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A B S T R A C T   

This paper proposes a multi-peak maximum power point tracking (MPPT) method based on the Global Flying 
Squirrel Search-Particle Swarm Optimization (GFSS-PSO) for centralized thermoelectric generator (TEG) systems 
operating under uneven temperature distribution conditions. Conventionally, metaheuristic-based MPPT 
methods mainly focused on indicators such as tracking speed, oscillation amplitude, and system efficiency. 
However, the real-time global search ability of conventional metaheuristic-based MPPT methods designed for 
photovoltaic systems may not be suitable for the gradual temperature change in the thermoelectric scene. A 
strong global search capability also can add to the computational burden and increase the power loss in the 
search process. To solve these problems, the GFSS-PSO algorithm introduces improved position updating method 
and multi-threshold restart mechanisms to reduce energy loss and improve the dynamic performance under 
temperature change. The proposed method has been compared with the perturb and observe method and several 
state-of-the-art metaheuristic-based MPPT algorithms. Simulation results confirm that GFSS-PSO demonstrates 
exceptional performance and generates higher energy levels compared to perturb and observe, grey wolf opti-
mizer, and flying squirrel search optimization methods during the search phase under dynamic temperature 
conditions. The improvements achieved by GFSS-PSO are remarkable, with energy levels increasing by 118.3%, 
105%, and 102.2% respectively. Finally, experiments are conducted to verify the effectiveness of the proposed 
algorithm in a real-time digital system.   

1. Introduction 

1.1. Literature review 

Recent years have witnessed worsening environmental pollution and 
increased energy costs, demanding exploring cleaner and more cost- 
effective energy sources [1]. As one of the feasible technologies to 
achieve this goal, thermoelectric generators (TEGs) are receiving 
growing research interest. A TEG is an energy conversion technology 
that directly converts thermal energy into electricity with outstanding 
features such as high reliability, long life, and lightweight [2]. 

In the medical field, wearable thermoelectric generators [3] and 
flexible thermoelectric generators [4] have demonstrated valuable ap-
plications. Moreover, combined heat and power systems (CHP) [5] and 

micro combined heat and power systems [6] have found diverse appli-
cations. Notable examples of thermoelectric hybrid systems include the 
proton exchange membrane (PEM) fuel cell-compound thermoelectric 
system [7], compressed air energy storage system [8], and ultra-low 
temperature PEM fuel cell power system [9]. 

Waste heat recovery from automobile engines has emerged as an 
increasingly important research topic. Hsiao YY proposes a mathemat-
ical model of a thermoelectric module for waste heat recovery [10], 
while Lu H conducts an experiment on the thermal uniformity and 
pressure drop of an exhaust heat exchanger [11]. Furthermore, the 
feasibility and efficiency of using exhaust gas from vehicles as a heat 
source for thermoelectric generators are evaluated [12]. 

The inherent conversion efficiency of TEG is around 7% and a single 
TEG has a relatively low power output, typically around 10 W [2]. 
Consequently, it is essential to accurately adjust the optimal electrical 
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operating point of the TEG to optimize the power output based on the 
operating conditions in different application scenarios. Maximum power 
point tracking (MPPT) algorithms are commonly used in TEG [13]. Due 
to simple construction and excellent tracking effects, perturb and 
observe (P&O) [14] and incremental conductance (INC) [15] are the 
most widely used algorithms for MPPT. By changing the operating point 
of the TEG, the P&O could detect the change in the output power and 
make control decisions. The INC considers the derivatives of the power 
and provides a more accurate variable of perturbation than P&O. 
However, the step size significantly affects the efficiency of the standard 
P&O and INC methods. While larger steps can achieve a faster tracking 
speed, they oscillate more at the steady state, resulting in higher power 
losses. In addition, some special methods are available for TEGs due to 
their linear characteristics under a constant temperature field. These 
methods include the open-circuit voltage (OCV) method [16] and the 
short-circuit current (SCC) method [17]. However, they require 
open-circuit or short-circuit conditions to complete the algorithm cal-
culations, which cause additional power losses. Many works focus on 
improving the MPPT methods for TEGs. For example, Park J do presents 
an innovative way to perform the OCV measurement during the pseu-
donormal operation of the interfacing power electronic converter [18]. 
A linear extrapolation method proposed in Ref. [19] uses the linear 
characteristics of TEG, and it calculates the maximum power point 
(MPP) by relevant data from two observation points. Bond M. proposes a 
simple MPPT tracking circuit without current sensors [20]. 

A single TEG produces less electricity, and a large number of DC/DC 
converters will greatly increase the initial cost of the system. In practice, 
a centralized TEG system consists of many TEGs electrically inter-
connected in series or parallel and equipped with a power electronic 
converter. It can possess multiple MPPs in the event of uneven tem-
perature distribution (UTD) [21]. Among them are global maximum 
power point (GMPP) and local maximum power point (LMPP) [22]. 
However, traditional MPPT methods [13–20] cannot distinguish be-
tween GMPP and LMPP, and are easily stalled on LMPP, resulting in low 
overall efficiency. 

The centralized TEG system under UTD exhibits multi-peak charac-
teristics similar to the photovoltaic (PV) system under partial shading 
conditions. The multi-peak problem in PV systems is usually solved by 
metaheuristics-based MPPT methods. Particle Swarm Optimization 
(PSO) [23], Bacteria Foraging Algorithm (BFA) [24], Grey Wolf Opti-
mizer (GWO) [25], and Butterfly Optimization Algorithm (BOA) [26] 
have been successfully applied to the MPPT of PV systems under partial 
shading conditions. Based on the velocity vectors of the local and global 
best solutions, the position in the search space of the PSO in Ref. [23] is 

updated along the current exploration direction. However, the conver-
gence of particles to GMPP is slowed down by the randomness in the 
velocity vector. The GWO randomly selects a solution with a probability 
function, which may help maximize exploration but also can result in 
long convergence times and energy losses [25]. A search space jump 
method [26] is proposed to improve the convergence speed of BOA by 
only one dynamic variable as an adjustment parameter, which reduces 
the complexity of the algorithm. 

1.2. Research gaps and contributions 

MPPT is currently being studied primarily for its tracking speed, 
oscillation amplitude, and system efficiency. All of which are undoubt-
edly crucial. Research and exploration would be more meaningful if the 
algorithm is improved in conjunction with the characteristics of the 
application scenario. As far as the centralized TEG system is concerned, 
it is almost impossible for the temperature field to change abruptly in the 
waste heat utilization scenario, which results in a continuous output 
power variation of the TEG system. Specifically, Cai Y studied the 
medium-power thermoelectric system [27], which reflects the temper-
ature change of the hot end. Fig. 1 shows how the TEG hot end 

Nomenclature 

αnp seebeck coefficient (V/K) 
Uoc open-circuit voltage(V) 
Isc short circuit current(A) 
RTEG internal resistance(Ω) 
UTEG the TEG voltage(V) 
ITEG The TEG current(A) 
PTEG The TEG output power(W) 
RL load resistance(Ω) 
ΔT temperature difference(K) 
Isci short-circuit current of the 

ith TEG module(A) 
Voci open-circuit voltage of the ith TEG module(V) 
PTEGi output power of the ith TEG module(W) 
RTEGi internal resistance of the ith TEG module(Ω) 
GFSS PSO parameters 

δavg average variability of the power output 
δmax maximum variability of the power output 
Pr presence probability of predator 
Gc sliding constant 
gd sliding distance 

Abbreviations 
TEG thermoelectric generator 
MPPT maximum power point tracking 
LMPP local maximum power point 
GMPP global maximum power point 
UTD uneven temperature distribution 
P&O perturb and observe 
PSO Particle Swarm Optimization 
GWO grey Wolf Optimizer 
FSSO flying Squirrel Search Optimization 
GFSS global Flying Squirrel Search  

Fig. 1. Hot end temperature of the medium-power TEG system [27].  
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temperature (TH) varies with time during a period of 350 s. The tem-
perature change rate is approximately 60 ◦C/s in Region D, where the 
most significant temperature drop can be observed. Several studies 
[21–26] only investigate the static MPPT search process under constant 
temperature differences or the dynamic MPPT search process focusing 
on the sudden step change of temperature difference. These algorithms 
search under the constant temperature difference after the sudden step 
change. 

