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Abstract—Accurate state of charge (SOC) estimation of trac-
tion batteries plays a crucial role in energy and safety man-
agement for electric vehicles. Existing studies focus primarily
on cell battery SOC estimation. However, numerical instability
and divergence problems might occur for a large-size lithium-ion
battery pack consisting of many cells. This paper proposes a high-
performance online model identification and SOC estimation
method based on an adaptive square root unscented Kalman
filter (ASRUKF) and an improved forgetting factor recursive
least squares (IFFRLS) for vehicle-level traction battery packs.
The model parameters are identified online through the IFFRLS,
where the conventional method might encounter numerical sta-
bility problems. By updating the square root of the covariance
matrix, the divergence problem in the traditional unscented
Kalman filter is solved in the ASRUKF algorithm, where the
positive semi-definiteness of the covariance matrix is guaranteed.
Combined with the adaptive noise covariance matched filtering
algorithm and real-time compensation of system error, the
proposed method solves the problem of ever-degrading estimation
accuracy in the presence of time-varying noise with unknown
statistical characteristics. Using a 66.2-kWh vehicle battery pack,
we experimentally verified that the proposed algorithm could
achieve high estimation accuracy with guaranteed numerical
stability. The maximum error of SOC estimation can be bounded
by 1%, and the root-mean-square error is as low as 0.47% under
real-world vehicle operating conditions.

Index Terms—State of charge, Equivalent circuit model, Adap-
tive square root unscented Kalman filter, Forgetting factor
recursive least squares

I. INTRODUCTION

HE global automotive industry is rapidly transitioning
towards cleaner and more efficient electric vehicles (EVs)
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[1]. Traction lithium-ion batteries have become a significant
research and application area in the field of new energy
vehicles due to their high specific energy, small size, and
good recyclability. However, the level of the available energy
stored in the battery cannot be measured directly. It can only
be estimated based on limited external measurements such
as voltage, current, and surface temperature. Due to lithium-
ion batteries’ high-dimensional and nonlinear characteristics,
accurate state of charge (SOC) estimation needs to be revised.
It is considered one of the main problems limiting EV de-
velopment. Therefore, developing a battery SOC estimation
algorithm with high accuracy and strong robustness for real-
time operation is challenging and highly rewarding. [2], [3].
Proper modeling and accurate parameter estimation are
essential to ensure traction batteries’ efficient and reliable
operation. The existing battery models mainly include the
electrochemical model [4], [5], the equivalent circuit model
(ECM) [6], and the data-driven model [7]. Many scholars
have analyzed the characteristics of these three types of
models. Although the electrochemical models are promising
for future advanced battery management, they are complex
and computationally intensive and not feasible for low-cost
applications at the current stage [8]. Data-driven methods
require a large amount of experimental data to train the model
if acceptable prediction accuracy needs to be achieved [9].
To characterize the external properties of traction batteries,
the ECM uses circuit elements such as resistors, capacitors,
and voltage sources to form a circuit network. The ECMs are
preferred by most industrial applications owing to their simple
parameter identification, low computational burden, high real-
time performance, and precision [10]. ECMs include the Rint
model, the RC model, the Thevenin model, the PNGV model,
and fractional-order models [11]. Among them, the first-order
RC ECM is mainly adopted in the literature because of its low
algorithm complexity and simple hardware implementation.
Parameter identification can be divided into offline and
online techniques. Offline methods are to find a mapping
from measurements to parameters, which can be obtained
by using standard testing profiles (e.g., hybrid pulse power
characteristics test [12]) or electrochemical impedance spec-
troscopy [13]. However, since battery parameters are affected
by many factors, for instance, SOC, temperature, current
rate, current frequency, and aging, obtaining a comprehensive
relationship describing the parameter relationship requires
excessive test time. In contrast, online methods use real-
time measurements to update battery model parameters. The
leading online algorithms include particle swarm optimization
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(PSO) [14], Kalman filter (KF) [15], and recursive least
squares (RLS) [16]. The RLS is widely used for parameter
identification, where the measurement data at the current time
instant is used to modify the parameters computed at the
previous time instant. Therefore, the RLS has the advantages
of simple operation and low computation and is suitable for
the online process [17]. However, due to the accumulation
of information from historical data, the recursive results of
the standard RLS cannot focus on the features in new data.
Therefore, the forgetting factor RLS (FFRLS) was proposed
in [18]. The impacts of historical and contemporary data can
be adequately balanced by introducing the forgetting element.
The standard RLS and FFRLS are designed under relatively
short-time, Gaussian data. In [19], an adaptive FFRLS was
proposed to address long historical data with non-Gaussian
white noise by introducing an adaptive forgetting factor and
an augmented method. It should be noted that the above-
mentioned online parameter identification algorithms require
exact information on the initial state and covariance of the
battery model to maintain sufficient numerical stability and
accuracy. Furthermore, numerical stability and convergence
are usually shown to be guaranteed under mildly frequent
variations in the current excitation, which is less experienced
in a modern EV system.

Indeed, assuming a suitable battery model and accurate
parameters are available, many battery state estimation meth-
ods have shown their effectiveness under certain conditions.
For example, there are plenty of SOC estimation methods
proposed in the literature, including the Coulomb counting
method, the open-circuit voltage (OCV) method, data-driven
methods, and model-based methods. The Coulomb counting
method is a simple open-loop method, but it can cause SOC
cumulative error owing to inaccurate initial SOC or the current
measurement error [20]. In the OCV method, the relationship
between OCV and SOC can be obtained with a fixed discharge
rate, from which the corresponding SOC for a given OCV
can be found. A programmable logic controller combining
the Coulomb counting method and the OCV was proposed
to manage lithium-ion batteries accurately in [21]. However,
this method is susceptible to cell inconsistency, temperature
variation, and aging [22], thus unsuitable for high-performance
EV applications.

The rapid development of big data technologies has
spawned many data-driven machine learning algorithms for
battery SOC estimation in recent years [23]. This method
describes the nonlinear relationship of battery variables with
general mathematical models without the need to understand
complex electrochemical mechanisms. Therefore, it has the
advantages of high prediction accuracy, good numerical sta-
bility, and high adaptability. At present, the data-driven SOC
estimation methods are mainly designed based on the long
short-term memory neural network [24], deep neural network
[25], Gaussian process regression [26], support vector machine
[27], and so on. However, enough data storage space and
complex and time-consuming calculations limit its promotion
and application on battery management systems (BMSs).

The model-based method with a closed-loop feedback struc-
ture has the advantages of high estimation accuracy, low

computational requirements, and easy implementation. Model-
based methods include KF, sliding mode observer [28], [29],
H-infinity filter [30], and other non-linear observers. The
classical KF algorithm can accurately estimate the system state
of a linear system by filtering out the interference of system
errors and reducing the influence of measurement errors,
where the errors are assumed to be Gaussian distributed.
Since a battery system is nonlinear with a complex and ever-
changing operating environment, researchers have proposed
many improved KF algorithms to improve the state estimation
accuracy [31]. For example, the extended KF (EKF) is superior
to the Coulomb counting method in terms of accuracy and
robustness [20]. However, the accuracy of the EKF is limited
for a highly nonlinear system because it uses the Taylor series
expansion to transform the nonlinear system into a linear
system.

