] M. Ibrahim, N. Steiner, S. Jemei, D. Hissel, Wavelets-based approach for online fuel 
cells remaining useful lifetime prediction, IEEE Trans. Ind. Electron. 1–1 (2016), 
https://doi.org/10.1109/TIE.2016.2547358. 

[13] F.-K. Wang, X.-B. Cheng, K.-C. Hsiao, Stacked long short-term memory model for 
proton exchange membrane fuel cell systems degradation, J. Power Sources 448 
(2020), 227591, https://doi.org/10.1016/j.jpowsour.2019.227591. 

[14] K. Chen, S. Laghrouche, A. Djerdir, Fuel cell health prognosis using Unscented 
Kalman Filter: postal fuel cell electric vehicles case study, Int. J. Hydrogen Energy 
44 (2019) 1930–1939, https://doi.org/10.1016/j.ijhydene.2018.11.100. 

[15] M. Bressel, M. Hilairet, D. Hissel, B. Ould Bouamama, Extended kalman filter for 
prognostic of proton exchange membrane fuel cell, Appl. Energy 164 (2016) 
220–227, https://doi.org/10.1016/j.apenergy.2015.11.071. 

[16] D. Zhou, Y. Wu, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation prediction of 
PEM fuel cell stack based on multiphysical aging model with particle filter 
approach, IEEE Trans. Ind. Appl. 53 (2017) 4041–4052, https://doi.org/10.1109/ 
TIA.2017.2680406. 

[17] M. Moein-Jahromi, M.J. Kermani, S. Movahed, Degradation forecast for PEMFC 
cathode-catalysts under cyclic loads, J. Power Sources 359 (2017) 611–625, 
https://doi.org/10.1016/j.jpowsour.2017.05.102. 

[18] G.A. Futter, A. Latz, T. Jahnke, Physical modeling of chemical membrane 
degradation in polymer electrolyte membrane fuel cells: influence of pressure, 
relative humidity and cell voltage, J. Power Sources 410–411 (2019) 78–90, 
https://doi.org/10.1016/j.jpowsour.2018.10.085. 

[19] H. Liu, J. Chen, D. Hissel, J. Lu, M. Hou, Z. Shao, Prognostics methods and 
degradation indexes of proton exchange membrane fuel cells: a review, Renew. 
Sustain. Energy Rev. 123 (2020), 109721, https://doi.org/10.1016/j. 
rser.2020.109721. 

[20] R. Ma, R. Xie, L. Xu, Y. Huangfu, Y. Li, A hybrid prognostic method for PEMFC with 
aging parameter prediction, IEEE Trans Transp Electrific 7 (2021) 2318–2331, 
https://doi.org/10.1109/TTE.2021.3075531. 

[21] T. Chu, Q. Wang, M. Xie, B. Wang, D. Yang, B. Li, et al., Investigation of the 
reversible performance degradation mechanism of the PEMFC stack during long- 
term durability test, Energy 258 (2022), 124747, https://doi.org/10.1016/j. 
energy.2022.124747. 

[22] B. Xiao, J. Zhao, L. Fan, Y. Liu, S.H. Chan, Z. Tu, Effects of moisture 
dehumidification on the performance and degradation of a proton exchange 

membrane fuel cell, Energy 245 (2022), 123298, https://doi.org/10.1016/j. 
energy.2022.123298. 

[23] F. Wang, D. Yang, B. Li, H. Zhang, C. Hao, F. Chang, et al., Investigation of the 
recoverable degradation of PEM fuel cell operated under drive cycle and different 
humidities, Int. J. Hydrogen Energy 39 (2014) 14441–14447, https://doi.org/ 
10.1016/j.ijhydene.2014.02.023. 

[24] B. Decoopman, R. Vincent, S. Rosini, G. Paganelli, P.-X. Thivel, Proton exchange 
membrane fuel cell reversible performance loss induced by carbon monoxide 
produced during operation, J. Power Sources 324 (2016) 492–498, https://doi. 
org/10.1016/j.jpowsour.2016.05.113. 