This extreme situation is unlikely to occur in the application scenario 
of TEG. The meta-heuristic algorithm proposed in Refs. [21–26] may 
have a strong global optimization ability. However, it may also become a 
burden if it takes a lot of time and computing resources to calculate each 
step. While the existing literature [21–26] has explored static and dy-
namic processes in the analysis of algorithm search capabilities, the 
current definition of dynamic processes is deemed to be overly 
restricted. This article aims to investigate dynamic processes in the 
context of TEG’s practical application scenarios, offering a more 
comprehensive viewpoint towards optimizing algorithm searches. 

Considering the temperature distributions and multi-peak charac-
teristics of the centralized TEG system, this paper proposes a GFSS-PSO- 
based MPPT method with improved dynamic performance and multi- 
peak search capability. With the typical thermal and electrical condi-
tions of the TEG system, several mechanisms are proposed to improve 
the GFFS-PSO. The main contributions of this paper are summarized as 
follows.  

1) An improved position updating method is proposed to accurately 
find the GMPP in the least iterations. The configured dynamic pa-
rameters could balance the exploration time and the tracking accu-
racy of the tracking process.  

2) To address the issue of continuous temperature change in centralized 
TEG systems, the proposed algorithm introduces a multi-threshold 
restart mechanism to overcome redundant restarts and minimize 
power loss. 

The proposed MPPT technology is compared with advanced MPPT 
technologies in typical operating conditions of a centralized TEG system, 
and the superiority of the algorithm is demonstrated. 

1.3. Paper organization 

The rest of the paper is divided into four parts. Section 2 presents a 
model and characteristics of the TEG. Section 3 introduces the principle 
of MPPT technology based on GFSS-PSO. In addition, dynamic termi-
nation and multi-threshold restart mechanisms are also introduced for 
temperature change. A variety of typical scenarios are discussed in 
Section 4. Finally, real-time digital simulations are used in Section 5 to 
validate its hardware implementation feasibility. 

2. Modeling of TEG and systems 

2.1. TEG model 

A TEG is a solid and semiconductor device that generates electrical 
power based on the Seebeck effect, as illustrated in Fig. 2(a). If there is a 
temperature difference between the hot and cold ends of the TEG, an 
electric potential can be generated and calculated by 

Voc =αnp ×(Th − Tc)=αnp × ΔT (1)  

where αnp is the Seebeck coefficient of the material; Th and Tc are the 
temperatures of hot and cold ends, respectively; and ΔT is the temper-
ature difference between the hot and cold ends. The equivalent circuit of 
the TEG in Fig. 2(b) includes a voltage source Voc and an internal 
resistance RTEG in series. The current flowing through and the power 
delivered to the load RL can be calculated as. 

ITEG = Voc
(RTEG+RL)

(2) 

P=
V2

oc

(RTEG + RL)
2 × RL (3) 

It can be readily obtained from (2) and (3) that the current-voltage 
(I–V) characteristic curve of the TEG is linear, while the power- 
voltage (P–V) characteristic curve is parabolic. Furthermore, the 
maximum power is obtained when RTEG = RL, and the maximum power 
point appears at Voc/2 (or Isc/2) according to the maximum power 
transfer theorem. 

According to (1), the Voc is proportional to the Seebeck coefficient 
αnp. Due to the Thomson effect, αnp is not a constant and would change 
with the temperature difference ΔT. The following equations is used to 
fit the nonlinear relationships of αnp and RTEG with the temperature 
difference ΔT, i.e., 

αnp = aΔT + b + c
/

ΔT (4)  

RTEG = dΔT2 + eΔT + f (5) 

The TEG voltage UTEG can thus be calculated by 

UTEG =
(
aΔT2 + bΔT + c

)
−
(
dΔT2 + eΔT + f

)
ITEG (6)  

where a, b, c, d, e, and f are constant coefficients fitted from experi-
mental data. ITEG is output current of TEG. Table 1 shows the values of 
the coefficients used in this work [28]. 

2.2. TEG system characteristics 

It is common to connect a number of TEGs to build an integrated TEG 
system that can accommodate wider power requirements. However, as 
mentioned earlier, a TEG system often operates under the UTD condi-
tion, resulting in low TEG system energy generation and efficiency [29]. 
Three common types of integrated TEG systems are shown in Fig. 3.  

1) Centralized TEG system: the TEGs are connected in series/parallel, 
and the entire TEG system is controlled by a single MPPT converter. 
This combination has the lowest costs for converter, but it also has 
the most power loss under the UTD condition. 

2) String-type TEG system: In this system, TEGs of the same tempera-
ture difference are connected in series to form a TEG string. Each 
TEG string is connected to an MPPT converter. This combination has 
medium-level costs for converter. The level of mismatch power loss 
in the case of UTD is also medium. 

Fig. 2. Schematic diagram of (a) the Seebeck effect and (b) the equivalent 
circuit of the TEG. 

Table 1 
The parameters of the Thermoelectric generator.  

VOC RTEG 

a (V/K2) b (V/K) c (V) d (Ω/K2) e (Ω/K) f (Ω) 
− 7 × 10− 5 0.0639 − 0.8536 − 9 × 10− 6 0.0062 1.1972  
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3) Modularized TEG system: Each TEG is connected to an MPPT con-
verter for individual MPP tracking. The power loss of the modular 
TEG system can be minimized at the expense of high cost for system 
implementation. 

Despite the fact that the modularized TEG system is capable of 
achieving the maximum power output of each TEG, the number of MPPT 
converters required for this structure is too high and is rarely utilized in 
practice [21]. String-type TEG system is always used in recover exhaust 
gases from automobiles [11], with each TEG string coupled with an 
MPPT converter. Additionally, the temperatures of the TEGs on the same 
string are the same. Consequently, the MPPT algorithm is less 
demanding, and it is usually used in conjunction with conventional 
methods such as P&O and OCV. Due to the fact that only a single MPPT 
converter is required, the centralized structure is the most economical 
and worthwhile structure among the above three. The MPPT algorithm 
applicable to the centralized TEG system, which is the subject of this 
study, is most complex due to the UTD phenomenon. 

A centralized TEG system is employed in this study to optimize 
power generation efficiency by tracking GMPP under UTD conditions. 
Deployment and upkeep costs of the MPPT converter can be minimized. 
The following is a description of the electrical model for the centralized 
TEG system consisting of N TEGs. The output power PTEGi generated by 
the ith TEG (i = 1, 2, …, N) and the total power PTEG of all N TEGs can be 
calculated by 

Ii =

⎧
⎨

⎩

(Voci − VLi)⋅
Isci

Voci
= Isci −

VLi

RTEGi
, 0 ≤ VLi ≤

Ioci

Voci

0, otherwise
(7)  

PTEGi =

⎧
⎨

⎩

VLi⋅Ii = IsciVLi −
Isci

RTEGi
V2

Li, 0 ≤ VLi ≤
Isci

Voci

0, otherwise
(8)  

PTEG =
∑N

i=1
PTEGi (9)  

where Voci, Isci, VLi, and RTEGi are the OCV, SCC, the MPPT converter 
output voltage, and the internal resistance of the ith TEG, respectively. 