Furthermore, calculation of the Jacobian matrix is compli-
cated and computational inefficient. Hence, various alterna-
tives have been proposed, such as the central difference KF
(CDKF) [32], cubature KF (CKF) [33], square root cuba-
ture KF (SRCKF) [34], unscented KF (UKF) [35], ensemble
Kalman filter (EnKF) [36], etc. The UKF introduces the
concept of unscented transformation (UT) that propagates a
series of sigma points to calculate the state and the error
covariance matrix, which track the statistics of a random
variable when imported into a nonlinear function linearization
process [37]. Although it solves the problem in the EKF
caused by the linearization process, the UKF requires the
state variables’ covariance matrix to be positive and definite.
Otherwise, the filtering algorithm may not converge. This
positive definiteness is not guaranteed in the UKF, leading to
possible numerical problems. The square-root UKF (SRUKF)
uses the square root of the state variable covariance matrix
to replace the covariance in the UKF, and it avoids the filter
divergence problem caused by the non-positive definiteness of
the covariance matrix [38]. However, in the above algorithms,
the system and measurement noise covariance matrices are
usually assumed to be constant. The inaccurate noise statistical
information can also lead to filter divergence. Therefore, the
Sage-Husa adaptive filtering uses the innovation and residual
sequence between the measured and the predicted values to
revise the estimated system noise covariance. The estimation
divergence caused by inaccurate noise can be avoided [39].

Currently, the FFRLS and KF-based algorithms have been
widely used in the SOC estimation of traction batteries, and
the algorithm has good accuracy through the cell test. How-
ever, we find that many standard algorithms have problems
in practical applications, mainly because of the following
reasons. First, the actual operating conditions of the BMS
are more complex, and the acquisition conditions are more
severe. Therefore, it is prone to abnormal identification of
model parameters, such as negative resistance and imaginary
number. Second, the ECM is always preferred for practical
systems. Still, it is oversimplified for describing the complex
dynamic behavior of a large battery pack that consists of many
cells, which can directly cause the divergence of the KF and
RLS algorithms. Furthermore, the convergence speed and esti-
mation accuracy of the KF algorithm is significantly affected
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by the algorithm’s parameters, such as the error covariance
matrix, process noise covariance matrix, measurement noise
covariance matrix, and their initial values. At the same time,
their tuning is usually based on unreliable initial trial and error.
We will discuss these problems in the latter sections.

This work establishes a vehicle-level battery SOC estima-
tion framework that consists of adaptive SRUKF and im-
proved FFRLS (IFFRLS-ASRUKEF), static calibration strat-
egy, full-charge calibration strategy, and operating condition
discrimination modules to overcome the shortcomings of the
studies mentioned above. Furthermore, this SOC estimation
framework mitigates the impact of uncertain initialization
parameters, such as the initial SOC, process noise covariance,
and measurement noise covariance, on the estimation accu-
racy, leading to enhanced numerical stability and convergence
speed. The main novelties and contributions of this work
include the followings.

First, we propose an improved FFRLS algorithm where an
adaptive forgetting factor and a sliding time window with
a fuzzy threshold are integrated, denoted by IFFRLS. The
IFFRLS solves the problem caused by abnormal parame-
ters estimate during online identification using conventional
FFRLS. It also improves the algorithmic accuracy and stability
for real-time operation.

Second, two online calibration strategies are proposed for
practical operation. The static calibration strategy is mainly
aimed at the initial SOC calibration when the battery is pow-
ered on, and the full-charge calibration strategy is primarily
aimed at the charging. These calibration strategies not only
improve the convergence speed and accuracy of the algorithm
but also optimize the negative impact of incorrect initial
parameters on the accuracy of the algorithm.

Third, we notice that low-rate constant current discharge
conditions during practical vehicle operation could easily
lead to a drift in online parameter identification, causing an
increased error when an RLS-based algorithm is adopted. A
working condition discrimination module for such complex
operating conditions is therefore established by switching
between the Coulomb counting method and the proposed
IFFRLS—-ASRUKEF algorithm.

II. ONLINE PARAMETER IDENTIFICATION

A. Battery Pack Model

The ECM is a circuit network composed of resistance,
capacitance, constant voltage source and other circuit com-
ponents to describe the external characteristics of the battery.
The schematic of the ECM of n-order RC is shown in Fig. 1.
Where U,. is the OCV which has a nonlinear relationship
with temperature and SOC. Ry and R,, are the ohmic and
the electrochemical polarization resistances, respectively. C,,
is the electrochemical capacitance. I is the operating current,
defined as positive during discharge. U; is the terminal voltage
of the battery. U,, represents the polarization voltage. Where
n = 0 is the Rint model, n = 1 is the first-order RC equivalent
circuit model, and n = 2 is the second-order RC equivalent
circuit model.
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Fig. 1. ECM of n-order RC.

In order to balance the complexity and accuracy of the
model, the number of RC parallel needs to be selected accord-
ing to the actual situation. The Rint model cannot accurately
predict the characteristics of the battery under dynamic oper-
ating conditions. The calculation accuracy may increase with
the increase of the number of RC parallel structures, but at the
expense of higher model complexity and computational load.
In this work, a first-order RC model of the battery is adopted
because of its simplicity and easy implementation, i.e. [40],

{ Up=—eimUi+ &1 o
Ut = Uoc - Ul *IRO

Next, the SOC of the battery is defined as the ratio of the
remaining available capacity to the present true capacity C' of
the battery [41], and it can be modeled using the Coulomb
counting:

S~ ol
{ SOC——% 2

C =SOH x Cy

where 7 is the Coulombic efficiency, SOH is state of health,
Cy is nominal capacity.

After discretizing the model with a sampling time of At,
(1) and (2) can be expressed in the discrete-time domain as

[42],
Ut k1 _ [ exp(—&L) 0 o Uik
SOCk11 - 0 1 SOC,
Ri(1— __At
+( _177(£ eXP( ClRl)) )Ik
C
€))
Ui = Usep — Ui — Ik Ro 4

B. Improved FFRLS

In (3) and (4), the parameters Ry, Ry, and C can change
with temperature, current, SOC, and battery aging. Offline
parameterization might require extensive experimental studies
and result in high-dimensional look-up tables. Instead, we use
online identification based on the FFRLS with the sliding time
window to update these parameters in real-time.