[25] R. Pan, D. Yang, Y. Wang, Z. Chen, Performance degradation prediction of proton 
exchange membrane fuel cell using a hybrid prognostic approach, Int. J. Hydrogen 
Energy 45 (2020) 30994–31008, https://doi.org/10.1016/j.ijhydene.2020.08.082. 

[26] Y. Li, T. Wik, C. Xie, Y. Huang, B. Xiong, J. Tang, et al., Control-oriented modeling 
of all-solid-state batteries using physics-based equivalent circuits, IEEE Trans 
Transp Electrific 8 (2022) 2080–2092, https://doi.org/10.1109/ 
TTE.2021.3131147. 

[27] C.N. Babu, B.E. Reddy, A moving-average filter based hybrid ARIMA–ANN model 
for forecasting time series data, Appl. Soft Comput. 23 (2014) 27–38, https://doi. 
org/10.1016/j.asoc.2014.05.028. 

[28] M. Khashei, M. Bijari, A novel hybridization of artificial neural networks and 
ARIMA models for time series forecasting, Appl. Soft Comput. 11 (2011) 
2664–2675, https://doi.org/10.1016/j.asoc.2010.10.015. 

[29] G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network 
model, Neurocomputing 50 (2003) 159–175, https://doi.org/10.1016/S0925- 
2312(01)00702-0. 

[30] G. Zhang, D. Liu, Causal convolutional gated recurrent unit network with multiple 
decomposition methods for short-term wind speed forecasting, Energy Convers. 
Manag. 226 (2020), 113500, https://doi.org/10.1016/j.enconman.2020.113500. 

[31] P. Wang, X. Dan, Y. Yang, A multi-scale fusion prediction method for lithium-ion 
battery capacity based on ensemble empirical mode decomposition and nonlinear 
autoregressive neural networks, Int. J. Distributed Sens. Netw. 15 (2019), 
155014771983963, https://doi.org/10.1177/1550147719839637. 

[32] W. Zhang, Z. Qu, K. Zhang, W. Mao, Y. Ma, X. Fan, A combined model based on 
CEEMDAN and modified flower pollination algorithm for wind speed forecasting, 
Energy Convers. Manag. 136 (2017) 439–451, https://doi.org/10.1016/j. 
enconman.2017.01.022. 

[33] C.N. Babu, B.E. Reddy, A moving-average filter based hybrid ARIMA–ANN model 
for forecasting time series data, Appl. Soft Comput. 23 (2014) 27–38, https://doi. 
org/10.1016/j.asoc.2014.05.028. 

[34] S. Han, Z. Meng, X. Zhang, Y. Yan, Hybrid deep recurrent neural networks for noise 
reduction of MEMS-IMU with static and dynamic conditions, Micromachines 12 
(2021) 214, https://doi.org/10.3390/mi12020214. 

[35] W. Shu, F. Zeng, Z. Ling, J. Liu, T. Lu, G. Chen, Resource Demand Prediction of 
Cloud Workloads Using an Attention-Based GRU Model. 2021 17th International 
Conference on Mobility, Sensing and Networking (MSN), IEEE, Exeter, United 
Kingdom, 2021, pp. 428–437, https://doi.org/10.1109/MSN53354.2021.00071. 

[36] Y. Xie, J. Zou, C. Peng, Y. Zhu, F. Gao, A novel PEM fuel cell remaining useful life 
prediction method based on singular spectrum analysis and deep Gaussian 
processes, Int. J. Hydrogen Energy 45 (2020) 30942–30956, https://doi.org/ 
10.1016/j.ijhydene.2020.08.052. 

[37] F.-K. Wang, T. Mamo, X.-B. Cheng, Bi-directional long short-term memory 
recurrent neural network with attention for stack voltage degradation from proton 
exchange membrane fuel cells, J. Power Sources 461 (2020), 228170, https://doi. 
org/10.1016/j.jpowsour.2020.228170. 

[38] H. Liu, J. Chen, D. Hissel, H. Su, Short-term prognostics of pem fuel cells: a 
comparative and improvement study, IEEE Trans. Ind. Electron. 66 (2019) 
6077–6086, https://doi.org/10.1109/TIE.2018.2873105. 