The P–V characteristic curves of the centralized TEG under different 
temperature distributions are shown in Fig. 4(a) and (b). The centralized 
TEG would present an MPP under uniform temperature distribution, as 
shown in Fig. 4(a). Otherwise, there would be several LMPPs and a 
GMPP, as shown in Fig. 4(b). To maximize the output power of the TEG, 
a DC-DC converter circuit should be connected between the TEG and 
load to ensure that the system is operating at GMPP. 

Fig. 3. Schematic diagram of three typical TEG systems.  

Fig. 4. Power voltage characteristic curve of TEG system under uniform temperature distribution and uneven temperature distribution.  

Y. Chen et al.                                                                                                                                                                                                                                    



Energy 277 (2023) 127485

5

3. Proposed MPPT algorithm 

3.1. Control framework 

The output characteristics of the TEG would change with the tem-
perature difference between the two ends. At the same time, the external 
load may also change. The maximum power tracking process can be 
regarded as an impedance matching process. The impedance of the load 
side is adjusted by changing the duty cycle to match the dynamic in-
ternal resistance of the TEG system. 

Fig. 5 illustrates the control block diagram of the MPPT system based 
on GFSS-PSO. This algorithm comprises three key processes, namely 
location update, dynamic termination, and multi-threshold restart 
mechanism. The real-time power serves as the input to the GFSS-PSO 
algorithm, while the output control signal is the real-time duty. 

Control signal is connected to the input of the PWM controller, and 
the output of the PWM controller directly drives the switching tubes of 
the DC-DC converter module. When the internal resistance of the TEG 
changes as the temperature difference varies, the MPPT controller ad-
justs the duty cycle of the DC-DC converter to match the internal resis-
tance of the TEG in real-time. 

3.2. Metaheuristic-based MPPT method 

Whenever the centralized TEG system faces dynamic temperature 
variations, some mainstream algorithms may be inapplicable. Specif-
ically, in the standard PSO algorithm, the particles are prone to fall into 
the LMPP, increasing the power oscillation during the tracking process 
or even causing the particle to mistakenly converge to LMPP. As the 
external environment changes, the metaheuristic algorithm restarts the 
search process by detecting the power fluctuation to ensure that it can 
track the maximum power point in real time. However, each restart of 
the search causes the voltage and power to fluctuate wildly, resulting in 
a large energy loss. Considering the deficiencies of the Metaheuristic- 
based MPPT method described above, the proposed MPPT algorithm is 
successful in resolving these issues. The PSO and the Flying Squirrel 
Search Optimization (FSSO) are combined to create an improved GFSS- 
PSO algorithm in this section. Improved position updating mechanism, 
dynamic parameters, improved predator mechanism, dynamic termi-
nation conditions, and a multi-threshold restart mechanism are also 
proposed to improve the energy efficiency of centralized TEGs under 
UTD and dynamic temperature variations. 

3.2.1. Particle swarm optimization 
In 1995, Kennedy and Eberhart introduced the PSO algorithm [23], 

which is modeled after how birds find food. The bird (or particle) that 
finds the most food during flock foraging will share its foraging expe-
rience with other birds (or particles), and all birds (or particles) will fly 
to the best foraging point. PSO finds the best solution based on the 
continuous motion of several particles. 

Fast convergence and simplicity make PSO an excellent algorithm. 
During the initialization of the algorithm, the position of the particles is 
completely random. In each new iteration, the particle determines its 
speed and direction based on its own experience and the experience of 
its group. There are two variables that influence the new positions of the 
particles: the best solution found by the particles themselves (Pibest) and 
the global best solution (Gbest). Eventually, each particle will reach the 
global best position by continuously adjusting its direction and velocity. 

The iterative equations of the PSO are given by [23]. 

vk
i = ωivk

i + c1r1
(
Pk

ibest − dk
i

)
+ c2r2

(
Gbest − dk

i

)

dk+1
i = dk

i + vk
i

(10)  

where di and vi are the position and velocity of the ith particle. ω rep-
resents the inertia weight; c1 and c2 represent the self-learning factor and 
the social learning factor for adjusting the weight of individual and 
group experiences; Pibest and Gbest represent the individual and global 
best solutions, respectively; k represents the number of iterations; and r1 
and r2 represent random values between 0 and 1. 

PSO has a wide range of applications in MPPT. The basic steps of PSO 
for MPPT are as follows: Firstly, the position of Np particles should be 
defined as the actual duty cycle di (i = 1, 2, …, Np). The velocity of the 
particle represents the next perturbation distance of the current duty 
cycle, and the adaptation value represents the corresponding output 
power. Then, the corresponding output power of each initial particle is 
compared, and the particle position is updated according to the iterative 
equations. As the particle with the highest power attracts other particles, 
the process will continue until all particles converge. 

3.2.2. Flying squirrel search optimization 
Flying Squirrel Search Optimization (FSSO) shown in Fig. 6 [28] 

simulates the foraging process of squirrels. Assume that the forest con-
tains only hickory, acorn, and common trees, with one squirrel on each 
tree. Acorns and hickory are both considered the main food sources for 
squirrels. The priority levels of the three trees are as follows: the optimal 
solution set (hickory), the approximate solution set (acorn), and the 

Fig. 5. Control framework of GFSS-PSO based MPPT for centralized TEG system.  
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common solution set (common tree). 
The squirrels will randomly change positions if a predator appears. 

Its appearance probability is 0.1. When there is no predator present, the 
squirrel position is updated according to the following rules: 1) The 
squirrel on the hickory maintains its position; 2) Squirrel on acorn 
moves toward hickory; 3) Some squirrels randomly select from the 
common tree move toward the hickory tree, while the rest moved to-
ward the acorn. 

dk+1
at = dk

at + gdGc
(
dk

ht − dk
at

)

dk+1
nt = dk

nt + gdGc
(
dk

ht − dk
nt

)

dk+1
nt = dk

nt + gdGc
(
dk

at − dk
nt

)
(11)  

where dht, dat, and dnt represent squirrels on hickory, acorn, and com-
mon trees, respectively. Gc and gd denote the sliding constant and sliding 
distance, respectively. In order to balance the exploitation and explo-
ration capabilities of the algorithm, Gc is taken to be 1.9. The sliding 
constant gd could be taken as a random number between [0.5,1.11] [30]. 

3.2.3. GFSS-PSO-based MPPT 
In the basic PSO, particles may fall into the local power maximum 

point, which will significantly slow down the convergence time and 
increase power oscillations in the tracking process. And even all parti-
cles would converge to the LMPP. With reference to the position 
updating ways of squirrels and predators in the FSSO [24], this section 
introduces the GFSS-PSO-based MPPT. The maximum power tracking 
steps of the proposed algorithm is as follows.  

1) Initialization: 

Rather than randomly picking the particle positions in MPPT, the 
initial positions in this algorithm are fixed with uniform distribution so 
that the particles will not become too concentrated in the search process. 