First, we apply the Laplace transform to (1), yielding

Ry

UOC(S) — Ut(S) = I(S)(Ro + m

) (&)
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Thus, the system transfer function is expressed as,

Uoc(s) - Ut(s) . Ro+ R1 + RoR1C1s
I(S) B 1+ RCys
The bilinear transformation is used here to convert (6) frg{n

the s plane to the z plane. Specifically, letting s = =7 {72=7,
(6) becomes

G(s) =

(6)

1

-1 as +azz™
G(z ) = T 1 (7)
1+a1z
where
a1 = At—2R,Cy
1 = At+2R,.C,
as = RoAt+R1At+2ROR101) (8)

At+2R1Cy
RoAt+R1At—2Ro Ry Cl)
At+2R.1Cy

az =

Further, the discretized form of (4) can be obtained by
applying the inverse z-transformation of (7), i.e.,

Yi = OkOk + erLs i )
where

Y = Uock — U
Ok = [Yk—1, I, Tjp—1]
0x = la1,az,a3]"

(10)

According to the FFRLS, the battery model parameter can
be identified by [43]:

Ky, ZAPk—1¢;;F(>\k71 + ¢kAPk71¢g)71
Ok = Ok —1 + Ki(yr — Orbk—1)
Py = (Pr—1 — KyopPri—1)/Ai—1

where K is the gain vector, ék stands for the estimated
parameter, and P, ) indicates the covariance matrix. Fur-
thermore, A € [0.95, 1.0] shows the forgetting factor constant
[44]. However, a constant forgetting factor cannot balance the
stability and fast convergence of the algorithm. Therefore, to
improve the performance of the FFRLS, an adaptive formula
is introduced to change A with the voltage prediction error
adaptively.

er = round(((yx — d)kékfl)/ebase)Q)
)\k: - )\min - (1 - Amin)hsk

(1)

12)

where epgse is the benchmark error, round(n) denotes the
integer closest to n, and Ay, is the minimum value set in
the value range. Furthermore, h € [0,1] is the sensitivity
coefficient, which represents the sensitivity of the adaptive
change effect of A on the prediction error.

According to (8), the model parameters Ry, R1, and C; can
be calculated by
az—ay
1+aq

o At(a11—1)2
O = Tay-anan)

F
I

(13)

Note that in (13), the standard FFRLS requires a reasonable
guess of initial ék and Pr,j, denoted by éo and Pr, o,
respectively. These initial values might require reliable prior
knowledge of battery characteristics. In practice, many trial-
and-error tests are needed for vehicle-level battery packs,
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Fig. 2. Parameter identification results of FFRLS and IFFRLS under DST
condition.

and the results are difficult to be transferred to a different
battery pack design. Furthermore, provided incorrect initial
parameters and covariance are selected, the standard FFRLS
might lead to numerical problems, e.g., slow convergence and
even divergence.

Therefore, an improved and simple-to-implement FFRLS
algorithm with a sliding window (IFFRLS) is proposed. Taking
the identified ohmic resistance as an example, the identification
methods of the electrochemical polarization resistance and the
electrochemical polarization capacitance are the same, and the
way is given as follows,

R { Ro
0.k = 1 —Fk
 Diehma1 R0,

where R _jimi: 1s the fuzzy threshold obtained by trial and
error, Ry; is the ohmic resistance identified through the
FFRLS, and m is the horizon of the sliding window.

The parameter identification results by comparing the
IFFRLS with the FFRLS are shown in Fig. 2. The battery data
comes from battery cell experiment as described in Section
IV-A. It can be seen that parameters identified by the FFRLS
can become negative and/or present abnormally high magni-
tude, which loses the physical meaning and lead to degraded
prediction accuracy, and eventually divergence. Moreover, the
parameter identification process based on the IFFRLS is stable
after 60 time steps. In contrast, for the FFRLS, the process
shows a high level of fluctuation. The results show that the
IFFRLS converges faster than the FFRLS, and it ensures the
parameters vary within reasonable ranges. This improves the
dynamic performance as well as the numerical stability of the
system.

Ror < Ro_timit

14
Ro k> Ro_timit (14

III. A FRAMEWORK OF BATTERY PACK SOC ESTIMATION
A. Adaptive Square Root Unscented Kalman Filter

This section proposes an adaptive square root unscented
Kalman filter (ASRUKF). The ASRUKF mainly includes
initialization, acquisition of sigma points, time update, QR
decomposition, measurement, calculation of Kalman gain,
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noise update, and other steps. It can ensure the semi-positive
definiteness of the covariance matrix, prevent divergence
during filtering, and enhance the algorithm’s stability [45].
The adaptive covariance matching filtering algorithm can
efficiently consider noise characteristics and improve the anti-
interference ability of the algorithm. The basic steps of the
ASRUKEF are given in Table I, where the battery pack (3)
and (4) is represented as a nonlinear stochastic discrete-time
system [46]:

{ g = f(@p—1,Uk—1) + Wk—1 (15)

2 = h(xk,uk) —+ Vg

Here, = [U;,SOC]T is the state vector, u = I is the
single input, and z = Uy is the single measurable output. f
and h are two functions for the state and output equations,
respectively. Furthermore, w and v are zero-mean Gaussian
white noises, and the corresponding covariance metrics are ()
and R, respectively.

Compared to the standard SRUKF with predefined and fixed
error covariance matrices, a simple adaptive noise covariance
matching filtering algorithm is introduced. The covariance of
the system process error and the measurement error are up-
dated online based on newly measured and estimated voltage
sequences. It replaces the constant noise equation with the
time-varying noise covariance closer to the actual operating
state of the traction battery, thereby further improving the
estimation accuracy. The adaptive noise covariance matching
filter updates @ and Ry as follows [48]:

€k = 2k — Zk|k—1
!
1 T
Ch=17 Y e
i=k—i+1
_ T
Qr = KyCr K,
2n

R, = Ck + Z wé(z,i‘k_l _
=1

(16)
. T
¥
2k) (21 — 2k)
where e; is the observation residual, C} is the residual
observation covariance, and [ is a receding horizon.

B. Static Calibration Strategy

The static calibration strategy is triggered shortly after the
battery is powered on. The specific trigger conditions include
no abnormality in current, voltage and probe temperature
acquisition, and the current is less than 0.01C, power on time
is less than 30 seconds and no full charge calibration sign bit
when the battery is powered down. If the static calibration
conditions are met, the OCV correction method can be used
for calibration according to the dormancy time. Furthermore,
the OCV correction method can update the initial SOC through
the OCV-SOC-Temp relationship. If the dormancy time is less
than two hours, the OCV correction method and the Coulomb
counting method will be used to correct the initial SOC, and
the way is given in (17). Therefore, the specific algorithm logic
for the static correction policy is shown in Fig. 3(a).

SOCy = f(Temp, V), Time > 2h
S0Cy = e f(Temp, V) + (1 — Tine)

7)

TABLE I
BAsIC STEPS OF THE ASRUKF.