[39] H. Deng, W. Hu, D. Cao, W. Chen, Q. Huang, Z. Chen, et al., Degradation 
trajectories prognosis for PEM fuel cell systems based on Gaussian process 
regression, Energy 244 (2022), 122569, https://doi.org/10.1016/j. 
energy.2021.122569. 

C. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.jpowsour.2022.231256
https://doi.org/10.1016/j.apenergy.2022.118636
https://doi.org/10.1016/j.apenergy.2022.118636
https://doi.org/10.1016/j.apenergy.2020.115225
https://doi.org/10.1016/j.apenergy.2020.115225
https://doi.org/10.1109/ICIT.2015.7125235
https://doi.org/10.1016/j.ijhydene.2018.10.042
https://doi.org/10.1016/j.ijhydene.2018.10.042
https://doi.org/10.3390/app12010432
https://doi.org/10.1109/ITEC48692.2020.9161581
https://doi.org/10.1109/TIE.2016.2547358
https://doi.org/10.1016/j.jpowsour.2019.227591
https://doi.org/10.1016/j.ijhydene.2018.11.100
https://doi.org/10.1016/j.apenergy.2015.11.071
https://doi.org/10.1109/TIA.2017.2680406
https://doi.org/10.1109/TIA.2017.2680406
https://doi.org/10.1016/j.jpowsour.2017.05.102
https://doi.org/10.1016/j.jpowsour.2018.10.085
https://doi.org/10.1016/j.rser.2020.109721
https://doi.org/10.1016/j.rser.2020.109721
https://doi.org/10.1109/TTE.2021.3075531
https://doi.org/10.1016/j.energy.2022.124747
https://doi.org/10.1016/j.energy.2022.124747
https://doi.org/10.1016/j.energy.2022.123298
https://doi.org/10.1016/j.energy.2022.123298
https://doi.org/10.1016/j.ijhydene.2014.02.023
https://doi.org/10.1016/j.ijhydene.2014.02.023
https://doi.org/10.1016/j.jpowsour.2016.05.113
https://doi.org/10.1016/j.jpowsour.2016.05.113
https://doi.org/10.1016/j.ijhydene.2020.08.082
https://doi.org/10.1109/TTE.2021.3131147
https://doi.org/10.1109/TTE.2021.3131147
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/j.enconman.2020.113500
https://doi.org/10.1177/1550147719839637
https://doi.org/10.1016/j.enconman.2017.01.022
https://doi.org/10.1016/j.enconman.2017.01.022
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.3390/mi12020214
https://doi.org/10.1109/MSN53354.2021.00071
https://doi.org/10.1016/j.ijhydene.2020.08.052
https://doi.org/10.1016/j.ijhydene.2020.08.052
https://doi.org/10.1016/j.jpowsour.2020.228170
https://doi.org/10.1016/j.jpowsour.2020.228170
https://doi.org/10.1109/TIE.2018.2873105
https://doi.org/10.1016/j.energy.2021.122569
https://doi.org/10.1016/j.energy.2021.122569

	Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model
	1 Introduction
	1.1 Background and literature review
	1.2 Research gap and contributions

	2 Methodology
	2.1 Prediction framework
	2.2 CEEMDAN
	2.3 Prediction method
	2.3.1 Moving average
	2.3.2 Autoregressive integrated moving average
	2.3.3 GRU with attention mechanism


	3 Data preprocessing
	3.1 Data description
	3.2 CEEMDAN decomposition

	4 Results and discussion
	4.1 FC1 prediction results
	4.1.1 Analysis of hybrid-attention
	4.1.2 Comparative study of multiple methods
	4.1.2.1 Analysis of hybrid framework
	4.1.2.2 Comparative analysis


	4.2 FC2 prediction results
	4.2.1 Analysis of hybrid-attention
	4.2.2 Comparative study of multiple methods
	4.2.2.1 Analysis of hybrid framework
	4.2.2.2 Comparative analysis


	4.3 Comparison of the proposed method with the existing methods in the literature

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