Dmin and dmax are the minimum and maximum values of the duty cycle, 
which are taken as 0.1 and 0.9, respectively. 

d0
i = 1

/ (
Np + 1

)
× i

(
i= 1, 2, 3,…Np

)
(12)  

dmin ≤ dk
i ≤ dmax (13)    

2) Position update:  
a) Regular update: 

By simulating the leap of a flying squirrel from a common tree to a 
hickory tree in the FSSO algorithm, the position updating equation of 
particles is as follow. 

r= r ×
(

1 −
k

kmax

)

(14)  

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dk+1
i = dk

i +
(
Gbest − dk

i

)
× Gc × gd,

if
⃒
⃒Gbest − dk

i

⃒
⃒ − r > rand(0, r)

dk+1
i = dk

i + ωivk
i + c1r1

(
Pk

ibest − dk
i

)
+ c2r2

(
Gbest − dk

i

)
,

if
⃒
⃒Gbest − dk

i

⃒
⃒ − r ≤ rand(0, r)

(15) 

The center of the optimal environment is where the global best 
particle is located, and the radius of the best environment is r. The radius 
of the environment decreases as the number of iterations k increases. 
The initial radius of the optimal environment is set to 0.25. Kmax is the 
parameter associated with k. The glide distance (gd) is modified from a 
fixed range to a variable range. For an extensive exploration of the 
search space, the range of gd is [0.5,1.11] at the beginning of the algo-
rithm operation. To maintain convergence at subsequent stage, the 
range is reduced to [0.45,0.64] after the first iteration. 

The first position update mode in (15) is defined as the jumping 
behavior. Only particles outside the range of the optimal environment 
have the potential to jump, and the further they are from the center of 
the optimal environment, the greater their probability of jumping. 
Within the range of the optimal environment, the particle position up-
date equation is the PSO.  

b) Improved predator mechanism: 

In the FSSO, squirrels are forced to move randomly to hide when 
predators present. The presence probability of predator (Pr) is fixed in all 
iterations. As a result of this random repositioning, particles may be 
assigned to new and unexplored locations, increasing the capability for 
global exploration. 

In GFSS-PSO, as the number of iterations increases, the predator 
presence probability Pr decreases as follows: 

Pr =Pr ×

(

1 −
k

kmax

)

(16) 

Furthermore, the random motion of the particles has been modified 
to (17). In this way, the random motion during the search is changed 
into a move toward the best position (Gbest), which improves the 
convergence performance during tracking. 

dk+1
i = dk

i +
(
Gbest − dk

i

)
×

(

1 −
k

kmax

)

+ rand(0, r) (17)    

3) Dynamic determination: 

In this paper, the following termination strategy is proposed to 
improve the maximum power tracking accuracy: the initial particle 
positions di are uniformly distributed in [0,1], and the particle positions 
become more concentrated as the PSO iterates continuously. Whenever 
the standard deviation of all particle positions di (i = 1, 2, 3, …. Np) is 

Fig. 6. Foraging behavior of flying squirrel.  
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less than 0.01, the algorithm could be considered convergent and it 
outputs the optimal particle position Gbest. 

davg =(d1 + d2 + d3 + .+ dn)
/

Np (18)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
di − davg

)2

√
√
√
√ < 0.01 (19)   

4)Multi-threshold restart mechanism: 

In the field of thermoelectricity, TEG output characteristics and 
maximum power point change as the temperature difference changes. As 
described in Ref. [9], the GWO is restarted in response to power fluc-
tuations caused by external changes. However, when the temperature 
difference continually changes, it is difficult to implement GWO in 
practice due to frequent restarts caused by fluctuating power and 
voltage. 

A multi-threshold restart mechanism is used to solve these problems. 
External changes could be divided into the phase of severe fluctuation 
and phase of slow fluctuation, and GFSS-PSO is restarted using Mode A 
and Mode B according to the magnitude of power. 

PTEG represents the output power of the TEG system. PMPP represents 
power at Gbest. Equation (20) indicates a significant fluctuation in the 
TEG system’s power output due to external changes. In the multi- 
threshold restart mechanism, the algorithm switches to Mode A. All 
particle positions, parameters, and variables are reassigned, and the 
algorithm is restarted. 
⃒
⃒P，TEG − PTEG

⃒
⃒

PTEG
> 0.05 (20) 

As shown in (21), there is a large difference between the current 
power and maximum output power when the algorithm stops iterating 
or the power of the TEG system changes slightly. Generally speaking, the 
former of (21) refers to changes that have occurred in the external 
environment, and the latter refers to a relatively gradual change. When 
(21) is satisfied, the algorithm switches to Mode B. All particles are 
eliminated by (17), and the global and individual best positions are 
initialized. 

|PMPP − PTEG|

PMPP
> 0.5 or

⃒
⃒P，TEG − PTEG

⃒
⃒

PTEG
> 0.02 (21)  

3.3. Steps of the algorithm implementation 

The execution steps of the GFSS-PSO algorithm are shown in Table 2, 
including algorithm initialization (Steps 1 and 2), iterative updates of 
the metaheuristic algorithm (Step 3), algorithm termination (Step 4), 
and algorithm restart (Step 5). In Fig. 7, the flow chart of GFSS-PSO is 
depicted, and the improvement mechanisms proposed in the previous 
section are labeled. 

4. Results and discussion 

A study of the MPPT performance of GFSS-PSO for a centralized TEG 
system under UTD is conducted by three cases, namely, start-up tests, 
step changes, and dynamic processes under continuous temperature 
changes. Frist of all, key parameters of the centralized TEG system and 
the connected DC-DC converter are listed in section 4.1. Then, GFSS-PSO 
is compared with mainstream heuristic algorithms in sections 4.2 to 4.4. 
Finally, a novel rating approach is presented at the end of this section to 
rate comprehensively the MPPT performance of these algorithms. 

4.1. System and parameter configuration 

The MPPT algorithm based on GFFS-PSO is simulated and evaluated 

by Matlab/Simulink. Various possible working conditions are simulated 
under three cases: Non-uniform temperature distribution, sudden 
changes in operating point, and continuous temperature changes. Fig. 8 
shows the overall simulation model built by Matlab/Simulink 2019b and 
includes the centralized TEG system, boost converter, resistive load, and 
MPPT controller. The main parameters are as follows: Capacitance Cin =

100 μF, Cout = 100 μF; Inductance L = 300 mH, and the switching fre-
quency is set at 20 kHz. The centralized TEG system consists of three 
TEG strings connected in parallel. The number of TEGs connected in 
series for each TEG string is n, where ΔT1, ΔT2, and ΔT3 represent the 
temperature difference between the cold and hot sides of the respective 
TEG strings. 

To demonstrate the effectiveness of the MPPT based on GFFS-PSO, its 
performance is compared with MPPT based on P&O, PSO, FSSO, and 
GWO. Among them, the P&O is widely used as a basic standard for 
performance evaluation. The PSO-based MPPT algorithm can be regar-
ded as the evaluation and comparison standard of the metaheuristic 
algorithm. The GWO-based MPPT algorithm proposed by Ref. [25] only 
uses one tuning parameter and adds a restart mechanism for external 
disturbance. Thus, it can be used as a standard for dynamic tracking 
capabilities. FSSO is used to verify the effectiveness of the additional 
multi-threshold restart mechanism, improved position updating 
method, dynamic parameters, and improved predator mechanism. 

The parameter configuration of each algorithm is the benchmark for 
fair performance comparison. In determining the population size, the 
convergence time and the oscillation time should be as balanced as 
possible. After several simulations, the population size of the four met-
aheuristic algorithms is determined to be 4 (Np = 4). Furthermore, the 
tuning parameter and algorithm termination condition in the meta-
heuristic algorithm should be adapted to thermoelectric features. GWO 
and FSSO select the duty cycle uniformly distributed in the search space 
from 0 to 1. The maximum number of iterations is 15, and the algorithm 
restarts when the power difference exceeds 2%. Other parameters of 
each algorithm are as follows: 

P&O with a fixed step size of 0.01. 

Table 2 
Procedure execution steps of the GFSS-PSO.  