Step 1 Initialization: the state estimate Zo, the state estimation
error covariance Py and the matrices Q and R.

i‘o = E(.CL‘())
So = chol(P)
Q=0Qo

R =Ry

where, Sy is Cholesky factor of Py.
Step 2 Acquisition of the Sigma sampling points, the mean
weight wy, and the variance weight w. [39].

232_1 = ‘f?kfl,i =0

x2,1:£k71+( (n—}—)\)Pk,l)i,i:l,...,n

zh o =2k — (VI F NP i=n+1,...,2n
W0 — A
o _ s 2
we =735 T (1+a" +5)
Wy = Wy = 2(n+k),z—1 ,2n
Step 3 State variable time update.
Thpp—1 = f(@hqjp—1, Uk—1) + Wr—1,1=10,...,2n

2n
Tplk—1 = Z memk 1

17

S;,k = qT{[l;Il \/ﬁ(x;dkfl = Zgk—1 VQi—1 ]T}

Sy, = cholupdate{S_ ,, 1’2|k_1 — Bpjp—1, W0 }
where gr(-) is the QR decomposition and cholupdate(-) is the
rank 1 update of the Cholesky decomposition.
Step 4 Observation updating [47].

Ek—1= [Trjp—1, Tujp—1 + VN + ASe ky Trjp—1 — VN + ASu i

Zhik—1 = h(&r—1,uk)
an

Zhk-1 = 2 Wi Zkjk—1
=

z ok = qr{[H Vwi( Zk\k 1= Zkjk-1) VERk-1 }T}

Sek = cholupdate{Sz k,zklk L= Zke—1, w0}
Step 5 Calculate the joint covariance matrix of the state variable

P, 1 and the output variable at the moment k.
2n

P:cz,k = Z w
i=0

Step 6 Calculate the Kalman gain K.

Kk = (Pozi/S2 1)/ Sk

Step 7 Update the Cholesky factor for the estimated value and

the optimal covariance.

{ Ty = Tpp—1 + Ki(zx — Zgjp—1)

1 i 2 i S T
Z(xz\k—l - l’k|k71)(zi\k_1 — Zklk—1)

Sk = cholupdate{ Sz k, KrSzx,—1}
Step 8 Noise estimation. See Eq.(16).

where SOC) is the corrected initial SOC, f(Temp,V) is
the OCV-SOC-Temp relationship function, SOCy;, is the
calculated SOC by the Coulomb counting method.

C. Full-charge Calibration Strategy

The inconsistency of the traction battery cells is unavoid-
able. During the charging process, the estimated SOC of
the maximum voltage cell is equivalent to the power battery
SOC, which can effectively avoid overcharging and reflect
the accurate SOC of the traction battery pack. The full-
charge correction conditions for the traction battery are: 1)
The maximum cell voltage reaches the limited charge voltage,

SOC zp, otherwisand the terminal current is less than 0.23C under the fast

charging mode or 0.06C under the slow charging mode for
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20 s. 2) The total voltage reaches the limited charge voltage
for 10 s. Then, the SOC is corrected to 100% when getting
the complete charge condition. The algorithm logic of the full-
charge calibration policy is shown in Fig. 3(b).

D. Operating Condition Discrimination Module

The operating conditions of traction battery packs are very
complex. It can be roughly divided into low current constant
current condition, dynamic low current condition, high con-
stant current condition, and dynamic high current condition,
taking charge and discharge current as the distinguishing mark.
Through the verification of the test data, the low constant
current discharge and charge condition can easily lead to
the online parameter identification drift, which will inevitably
degrade the accuracy of the designed model-based SOC esti-
mator. Therefore, this paper proposes to establish a working
condition discrimination module. First, a time window (e.g.,
10 s) is set. If the sample mean (SM) and root mean square
error (RMSE) are both lower than the threshold value, SM
and RMSE values can be expressed in (18), and the window
is judged as a minor current constant current condition. Then,
under low current and constant current conditions, the SOC
is estimated directly by the Coulomb counting method. Oth-
erwise, the IFFRLS-ASRUKF algorithm is used. Therefore,
when the sign bitis 0, 1, 2 and 3, the static correction, the Full-
charge calibration, the Coulomb counting, and the IFFRLS is
used, respectively. It can improve the SOC estimation accuracy
and ensure algorithm stability. The principle of the operating
condition discrimination module is shown in Fig. 3(c).

k
SM = % Zj:kflJrl Ly
RMSE = \/% Z?:k—l-&-l (z; — SM)2

where [ is the time window length, x; is the current in the
time window.

The battery data used are from the condition identification
module in Section IV-B, and are identified at a low-rate
constant current condition within the period from 6198.9 s to
8851.0 s. As can be seen from Fig. 4, this operating condition
is prone to diverge under the FFRLS, leading to algorithm
termination. With the IFFRLS, the identified resistance can
be limited to a reasonable range, but it changes dynamically
and tends to reach a constant value. This indicates that the
IFFRLS can correct the outliers but fails to restore the normal
identification results. It will lead to the reduction of the
estimation accuracy of the terminal voltage and SOC. An
algorithm error occurs. Therefore, in this operating condition,
we propose to use the Coulomb counting method to estimate
SOC to ensure the accuracy and numerical stability of the
algorithm.

(18)

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS

The overall framework of the proposed algorithms is sum-
marized as shown in Fig. 5. In the light of Section II and
Section III, the first-order RC model, IFFRLS, ASRUKEF, the
static calibration module, the full-charge calibration module,
and the operating condition discrimination module were built
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Fig. 3. Algorithm’s logic flow charts. (a) Static correction strategy. (b) Full-
charge calibration strategy. (c) Operating condition discrimination module.
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Fig. 4. Parameter identification results under a low-rate constant current
condition based on (a) FFRLS and (b) IFFRLS.

and simulated in MATLAB. The battery OCV has a strong
nonlinear relationship with the temperature and SOC of the
traction battery. Thus it must be accurately reflected during
the online operation of the ASRUKF. A 3D look-up table that
describes the OCV-SOC-T relationship is established through
the linear fitting. The input variables are the measured battery
current, voltage, temperature, relay signal, and charge and
discharge commands. The output variables are the estimated
SOC, the estimated voltage, and the estimated model param-
eters. The horizon of the sliding window in the IFFRLS is
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Fig. 5. Algorithmic framework for the proposed SOC estimation method for vehicle-level battery.

selected as m = 60 via trial and error.

A. Battery Cell Experiment

A platform was established to verify the proposed method
based on a series of battery cell characteristic tests and
cycle test experiments, as shown in Fig. 6. The experimental
battery cell was LiNi,Co,Mn,O (NCM) battery pack with
a nominal capacity of 66.2-kWh. The test equipment was
Chroma 69212 charge and discharge test cabinets, which
could perform pulse charge and discharge tests, constant
current charge and discharge tests, constant voltage charge-
discharge tests, complex cycle condition tests, etc. The data
were recorded, including voltage, current, charge-discharge
capacity, temperature, and other data during the tests. The
sampled rate was 100 ms. The SANWOOD’s high and low-
temperature experimental box provided a stable temperature
environment.

The dynamic stress test (DST) condition is a standard
operating condition for simulating EV urban driving according
to USABC Electric Vehicle Battery Test Procedures Manual
[49] and it was used to verify the accuracy of the algorithm.
The identification results of the battery cell model parameters
are shown in Fig. 7. It can be seen that the model parameters
have been oscillated and revised as time increased, but they
remain within a reasonable range. The errors of the model
terminal voltage are shown in Fig. 8. The error between
the model-predicted terminal voltage and the actual measured
terminal voltage is less than 0.015 V, which has an accurate
terminal voltage prediction accuracy.

The SOC estimation results under the DST condition with
accurate/inaccurate initial SOC values are shown in Fig. 9. For
comparison, we use the same online parameter identification

method with different SOC estimation filtering algorithms of
Adaptive EKF (AEKF) [19] and Adaptive UKF (AUKF) [50],
and the corresponding algorithms are denoted by IFFRLS-
AEKF and IFFRL-SAUKEF, respectively. With accurate initial
SOC value, Figs. 9(a) and (b) show the estimation SOC and
error. The maximum error, mean absolute error (MAE), and
RMSE for the three algorithms are shown in Table II. It
can be seen that the maximum error, MAE, and RMSE of
the IFFRLS-ASRUKF are only 0.23%, 0.14%, and 0.15%,
respectively, which are better than the other two algorithms.
With inaccurate initial SOC value, Figs. 9(c) and (d) show the
estimation SOC and error. The MAE, RMSE and convergence
time for the three algorithms are also shown in Table II. The
MAE, RMSE, and convergence time of the IFFRLS-ASRUKF
are 0.30%, 0.30%, and 11.2 s, respectively. The convergence
time of the IFFRLS-ASRUKEF is slightly higher than that of
the IFFRLS-AEKF, but the MAE and RMSE of the IFFRLS-
ASRUKEF algorithm are better than the other two algorithms.
Therefore, the IFFRLS-ASRUKEF has high estimation accuracy
and a fast convergence rate.

TABLE 11
PERFORMANCE COMPARISON OF IFFRLS-BASED ADAPTIVE SOC
ESTIMATION METHODS UNDER DST CONDITION WITH KNOWN/UNKNOWN
INITIAL SOC

Method Init. SOC  Max. Err.  MAE RMSE  Conv. Time
ASRUKF  Known 0.23% 0.14%  0.15% -

AEKF Known 1.71% 040% 046% -

AUKF Known 0.32% 0.22% 0.22% -
ASRUKF  Unknown - 0.30%  0.30% 11.2's
AEKF Unknown  — 0.63%  0.68% 138 s
AUKF Unknown  — 0.60% 0.61% 183 s

Initialization parameters significantly influence the accuracy
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and convergence speed of model estimation. For example,
with the accuracy and inaccuracy initial SOC, the same
initial process noise covariance (), and measurement noise
covariance Ry value, the estimation accuracy can not achieve
the expected effect, as shown in Fig. 10. With the same
Qo = diag([0.0001,0.0001]), Ry = 0.1, if the initial SOC
is inaccurate, the accuracy of the model prediction method
is very low. In the BMS, manually adjusting the initial
parameters to deal with the inaccuracy in the initial SOC is
impractical. Therefore, we propose a static and full calibration
strategy to calibrate SOC value quickly and avoid the impact
of incorrect initial parameters on SOC estimation.

B. Vehicle-level Battery Pack Experiment

For the problems mentioned above, a set of SOC estimation
frameworks, including the IFFRLS-ASRUKEF, static calibra-
tion strategy, full-charge calibration strategy, and operating
condition discrimination module for the vehicle-level battery
pack, is proposed to solve the impact of initial parameters on
the estimation accuracy. In addition, a specific traction battery
pack of an EV was selected as the experimental object to verify
the state estimation effect of the algorithms for the vehicle-
level battery pack. The basic parameters of the vehicle-level
battery pack are shown in Table III.

TABLE III
SPECIFICATION OF THE BATTERY PACK

Parameter Value Unit
Cell type NCM -
Pack nominal capacity 177 Ah
Cell nominal voltage (1C) 3.66 v
Pack grouping method 3P104S -
Pack nominal power (1C) 66.231 kWh
Charge termination voltage 4350 mV
Discharge termination voltage 2800 mV
Pack total voltage upper limit ~ 450.84 A%
Pack total voltage lower limit ~ 219.20 \Y%

The Kvaser device of Weber Electronics Co., Ltd. was
adopted for actual vehicle data acquisition. It had high time
stamp accuracy and efficiently processed the reception and
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DST condition. (a) Estimated and measured voltages. (b) Voltage error.

transmission of standard and extended CAN messages. The
data collection interval was 100 ms. The collected data in-
cluded the vehicle speed, the bus current, the bus voltage, the
temperature of each probe, the cell voltage, the charge and
discharge signals, the high-voltage relay signals, etc.

Real-world EV operating data of one week, including six
charge-discharge cycles, were used for evaluating the algo-
rithm. The battery current, terminal voltage, temperature, and
vehicle speed are shown in Fig. 11. Since the vehicle operating
conditions are complex and random, the current of the traction
battery changes drastically.

The identified vehicle-level battery pack model parameters
are shown in Fig. 12(a). The vehicle-level battery pack model
parameters are continuously revised during the identification
process. Only when the sign bit is 2, the battery parameters
are identified and updated online. In other sign bits, the
parameters identified from the previous step will be adopted
and thus the online update is not needed. It can be found that
there are sudden abnormal increases or decreases in battery
parameter data in Fig. 12(a). Fig. 12(b) shows that the time
point corresponds to the static correction condition. This is
because the initial battery temperature is very low. When the
battery is powered on, the temperature gradually rises and is
regulated within a designed high-temperature operating range
with the assistance of thermal management. The tempera-
ture will affect many model parameters, such as the battery
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Fig. 10. Comparison of SOC estimation results with accurate/inaccurate initial
SOC. (a) SOC estimation result. (b) SOC estimation error.

capacity in the state equation, the OCV in the observation
equation, as well as circuit parameters. Since the initial battery
parameters were identified and stored in the previous running
process where the temperature might be very different from
the present, the accuracy of the model can be significantly
reduced. Therefore, the parameter correction is prominent
at this time. According to the predicted voltage error, the
correct model parameters will be quickly calculated through
continuous iteration. The working condition discrimination
values are shown in Fig. 12(b). The working conditions that are
difficult to identify can be accurately determined, improving
the algorithm’s convergence. For example, 1 is the time of the
Coulomb counting, 2 is the time of the IFFRLS-ASRUKEF, and
0 is the time of the static correction strategy.