Step 1:Algorithm initialization. 
The basic parameters of the GFSS-PSO algorithm are set. 
Step 2: Particle initialization 
Unlike the random initialization in the standard particle swarm algorithm, the 
proposed MPPT algorithm, its particles are initialized at fixed, equidistant points by 
(11). 
Step 3 
set k=1 
FOR：i=1 to Np 

Transfer duty cycle di (i = 1，2，3,…Np) to DC/DC power converter one by one. 
The output voltage U and output current I of the thermoelectric module are 
collected in real time, and the power Pi corresponding to the current duty cycle di is 
calculated. 
The positions of all particles are updated according to (13) or (15). 
END FOR 
Step 4 
IF(Eq. (16) is satisfied) 
the particle swarm iteration will be terminated, and the duty cycle D = Gbest will be 
set, 
and then enter step 5. 
ELSE 
skip to step 3. 
END IF 
Step 5 
IF (Eq. (20) is satisfied) 
Enter Mode A 
The external environment changes drastically. Restart the algorithm. 
ELSE IF (Eq. (21) is satisfied) 
Enter Mode B 
Slow transformation of the external environment occurs. Implement population 
elimination. All particles were eliminated using (17). 
END IF  
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PSO[23]: w = 0.4, C1 = 1.2, C2 = 1.6                                                       

GWO[25]: α = 2                                                                                    

FSSO[28]: Pr = 0.1, Gc = 1.9, gd∈[0.5, 1.11]                                             

There is a 0.01-s control period for all five MPPTs. Especially when 
the MPPT controller is controlling the boost converter, it will execute a 
new duty cycle every 0.01 s. MPPT technology could be mainly evalu-
ated by several parameters such as steady-state output power, tracking 
time, and steady-state tracking efficiency [14]. Among them, the 
steady-state tracking efficiency is the ratio between steady-state output 
power and actual maximum output power. In addition, the power 
oscillation coefficient δ is introduced to evaluate the power oscillation 
amplitude during tracking. T represents the algorithm running time; δavg 
represents the average variability of the power output; and δmax repre-
sents the maximum variability of the power output in (22) and (23). 

δavg =
1

T − 0.01
∑T

t=0.02

|PTEG(t) − PTEG(t − 1)|
PTEG(t − 1)

(22)  

δmax = max
t∈{0.02,0.04,⋯,T}

{
|PTEG(t) − PTEG(t − 1)|

PTEG(t − 1)

}

(23)  

4.2. Start-up under UTD condition 

To simulate the case of multiple peak under UTD conditions, the 
temperature difference of the three TEG strings is set as ΔT1 = 50 ◦C, 
ΔT2 = 100 ◦C, and ΔT3 = 220 ◦C [22], n = 10. The GMPP of the 
centralized TEG system could reach 36.2 W, and simulation results of the 
five algorithms are shown in Fig. 9. 

According to the final power of P&O, PSO, GWO, FSSO, and GFSS- 
PSO, they are 33.86 W, 32.86 W, 36.19 W, 36.19 W, and 36.19 W, 
respectively. GFSS-PSO is the fastest in the tracking process, taking only 
0.19 s, and GWO has a tracking time of 0.49 s. Compared with GWO, the 
convergence time of GFSS-PSO is shortened by 61%. Tracking time by 
the PSO is 0.23 s, but the algorithm misconverges because the duty cycle 
is too concentrated after random initialization, and the tracked 32.86 W 
is the LMPP but not the GMPP. 

Compared to the P&O algorithm, metaheuristic algorithms (GWO, 
FSSO, and GFSS-PSO) all collect more energy from the TEG system, 
indicating that they have better global search capabilities and are more 
suited under UTD conditions. Due to the predator mechanism of the 
FSSO, the particles of FSSO would gain random positions after being 
knocked out, significantly increasing its power oscillations. In contrast, 
the GFSS-PSO has the shortest tracking time and highest output energy 
among all algorithms. Furthermore, it is shown that the improved po-
sition updating method can enhance the global search capability of PSO. 
In summary, the GFSS-PSO outperforms the traditional P&O method and 
metaheuristic algorithms under UTD conditions. 

4.3. Working point mutation 

The overall working point of the centralized TEG system may change 
suddenly if faults of TEG occur during the operation of the thermo-
electric power generation system. For the first 1 s (ΔT1 = 50 ◦C, ΔT2 =

100 ◦C, ΔT3 = 220 ◦C，n = 26), the centralized system operates steadily. 
A short-circuit fault of the TEGs in each TEG string simulates the 
working point mutation shown in Fig. 10. Similar to the previous case, 
the energy produced by P&O is still much smaller than that produced by 
other metaheuristic algorithms, suggesting that P&O could easily fall 
into LMPP. Without the restart mechanism, the PSO algorithm cannot 
adapt to changes in ambient temperature. Hence, the duty cycle output 
remains constant after convergence. The metaheuristic algorithms 
(GWO, FSSO, and GFSS-PSO) are prone to large power fluctuations 
because they need to restart the algorithm whenever the working point 
changes and approach GMPP through the exploration and development 
of the optimal duty cycle value. GFSS-PSO can quickly converge to a 
high-quality GMPP with small power fluctuations by changing the 
random motion in the FSSO to directional guidance within the safety 
circle. Further, GFSS-PSO produces more energy and has a smaller 
power fluctuation than FSSO, GWO, and PSO. The MPPT algorithm 
based on GFSS-PSO shows much higher convergence stability than other 
traditional intelligent algorithms, while PSO, GWO, and FSSO may not 
be adaptive enough to search out high-quality GMPP in a limited time. 

4.4. Study on the dynamic process under continuous temperature change 

In the working scenario of the TEG, the temperature of the hot end 
changes continually and slowly. To verify the effectiveness of the 
designed GFSS-PSO in dynamic conditions, this section compares 
simulation results for continuous temperature rise and drop under the 
three reference objects (P&O, GWO, and FSSO). The PSO algorithm is 
not compared due to the absence of dynamic restart capability. 

In the simulation experiment, the temperature change rate in the first 
10 s of the temperature rise and drop processes of the C section and D 

Fig. 7. Flow chart of the GFSS-PSO.  
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section (in Fig. 1) is selected to match. To better observe the power 
variation trend, the simulated temperature difference range is increased 
to [0, 300] degrees, and n is increased to 30.  

1) Temperature rise process 

Despite the hot end temperature of TEG slowly increasing, the po-
sition of the MPP does not change significantly. It would be very energy- 

Fig. 8. Thermoelectric power generation system.  

Fig. 9. MPPT tracking results of five algorithms in the case of UTD.  
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consuming to restart the algorithm frequently. As shown in Fig. 11, due 
to frequent restarts of the algorithm during maximum power tracking, 
the power of GWO fluctuates greatly. The GFSS-PSO ends the algorithm 
restart process in 0.747 s and enters secondary tracking in 2.79 s by 
multi-threshold restart mechanism (Mode B group elimination). The 
GWO algorithm and the GFSS-PSO complete the convergence in 5.9 s 
and 3.0 s, respectively, and the convergence time of GFSS-PSO is 
shortened by 49%. 

All algorithms stop searching after 5.9 s, and the energy generated by 
GWO, FSSO, and GFSS-PSO at 5.9 s is 2736.73 J, 2823.26 J, and 

2853.92 J, respectively. Because of the continuously increasing power of 
the TEG, the duty cycle of P&O is kept at 0.1, resulting in a large power 
loss and the lowest energy generation in the P&O. The energy generated 
by GFSS-PSO in the first 3 s is 118.3%, 105% and 102.2% of that 
generated by P&O, GWO, and FSSO, respectively, indicating GFSS-PSO 
can achieve convergence with less power oscillation. 

As with temperature rises, the GFSS-PSO algorithm has the fastest 
search speed and the smallest power fluctuation of the four meta-
heuristic algorithms in the temperature drop process. Temperature de-
creases have prevented particles from updating their historical optimal 

Fig. 10. MPPT tracking results of five algorithms in the case of working point mutation.  