The SOC estimation results of the vehicle-level battery pack
are shown in Fig. 13 and the performance is summarized
in Table IV. The algorithms under comparison are IFFRLS-
AEKEF and IFFRLS-AUKEF, in which the AEKF and AUKF are
used to replace the ASRUKF when SOC estimation. Due to the
initial SOC’s inaccuracy, the early SOC’s error is significant
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for the IFFRLS-AEKF. With the continuous iteration of the
algorithm, the maximum error of the corrected SOC for the
IFFRLS-ASRUKF algorithm is 2.15%. And with constant
correction and iteration, the maximum error is within 1%.
The MAE and RMSE of the IFFRLS-ASRUKF are 0.22%
and 0.47%, respectively. The maximum error of the SOC
estimation of the IFFRLS-AEKF algorithm is within 3.74%,
and the MAE and RMSE are 0.58% and 0.88%, respectively.
The maximum error of the SOC estimation of the IFFRLS-
AUKEF algorithm is within 4.92%, and the MAE and RMSE are
0.42% and 0.79%, respectively. Compared with the IFFRLS-
AEKF and the IFFRLS-AUKEF, the IFFRLS-ASRUKEF signif-
icantly improves the estimation accuracy, fitting speed, and
SOC stability. And when the initial SOC is inaccurate, the
convergence rate is well, and the calibration strategy solves the
influence of the initial parameters on the estimation accuracy.
The experimental results of the improved IFFRLS-ASRUKF
show that the SOC estimation accuracy is high, which meets
the practical requirements of the vehicle-level battery pack.
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TABLE IV
PERFORMANCE COMPARISON OF IFFRLS-BASED ADAPTIVE SOC
ESTIMATION METHODS UNDER REAL-WORLD OPERATING CONDITIONS.

Method Max. Err.  MAE RMSE
ASRUKF  2.15% 0.22%  0.47%
AEKF 3.74% 0.58%  0.88%
AUKF 4.92% 0.42%  0.79%

V. CONCLUSIONS

This paper proposes a model-based battery pack SOC
estimation framework to solve the numerical problems in
conventional BMS. The main conclusions are as follows.

1) The first-order RC ECM model parameters are identified
online by combining the time window with FFRLS. An
adaptive algorithm is proposed to adapt the forgetting factor
with the voltage prediction error. In addition, the sliding time
window avoids abnormal data caused by inaccurate parameter
identification and improves the algorithm’s stability.

2) A strategy is proposed that includes full charge correc-
tion, static calibration, and operating state discrimination. With
the calibration strategy, the influence of the initial parameters
on the estimation accuracy is mitigated. As a result, it improves
the estimation accuracy and stability of the whole estimation
algorithm.

3) The improved IFFRLS-ASRUKF algorithm is verified
under cell tests and real-world driving conditions with a large-
size battery pack. This algorithm’s maximum SOC error and
RMSE can be controlled within 1% and 0.47%, respectively.
The results meet the practical requirements of vehicle-level
SOC estimation for EVs.

The SOC estimation and cell screening strategy adopted in
this paper cannot fully represent the performance of the battery
pack under the premise of ensuring the safety of the battery

pack, and there will be a certain loss of accuracy. In future
research, the estimation accuracy of battery pack SOC should
be further improved by establishing more accurate battery
modeling with the consideration of dynamics related to cell
inconsistency, aging, and safety. In addition, it is necessary to
explore accurate SOC estimation algorithms for battery packs
over the entire life cycle and under all possible operating
conditions, such as full temperature ranges.

ACKNOWLEDGMENTS

The authors would like to thank Changfu Zou from
Chalmers University of Technology for useful discussions and
proofreading of the manuscript.

REFERENCES

[1] H. Wang, H. Liu, J. Yao, D. Ye, Z. Lang, and A. Glowacz, “Mapping the
knowledge domains of new energy vehicle safety: Informetrics analysis-
based studies,” J. Energy Storage, vol. 35, p. 102275, 2021.

[2] M. Hossain Lipu, M. Hannan, A. Hussain, A. Ayob, M. H. Saad,
T. F. Karim, and D. N. How, “Data-driven state of charge estimation
of lithium-ion batteries: Algorithms, implementation factors, limitations
and future trends,” J. Cleaner Prod., vol. 277, p. 124110, 2020.

[3] X. Hu, H. Yuan, C. Zou, Z. Li, and L. Zhang, “Co-estimation of state of
charge and state of health for lithium-ion batteries based on fractional-
order calculus,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10319-10329, 2018.

[4] K. Liu, Y. Gao, C. Zhu, K. Li, M. Fei, C. Peng, X. Zhang, and Q.-L.
Han, “Electrochemical modeling and parameterization towards control-
oriented management of lithium-ion batteries,” Control Eng. Practice,
vol. 124, p. 105176, 2022.

[51 Y. Li, T. Wik, C. Xie, Y. Huang, B. Xiong, J. Tang, and C. Zou,
“Control-oriented modeling of all-solid-state batteries using physics-
based equivalent circuits,” IEEE Trans. Transport. Electrific., vol. 8,
no. 2, pp. 2080-2092, Aug. 2022.

[6] A. Mondal, A. Routray, and S. Puravankara, “Parameter identification
and co-estimation of state-of-charge of li-ion battery in real-time on
internet-of-things platform,” J. Energy Storage, vol. 51, p. 104370, 2022.

[7] X. Dang, L. Yan, K. Xu, X. Wu, H. Jiang, and H. Sun, “Open-circuit
voltage-based state of charge estimation of lithium-ion battery using dual
neural network fusion battery model,” Electrochim. Acta, vol. 188, pp.
356-366, 2016.

[8] Y. Li, D. Karunathilake, D. M. Vilathgamuwa, Y. Mishra, T. W. Farrell,
S. S. Choi, and C. Zou, “Model order reduction techniques for physics-
based lithium-ion battery management: A survey,” IEEE Ind. Electron.
Mag., vol. 16, no. 3, pp. 36-51, 2022.

[9] C. She, Y. Li, C. Zou, T. Wik, Z. Wang, and F. Sun, “Offline and online

blended machine learning for lithium-ion battery health state estimation,”

IEEE Trans. Transport. Electrific., vol. 8, no. 2, pp. 1604-1618, Aug.

2022.

A. V. Vykhodtsev, D. Jang, Q. Wang, W. Rosehart, and H. Zareipour,

“A review of modelling approaches to characterize lithium-ion battery

energy storage systems in techno-economic analyses of power systems,”

Renew. Sustain. Energy Rev., vol. 166, p. 112584, 2022.

J. Tian, R. Xiong, W. Shen, J. Wang, and R. Yang, “Online simultaneous

identification of parameters and order of a fractional order battery

model,” J. Cleaner Prod., vol. 247, p. 119147, 2020.

M.-K. Tran, M. Mathew, S. Janhunen, S. Panchal, K. Raahemifar,

R. Fraser, and M. Fowler, “A comprehensive equivalent circuit model for

lithium-ion batteries, incorporating the effects of state of health, state

of charge, and temperature on model parameters,” J. Energy Storage,

vol. 43, p. 103252, 2021.

K. Mc Carthy, H. Gullapalli, K. M. Ryan, and T. Kennedy, “Electro-

chemical impedance correlation analysis for the estimation of li-ion

battery state of charge, state of health and internal temperature,” J.

Energy Storage, vol. 50, p. 104608, 2022.

Z. Wang, G. Feng, X. Liu, F. Gu, and A. Ball, “A novel method of

parameter identification and state of charge estimation for lithium-ion

battery energy storage system,” J. Energy Storage, vol. 49, p. 104124,

2022.

[10]

(11]

[12]

[13]

[14]



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

J. Wu, C. Fang, Z. Jin, L. Zhang, and J. Xing, “A multi-scale fractional-
order dual unscented kalman filter based parameter and state of charge
joint estimation method of lithium-ion battery,” J. Energy Storage,
vol. 50, p. 104666, 2022.

M. Hossain, M. Haque, and M. Arif, “Kalman filtering techniques for
the online model parameters and state of charge estimation of the li-
ion batteries: A comparative analysis,” J. Energy Storage, vol. 51, p.
104174, 2022.

I. Jarrraya, L. Degaa, N. Rizoug, M. H. Chabchoub, and H. Trabelsi,
“Comparison study between hybrid nelder-mead particle swarm opti-
mization and open circuit voltage recursive least square for the battery
parameters estimation,” J. Energy Storage, vol. 50, p. 104424, 2022.
X. Lai, Y. Huang, H. Gu, X. Han, X. Feng, H. Dai, Y. Zheng, and
M. Ouyang, “Remaining discharge energy estimation for lithium-ion
batteries based on future load prediction considering temperature and
ageing effects,” Energy, vol. 238, p. 121754, 2022.

M. Wu, L. Qin, and G. Wu, “State of charge estimation of power lithium-
ion battery based on an affine iterative adaptive extended kalman filter,”
J. Energy Storage, vol. 51, p. 104472, 2022.

X. Lai, L. He, S. Wang, L. Zhou, Y. Zhang, T. Sun, and Y. Zheng, “Co-
estimation of state of charge and state of power for lithium-ion batteries
based on fractional variable-order model,” J. Cleaner Prod., vol. 255, p.
120203, 2020.

N. Mohammed and A. M. Saif, “Programmable logic controller based
lithium-ion battery management system for accurate state of charge
estimation,” Computers & Electrical Engineering, vol. 93, p. 107306,
2021.

C. Jiang, S. Wang, B. Wu, C. Fernandez, X. Xiong, and J. Coffie-Ken,
“A state-of-charge estimation method of the power lithium-ion battery
in complex conditions based on adaptive square root extended kalman
filter,” Energy, vol. 219, p. 119603, 2021.

T. Zahid, K. Xu, W. Li, C. Li, and H. Li, “State of charge estimation
for electric vehicle power battery using advanced machine learning
algorithm under diversified drive cycles,” Energy, vol. 162, pp. 871-
882, 2018.

S. Wang, P. Takyi-Aninakwa, S. Jin, C. Yu, C. Fernandez, and D.-
I. Stroe, “An improved feedforward-long short-term memory modeling
method for the whole-life-cycle state of charge prediction of lithium-ion
batteries considering current-voltage-temperature variation,” Energy, vol.
254, p. 124224, 2022.

C. Bian, S. Yang, and Q. Miao, “Cross-domain state-of-charge esti-
mation of li-ion batteries based on deep transfer neural network with
multiscale distribution adaptation,” IEEE Trans. Transport. Electrific.,
vol. 7, no. 3, pp. 1260-1270, 2021.

Z. Deng, X. Hu, X. Lin, Y. Che, L. Xu, and W. Guo, “Data-driven state
of charge estimation for lithium-ion battery packs based on gaussian
process regression,” Energy, vol. 205, p. 118000, 2020.

Q. Wang, M. Ye, M. Wei, G. Lian, and C. Wu, “Co-estimation of state
of charge and capacity for lithium-ion battery based on recurrent neural
network and support vector machine,” Energy Rep., vol. 7, pp. 7323—
7332, 2021.

I.-S. Kim, “The novel state of charge estimation method for lithium
battery using sliding mode observer,” Journal of Power Sources, vol.
163, no. 1, pp. 584-590, 2006.

C. Xu, E. Zhang, S. Yan, K. Jiang, K. Wang, Z. Wang, and S. Cheng,
“State of charge estimation for liquid metal battery based on an improved
sliding mode observer,” Journal of Energy Storage, vol. 45, p. 103701,
2022.

Z. Chen, J. Zhou, F. Zhou, and S. Xu, “State-of-charge estimation of
lithium-ion batteries based on improved h infinity filter algorithm and
its novel equalization method,” J. Cleaner Prod., vol. 290, p. 125180,
2021.

M. Hannan, M. Lipu, A. Hussain, and A. Mohamed, “A review of
lithium-ion battery state of charge estimation and management system in
electric vehicle applications: Challenges and recommendations,” Renew.
Sustain. Energy Rev., vol. 78, pp. 834-854, 2017.

J. Xie, J. Ma, and J. Chen, “Available power prediction limited by
multiple constraints for lifepo4 batteries based on central difference
kalman filter,” Int. J. Energy Res., vol. 42, no. 15, pp. 4730-4745, 2018.
V. Basetti, A. K. Chandel, and C. K. Shiva, “Square-root cubature
kalman filter based power system dynamic state estimation,” Sustain.
Energy Grids Netw., vol. 31, p. 100712, 2022.

X. Shu, G. Li, Y. Zhang, S. Shen, Z. Chen, and Y. Liu, “Stage
of charge estimation of lithium-ion battery packs based on improved
cubature kalman filter with long short-term memory model,” IEEE Trans.
Transport. Electrific., vol. 7, no. 3, pp. 1271-1284, 2021.

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

L. Ma, Y. Xu, H. Zhang, F. Yang, X. Wang, and C. Li, “Co-estimation
of state of charge and state of health for lithium-ion batteries based on
fractional-order model with multi-innovations unscented kalman filter
method,” J. Energy Storage, vol. 52, p. 104904, 2022.

Y. Li, B. Xiong, D. M. Vilathgamuwa, Z. Wei, C. Xie, and C. Zou,
“Constrained ensemble kalman filter for distributed electrochemical state
estimation of lithium-ion batteries,” IEEE Trans. Ind. Informat., vol. 17,
no. 1, pp. 240-250, Jan. 2021.

R. Zhu, B. Duan, J. Zhang, Q. Zhang, and C. Zhang, “Co-estimation
of model parameters and state-of-charge for lithium-ion batteries with
recursive restricted total least squares and unscented kalman filter,” Appl.
Energy, vol. 277, p. 115494, 2020.

L. Chen, X. Wu, A. M. Lopes, L. Yin, and P. Li, “Adaptive state-of-
charge estimation of lithium-ion batteries based on square-root unscented
kalman filter,” Energy, vol. 252, p. 123972, 2022.