Fig. 11. Power(a) and duty(b) of P&O, PSO, GWO, and GFSS-PSO under temperature rise process.  

2) The temperature drop process 
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positions, resulting in excessive initial position weights. In Fig. 12(b), it 
is evident that duty cycle values of GWO, FSSO, and GFSS-PSO come 
close to the error position (0.4) in the early stage of the algorithm 
operation (first 1 s). FSSO and GWO end the restart process of the al-
gorithm and track to the high-quality MPP at 3.63 s and 4.26 s, 
respectively. Compared to GWO, the GFSS-PSO smooth transitions to the 
MPP through a multi-threshold restart mechanism (Mode B group 
elimination) in 3.40 s, cutting the convergence time by 20.2%. In the 
search phase (within 4.26 s), GWO, FSSO, and GFSS-PSO produced en-
ergy of 2581.62 J, 2604.69 J, and 2767.48 J, respectively. There is less 
power oscillation during the search phase when using GFSS-PSO to track 
the MPP. 

As shown in Fig. 12(b), GFSS-PSO and P&O are able to respond under 
small continuous changes in temperature better than GWO after 5 s. 
Traditional P&O needs to continuously search for the best working point 
through constant disturbance. A multi-threshold restart mechanism is 
used by the GFSS-PSO algorithm to enter Mode B at 6.42 s, updating the 
optimal operating point within the safety circle while minimizing power 
fluctuations. Simulation results demonstrate that GFSS-PSO uses a 
multi-threshold restart mechanism to directional eliminate the popula-
tion, finding the MPP with fewer fluctuations in power and faster pro-
cessing times. 

4.5. Analysis of MPPT results 

A detailed analysis of the algorithm and its improvement mechanism 
is given in conjunction with the curve change trend discussed in the 
previous sections. To fully display characteristics of the algorithm, more 
detailed data are presented in Table 3 for the five algorithms in the four 
above cases. Six main evaluation metrics are included: steady-state 
tracking time, steady-state output power, generated energy, steady- 
state tracking efficiency, and the amplitude of maximum and average 
oscillation. Among them, Case 3 and Case 4 examine power tracking in 
the process of temperature change, so there is no relevant results at the 
steady state and are represented by a dash. 

The MPPT results of Case 1 and Case 2 show that GFSS-PSO has the 
best multi-peak tracking capability, and the tracking efficiency and 
tracking speed are superior to those of P&O, GWO, and FSSO. 

As compared with other metaheuristic algorithms, the GFSS-PSO 
algorithm presents the highest dynamic search capability in both ris-
ing and falling temperatures, and it finds the maximum power point 
with smaller power fluctuations and faster time by using a multi- 
threshold restart mechanism that eliminates all particles when the 
external temperature is constantly changing. 

It is worth noting that P&O exhibited better performance than GFSS- 
PSO in terms of low power oscillations. To better evaluate each algo-
rithm, a comprehensive rating analysis is introduced below. 

In order to evaluate the comprehensive performance, this section 
determines the MPPT rating by the rated average in (24). The total 
achieved rating includes kmax termination requirements, dynamic 
tracking capability under temperature changes, and global search 
capability under UTD. And the global search capability can be sub-
divided into three aspects: steady-state MPPT efficiency, average steady- 
state tracking time, and average steady-state oscillation coefficient 
under start-up and mutation tests. 

MPPT RATING=
Total achieved rating

5
(24) 

In Table 3, the performance of each indicator can be expressed by a 
score rating: “1” stands for the best, and 4 stands for the worst. There is a 
rating of “1” for average power shocks less than 5%, “2” for average 
shocks less than 10%, “3” for average shocks less than 20%, and “4” for 
average shocks greater than 20%. And this part would give a rating of 
“1” when the average steady-state tracking time is less than 0.2s, a rating 
of “2” between 0.2 and 0.4s, a rating of “3” between 0.4 and 0.6s, and a 
rating of “4” when it exceeds 0.6s. For the steady-state output efficiency 
over 99%, the score is set as “1”, “2” between 98% and 99%, “3” be-
tween 97% and 98%, and “4” below 97%. Those methods that require a 
termination condition kmax are scored “2”, otherwise “1”. 

Whenever the temperature changes continuously, the P&O and PSO 
algorithms lose their dynamic tracking ability, and their dynamic 
tracking ability is rated as 4. Dynamic tracking capability ratings are 
based on simulation results of Case 3 and Case 4. A rating of 1 will be 
given if the average oscillation time and power oscillation are less than 
2.5 s and 10%, respectively. Rating 2 will be given to oscillations with 
average oscillation times less than 5 s and average power oscillations 
less than 20%. Rating “3” is given when oscillation times are less than 
7.5 s, and power oscillations are less than 40%. 

According to the MPPT rating in Table 4, the proposed algorithm 
received the best rating of 1.6, followed by GWO, P&O, and FSSO with 
ratings of 2.4, 2.4, and 2.6, respectively, and PSO with a worse rating of 
3. Due to the improved position updating method of GFSS-PSO, the 
search space is reduced, and a good average tracking time rating is 
obtained. The P&O algorithm lacks global search ability and gets the 
worse rating on average steady-state tracking efficiency. The GFSS-PSO 
also employs a multi-threshold restart algorithm for the continuous 
temperature changes of TEG. It greatly enhances its dynamic perfor-
mance; obtains a more accurate maximum power point with less power 
fluctuation; and achieves the best rating for dynamic tracking. 

Due to their search mechanisms, all intelligent algorithms generate 
large power oscillation, and P&O gets the best rating on average steady- 
state oscillation. Additionally, the GFFO-PSO receives the best rating in 
the intelligent algorithm due to the improved position updating method, 
which reduces power oscillation during the tracking process. At the 

Fig. 12. (a) Power and (b) duty cycle of P&O, PSO, GWO, and GFSS-PSO algorithms under temperature drop process.  
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same time, GFSS-PSO can determine whether convergence is achieved 
by the standard deviation of particle positions, so the kmax termination 
requirement is not required. 

5. Real-time digital simulation experiments 

The verification of the GFFS-PSO is carried out based on RSCAD and 
a real-time digital simulator (RTDS). Since there is no thermoelectric 
model in the RSCAD library, the PV model is used to perform an alter-
native experiment to complete the verification of the algorithm [31]. 
Parameters of the PV modules, including OCV and SCC, maximum 
power point voltage, and maximum power point current, are set to 
simulate the properties of modules for thermoelectric generators. And 
then, the number of PV modules in series and parallel are set to simulate 
the structure of a centralized thermoelectric generator system. Com-
bined with the boost circuit drive signal generator, the MPPT module 
has been transformed from the Simulink model and placed in the black 
control box in Fig. 13. 

One cabinet (RACK 1) is configured in the RTDS device for real-time 

Table 3 
Simulation results for various algorithms.  