Y. Li, C. Wang, and J. Gong, “A multi-model probability soc fusion
estimation approach using an improved adaptive unscented kalman filter
technique,” Energy, vol. 141, pp. 1402-1415, 2017.

C. Liu, M. Hu, G. Jin, Y. Xu, and J. Zhai, “State of power estimation of
lithium-ion battery based on fractional-order equivalent circuit model,”
J. Energy Storage, vol. 41, p. 102954, 2021.

L. Hu, X. Hu, Y. Che, F. Feng, X. Lin, and Z. Zhang, “Reliable state
of charge estimation of battery packs using fuzzy adaptive federated
filtering,” Appl. Energy, vol. 262, p. 114569, 2020.

X. Liu, K. Li, J. Wu, Y. He, and X. Liu, “An extended kalman filter based
data-driven method for state of charge estimation of li-ion batteries,” J.
Energy Storage, vol. 40, p. 102655, 2021.

D. Wang, X. Li, J. Wang, Q. Zhang, B. Yang, and Z. Hao, “Lithium-
ion battery equivalent model over full-range state of charge based on
electrochemical process simplification,” Electrochim. Acta, vol. 389, p.
138698, 2021.

C. Ge, Y. Zheng, and Y. Yu, “State of charge estimation of lithium-
ion battery based on improved forgetting factor recursive least squares-
extended kalman filter joint algorithm,” J. Energy Storage, vol. 55, p.
105474, 2022.

R. Mohammadi Asl, Y. Shabbouei Hagh, S. Simani, and H. Handroos,
“Adaptive square-root unscented kalman filter: An experimental study
of hydraulic actuator state estimation,” Mechan. Syst. Signal Processing,
vol. 132, pp. 670-691, 2019.

Z. Shuzhi, G. Xu, and Z. Xiongwen, “A novel one-way transmitted
co-estimation framework for capacity and state-of-charge of lithium-ion
battery based on double adaptive extended kalman filters,” J. Energy
Storage, vol. 33, p. 102093, 2021.

J. Yuan, Y. Wang, and Z. Ji, “A differentially private square root
unscented kalman filter for protecting process parameters in icpss,” ISA
Trans., vol. 104, pp. 44-52, 2020.

H. Ramazan, “Adaptive robust unscented kalman filter with recursive
least square for state of charge estimation of batteries,” Electr. Eng.,
vol. 104, pp. 1001-1017, 2022.

C. Sun, H. Lin, H. Cai, M. Gao, C. Zhu, and Z. He, “Improved parameter
identification and state-of-charge estimation for lithium-ion battery with
fixed memory recursive least squares and sigma-point kalman filter,”
Electrochim. Acta, vol. 387, p. 138501, 2021.

J. Hou, J. Liu, F. Chen, P. Li, T. Zhang, J. Jiang, and X. Chen, “Robust
lithium-ion state-of-charge and battery parameters joint estimation based
on an enhanced adaptive unscented kalman filter,” Energy, vol. 271, p.
126998, 2023.

Xiaohua Wu received the B.S. degree from the Col-
lege of Engineering, China Agricultural University,
Beijing, China, in 2007, and the Ph.D. degree in
Automotive Engineering from the Beijing Institute
of Technology, Beijing, in 2011. She is currently
a Professor with the School of Automobile and
Transportation, Xihua University, Chengdu, China,
and a Visiting Scholar with Chalmers University of
Technology, Gothenburg, Sweden. She was a Visit-
ing Scholar at the University of California, Berkeley,
USA, from 2014 to 2015. Her research interests

include data-driven and electrochemical mechanism modeling, parameter
identification, state estimation of lithium-ion batteries and proton exchange
membrane fuel cells, and optimal energy management strategy of hybrid
energy systems.



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

Zhanfeng Fan received his B.S. and M.S. de-
grees from the Chengdu University of Technology,
Chengdu, China, in 2007 and 2010, respectively, and
received the Ph.D. degree from Southwest Jiaotong
University, Chengdu, China, in 2020. He is a Lec-
turer at the School of Architecture and Civil En-
gineering, Chengdu University, China. His research
interests focus on the numerical simulation of multi-
physical field coupling, life prediction of battery and
proton exchange membrane fuel cells, and porous
media fluid mechanics calculation.

Jianbo Xie received the B.S. degree in Automotive
Engineering from Xihua University in Chengdu,
China, in 2015. He is currently a Senior Manager for
system development at WM Motor Technology Co,
Ltd. He works in the fields of technology solutions
for battery management units and charging systems.

Yang Li (Senior Member, IEEE) received the B.E.
degree in electrical engineering from Wuhan Uni-
versity, Wuhan, China, in 2007, and the M.Sc. and
Ph.D. degrees in power engineering from Nanyang
Technological University (NTU), Singapore, in 2008
and 2015, respectively. He was a Research Fellow
with the Energy Research Institute, NTU and the
School of Electrical Engineering and Computer Sci-
ence, Queensland University of Technology, Bris-
bane, QLD, Australia. He joined the School of Au-
tomation, Wuhan University of Technology, Wuhan,
in 2019, as a faculty member. Since 2020, he has been a Researcher with the
Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden. His research interests include modeling and control of
energy storage systems in power grid and transport sectors.

Dr. Li is a recipient of the EU Marie Sktodowska-Curie Action Individual
Fellowship in 2020. He serves as an Associate Editor for several IEEE
journals, such as IEEE TRANSACTIONS ON ENERGY CONVERSION, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, and IEEE TRANSACTIONS
ON TRANSPORTATION ELECTRIFICATION.

Junhao Shu received the B.S. degree in Automotive
Engineering from Xihua University in Chengdu,
China, in 2020, where he is pursuing an M.S. degree
with a focus on the parameter identification and state
estimation of lithium-ion batteries.

Jibin Yang received the B.S. degree in automation
from Lanzhou Jiaotong University in 2011, and
the M.S. and Ph.D. degrees in vehicle operation
engineering from Southwest Jiaotong University,
Chengdu, China, in 2013 and 2018, respectively. He
is currently an Associate Professor at the School
of Automobile and Transportation, Xihua Univer-
sity, Chengdu. His research interests include optimal
control, sizing and energy management strategy of
hybrid system for hybrid vehicles.

Zhongwei Deng (Member, IEEE) received his Ph.D.
in Mechanical Engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2019. He previously
finished his B.S. from Jilin University, China, in
2014. He was a Postdoctoral Researcher in the
College of Mechanical and Vehicle Engineering,
Chongqing University. He is currently an Associate
Professor at the School of Mechanical and Electrical
Engineering, University of Electronic Science and
Technology of China. His research interests focus on
data-driven and electrochemical mechanism model-

ing, parameter identification, state estimation, health diagnosis, and second-
life utilization of lithium-ion batteries.


https://www.researchgate.net/publication/370664451