Algorithm Case Steady-state metrics Amplitude of oscillation Energy (J) 

Tracking time(s) Power (W) Efficiency Max. Average 

P&O 1 0.353 33.858 93.53% 2.33% 1.51% 32.78 
2 0.110 32.880 90.83% 4.6% 3.65% 115.49 
3 – – – 1.01% 0.21% 5417.94 
4 – – – 1.78% 1.23% 3881.40 

PSO 1 0.231 32.864 90.78% 59.30% 11.90% 32.37 
2 – 30.112 83.18% 262.51% 29.79% 126.32 
3 – – – – – – 
4 – – – – – – 

GWO 1 0.490 36.185 99.96% 53.07% 10.95% 35.62 
2 0.503 36.186 99.96% 94.87% 13.49% 133.3 
3 – – – 417.06% 45.67% 5505.55 
4 – – – 484.63% 32.55% 3815.77 

FSSO 1 0.492 36.189 99.97% 309.78% 15.63% 35.462 
2 0.459 36.192 99.98% 455.11% 26.33% 131.76 
3 – – – 220.06% 35.17% 5580.99 
4 – – – 324.23% 25.75% 3838.83 

GFSS-PSO 1 0.190 36.185 99.96% 17.98% 9.34% 35.84 
2 0.302 36.192 99.98% 49.13% 7.31% 135.6 
3 – – – 12.99% 2.13% 5623.59 
4 – – – 7.71% 2.66% 3869.59  

Table 4 
Simulation rating for P&O, PSO, GWO, and GFSS-PSO algorithms.  

Metrics P&O PSO GWO FSSO GFSS-PSO 

Steady-state Efficiency 4 4 1 1 1 
Steady-state Tracking time 2 2 3 3 2 
Average steady-state oscillation 1 4 3 4 2 
Dynamic tracking capability 4 4 3 3 1 
kmax 1 1 2 2 1 
MPPT rating 2.4 3 2.4 2.6 1.4  

Fig. 13. Schematic diagram of RTDS experimental device.  
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hardware simulation calculations to perform numerical experiments of 
MPPT tracking under start-up test and continuous temperature rise test. 
These two cases can fully verify the MPPT performance under the GFSS- 
PSO algorithm. 

Fig. 14 Shows the real-time digital simulation results for the start-up 
test and continuous temperature rise test. The results obtained from the 
simulated model are very similar to those obtained from the real-time 
experimental model using the RTDS setup. 

In order to explain the performance difference between simulation 
and RTDS test results, three main reasons have been identified.  

1) Delay in transmission. The RTDS test is inevitably destructive to 
MPPT performance when it tests input/output signal transmission.  

2) Measurement interference. Since the measurement equipment does 
not accurately acquire the signal, continuous fluctuations occur in 
RTDS tests.  

3) Discretization and sample holding for RTDS tests. In comparison to 
the simulation test, the RTDS may generate some errors. 

6. Conclusion 

In this paper, a dynamic multi-peak MPPT method based on the 
metaheuristic algorithm GFSS-PSO is proposed. In addition to solving 
the maximum power point tracking problem for centralized thermo-
electric systems, the algorithm also accounts for continuous temperature 
variations and UTD conditions. 

The proposed algorithm incorporates multi-peak seeking and 

dynamic tracking capabilities, allowing it to avoid frequent restarts and 
maintain effective tracking even in the presence of minor power fluc-
tuations during continuous temperature variations. This paper presents 
a comparison of the P&O, GWO, and FSSO algorithms with the proposed 
algorithm, and analyzes the limitations of conventional algorithms 
when applied under continuous temperature variations. The power 
tracking efficiency is up to 99.9%, with average oscillations being 
reduced to 2% in temperature drop process. Compared to the classic 
P&O algorithm, the proposed method achieves an increase of 10% in 
power generation. Additionally, it achieves a significantly faster 
tracking time compared to the GWO algorithm, with a 20–40% 
improvement. The main contributions are as follows.  

1) Compared to the classical P&O method, the GFSS-PSO algorithm is 
capable of consistently tracking the GMPP for the centralized TEG 
system under UTD.  

2) The GFSS-PSO algorithm, with its improved position updating 
method and predator mechanism, outperforms typical metaheuristic 
algorithms such as PSO, GWO, and FSSO in terms of dynamic per-
formance for MPPT. Its advanced configuration allows for faster 
convergence and more efficient power generation.  

3) In view of the continuous temperature-changing characteristics of 
the TEG system, GFSS-PSO adds a multi-threshold restart mechanism 
to reduce the power loss caused by frequent searches of the 
metaheuristic-based MPPT methods. 

Fig. 14. Real-time digital simulation results for the two cases.  
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4) To achieve a comprehensive rating of each algorithm under various 
indicators, a comprehensive rating method is proposed, and the 
GFSS-PSO gets the best rating. 
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thermoelectric generator using bulk legs and liquid metal interconnects for 
wearable electronics. Appl Energy 2017;202. https://doi.org/10.1016/j. 
apenergy.2017.05.181. 

[5] Zarifi S, Mirhosseini Moghaddam M. Utilizing finned tube economizer for 
extending the thermal power rate of TEG CHP system. Energy 2020;202. https:// 
doi.org/10.1016/j.energy.2020.117796. 

[6] Zhang Y, Wang X, Cleary M, Schoensee L, Kempf N, Richardson J. High- 
performance nanostructured thermoelectric generators for micro combined heat 
and power systems. Appl Therm Eng 2016;96. https://doi.org/10.1016/j. 
applthermaleng.2015.11.064. 

[7] Cai Y, Wang WW, Wang L, Liu D, Zhao FY. A proton exchange membrane fuel cell- 
compound thermoelectric system: bidirectional modeling and energy conversion 
potentials. Energy Convers Manag 2020;207. https://doi.org/10.1016/j. 
enconman.2020.112517. 

[8] Khanmohammadi S, Rahmani M, Musharavati F, Khanmohammadi S, Bach QV. 
Thermal modeling and triple objective optimization of a new compressed air 
energy storage system integrated with Rankine cycle, PEM fuel cell, and 
thermoelectric unit. Sustain Energy Technol Assessments 2021;43. https://doi.org/ 
10.1016/j.seta.2020.100810. 

[9] Saufi Sulaiman M, Singh B, Mohamed WANW. Experimental and theoretical study 
of thermoelectric generator waste heat recovery model for an ultra-low 
temperature PEM fuel cell powered vehicle. Energy 2019;179. https://doi.org/ 
10.1016/j.energy.2019.05.022. 

[10] Hsiao YY, Chang WC, Chen SL. A mathematic model of thermoelectric module with 
applications on waste heat recovery from automobile engine. Energy 2010;35. 
https://doi.org/10.1016/j.energy.2009.11.030. 

[11] Lu H, Wu T, Bai S, Xu K, Huang Y, Gao W, et al. Experiment on thermal uniformity 
and pressure drop of exhaust heat exchanger for automotive thermoelectric 
generator. Energy 2013;54. https://doi.org/10.1016/j.energy.2013.02.067. 

[12] Wang Y, Dai C, Wang S. Theoretical analysis of a thermoelectric generator using 
exhaust gas of vehicles as heat source. Appl Energy 2013;112. https://doi.org/ 
10.1016/j.apenergy.2013.01.018. 

[13] Rodriguez R, Guo J, Preindl M, Cotton JS, Emadi A. High frequency injection 
maximum power point tracking for thermoelectric generators. Energy Convers 
Manag 2019;198. https://doi.org/10.1016/j.enconman.2019.111832. 

[14] Mamur H, Ahiska R. Application of a DC-DC boost converter with maximum power 
point tracking for low power thermoelectric generators. Energy Convers Manag 
2015;97. https://doi.org/10.1016/j.enconman.2015.03.068. 

[15] Kanagaraj N. Photovoltaic and thermoelectric generator combined hybrid energy 
system with an enhanced maximum power point tracking technique for higher 
energy conversion efficiency. Sustain 2021;13. https://doi.org/10.3390/ 
su13063144. 

[16] Montecucco A, Knox AR. Maximum power point tracking converter based on the 
open-circuit voltage method for thermoelectric generators. IEEE Trans Power 
Electron 2015;30:828–39. https://doi.org/10.1109/TPEL.2014.2313294. 

[17] Vega J, Lezama J. Design and implementation of a thermoelectric energy harvester 
with MPPT algorithms and supercapacitor. IEEE Lat Am Trans 2021;19. https:// 
doi.org/10.1109/TLA.2021.9423860. 

[18] Park J do, Lee H, Bond M. Uninterrupted thermoelectric energy harvesting using 
temperature-sensor- based maximum power point tracking system. Energy Convers 
Manag 2014;86:233–40. https://doi.org/10.1016/j.enconman.2014.05.027. 

[19] Bijukumar B, Kaushik Raam AG, Ganesan SI, Nagamani C. A linear extrapolation- 
based MPPT algorithm for thermoelectric generators under dynamically varying 
temperature conditions. IEEE Trans Energy Convers 2018;33:1641–9. https://doi. 
org/10.1109/TEC.2018.2830796. 

[20] Bond M, Park J do. Current-sensorless power estimation and MPPT implementation 
for thermoelectric generators. IEEE Trans Ind Electron 2015;62:5539–48. https:// 
doi.org/10.1109/TIE.2015.2414393. 

[21] Zhang X, Tan T, Yang B, Wang J, Li S, He T, et al. Greedy search based data-driven 
algorithm of centralized thermoelectric generation system under non-uniform 
temperature distribution. Appl Energy 2020;260. https://doi.org/10.1016/j. 
apenergy.2019.114232. 

[22] Yang B, Wang J, Zhang X, Zhang M, Shu H, Li S, et al. MPPT design of centralized 
thermoelectric generation system using adaptive compass search under non- 
uniform temperature distribution condition. Energy Convers Manag 2019;199. 
https://doi.org/10.1016/j.enconman.2019.111991. 

[23] Li H, Yang D, Su W, Lu J, Yu X. An overall distribution particle swarm optimization 
MPPT algorithm for photovoltaic system under partial shading. IEEE Trans Ind 
Electron 2019;66:265–75. https://doi.org/10.1109/TIE.2018.2829668. 

[24] Ebrahim EA. Bacteria-foraging based-control of high-performance railway level- 
crossing safety drives fed from photovoltaic array. J Electr Syst Inf Technol 2016;3. 
https://doi.org/10.1016/j.jesit.2015.11.014. 

[25] Mohanty S, Subudhi B, Ray PK. A new MPPT design using grey Wolf optimization 
technique for photovoltaic system under partial shading conditions. IEEE Trans 
Sustain Energy 2016;7. https://doi.org/10.1109/TSTE.2015.2482120. 

[26] Shams I, Mekhilef S, Tey KS. Maximum power point tracking using modified 
butterfly optimization algorithm for partial shading, uniform shading, and fast 
varying load conditions. IEEE Trans Power Electron 2021;36:5569–81. https://doi. 
org/10.1109/TPEL.2020.3029607. 

[27] Cai Y, Deng F, Zhao J, Ding N, Chen J. An MPTD-specialized MPPT algorithm used 
for a novel medium-power thermoelectric system. IEEE Trans Power Electron 
2021;36:4187–97. https://doi.org/10.1109/TPEL.2020.3023852. 

[28] Montecucco A, Siviter J, Knox AR. The effect of temperature mismatch on 
thermoelectric generators electrically connected in series and parallel. Appl Energy 
2014;123:47–54. https://doi.org/10.1016/j.apenergy.2014.02.030. 

[29] Liu YH, Chiu YH, Huang JW, Wang SC. A novel maximum power point tracker for 
thermoelectric generation system. Renew Energy 2016;97:306–18. https://doi. 
org/10.1016/j.renene.2016.05.001. 

[30] Fares D, Fathi M, Shams I, Mekhilef S. A novel global MPPT technique based on 
squirrel search algorithm for PV module under partial shading conditions. Energy 
Convers Manag 2021:230. https://doi.org/10.1016/j.enconman.2020.113773. 

[31] Park M, Yu IK. A novel real-time simulation technique of photovoltaic generation 
systems using RTDS. IEEE Trans Energy Convers 2004;19. https://doi.org/ 
10.1109/TEC.2003.821837. 

Y. Chen et al.                                                                                                                                                                                                                                    

https://doi.org/10.17775/CSEEJPES.2021.03290
https://doi.org/10.1016/j.energy.2020.119648
https://doi.org/10.1016/j.energy.2020.119648
https://doi.org/10.1016/j.apenergy.2016.08.150
https://doi.org/10.1016/j.apenergy.2016.08.150
https://doi.org/10.1016/j.apenergy.2017.05.181
https://doi.org/10.1016/j.apenergy.2017.05.181
https://doi.org/10.1016/j.energy.2020.117796
https://doi.org/10.1016/j.energy.2020.117796
https://doi.org/10.1016/j.applthermaleng.2015.11.064
https://doi.org/10.1016/j.applthermaleng.2015.11.064
https://doi.org/10.1016/j.enconman.2020.112517
https://doi.org/10.1016/j.enconman.2020.112517
https://doi.org/10.1016/j.seta.2020.100810
https://doi.org/10.1016/j.seta.2020.100810
https://doi.org/10.1016/j.energy.2019.05.022
https://doi.org/10.1016/j.energy.2019.05.022
https://doi.org/10.1016/j.energy.2009.11.030
https://doi.org/10.1016/j.energy.2013.02.067
https://doi.org/10.1016/j.apenergy.2013.01.018
https://doi.org/10.1016/j.apenergy.2013.01.018
https://doi.org/10.1016/j.enconman.2019.111832
https://doi.org/10.1016/j.enconman.2015.03.068
https://doi.org/10.3390/su13063144
https://doi.org/10.3390/su13063144
https://doi.org/10.1109/TPEL.2014.2313294
https://doi.org/10.1109/TLA.2021.9423860
https://doi.org/10.1109/TLA.2021.9423860
https://doi.org/10.1016/j.enconman.2014.05.027
https://doi.org/10.1109/TEC.2018.2830796
https://doi.org/10.1109/TEC.2018.2830796
https://doi.org/10.1109/TIE.2015.2414393
https://doi.org/10.1109/TIE.2015.2414393
https://doi.org/10.1016/j.apenergy.2019.114232
https://doi.org/10.1016/j.apenergy.2019.114232
https://doi.org/10.1016/j.enconman.2019.111991
https://doi.org/10.1109/TIE.2018.2829668
https://doi.org/10.1016/j.jesit.2015.11.014
https://doi.org/10.1109/TSTE.2015.2482120
https://doi.org/10.1109/TPEL.2020.3029607
https://doi.org/10.1109/TPEL.2020.3029607
https://doi.org/10.1109/TPEL.2020.3023852
https://doi.org/10.1016/j.apenergy.2014.02.030
https://doi.org/10.1016/j.renene.2016.05.001
https://doi.org/10.1016/j.renene.2016.05.001
https://doi.org/10.1016/j.enconman.2020.113773
https://doi.org/10.1109/TEC.2003.821837
https://doi.org/10.1109/TEC.2003.821837

	An improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions
	1 Introduction
	1.1 Literature review
	1.2 Research gaps and contributions
	1.3 Paper organization

	2 Modeling of TEG and systems
	2.1 TEG model
	2.2 TEG system characteristics

	3 Proposed MPPT algorithm
	3.1 Control framework
	3.2 Metaheuristic-based MPPT method
	3.2.1 Particle swarm optimization
	3.2.2 Flying squirrel search optimization
	3.2.3 GFSS-PSO-based MPPT

	3.3 Steps of the algorithm implementation

	4 Results and discussion
	4.1 System and parameter configuration
	4.2 Start-up under UTD condition
	4.3 Working point mutation
	4.4 Study on the dynamic process under continuous temperature change
	4.5 Analysis of MPPT results

	5 Real-time digital simulation experiments
	6 Conclusion
	Author contributions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


