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A B S T R A C T   

Machine learning is very important in predicting the degraded performance of fuel cell systems for advanced 
diagnosis and control. Unfortunately, existing machine-learning-based schemes are usually designed with point 
estimation, making it difficult to quantify the uncertainty of the prediction result. In this paper, we propose a 
Bayesian-Gated Recurrent Unit model (B-GRU) that combines the Bayesian Theory and GRU to predict the 
phenomenon of fuel cell voltage decay. Fuel cell data are preprocessed by the random forest, and the key feature 
data are then imported into the B-GRU. Variational inference and adaptive moment estimation is used to obtain 
the optimal parameters in the B-GRU. Probability density distributions are calculated by replacing the param-
eters in GRU with random variables to quantify the uncertainty in the model. In addition to providing point 
estimates, the B-GRU also gives interval estimates for uncertainty quantification. With small training data, the 
point estimation result of B-GRU is more accurate than traditional neural networks. Furthermore, compared to 
the Bayesian neural networks, the proposed B-GRU also exhibits superior performance both in point and interval 
estimation results based on the IEEE PHM 2014 DATA Challenge dataset. With its excellent ability for noise 
immunity and uncertainty quantification, the proposed prediction method can provide more useful decision- 
making recommendations for hydrogen energy devices.   

1. Introduction 

1.1. Background and Literature review 

Due to their high power density, environmental friendliness, light-
weight, and abundant resources, proton exchange membrane fuel cells 
(PEMFCs) have become one of the most promising power sources for a 
variety of transportation applications, such as hybrid vehicles and plug- 
in hybrid vehicles [1,2], heavy-duty trucks [3], buses [4], trains [5], and 
ships [6]. However, PEMFCs have cost and lifespan bottlenecks, hin-
dering their commercialization and large-scale applications [7,8]. 
Accurately predicting the performance degradation of PEMFCs is thus 
important for estimating the remaining useful life (RUL) and making 
relevant optimal operational decisions. 

The methods of predicting the performance of PEMFCs consist of 

data-driven and model-based ones. In recent years, data-driven methods 
have emerged as a promising tool for predicting fuel cell performance 
due to the rapid development of machine learning techniques and the 
difficulty in modeling the degradation from the physical aspects. 
Compared to other machine learning algorithms, deep learning has 
excellent scalability and generalization ability in processing large and 
complex data [9,10]. Therefore, PEMFC health or performance degra-
dation prediction based on deep learning has received increasing 
attention [11–13]. Traditionally, the health prediction framework based 
on deep learning includes four main steps: data collection, index con-
struction, health stage division, and RUL prediction. For modern ap-
plications in electrified transportation, the operating load conditions of 
PEMFC are very complex [14]. Zuo et al. thus proposed an 
attention-based recurrent neural network (RNN) model to more accu-
rately predict the output voltage degradation of a PEMFC based on 
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long-term dynamic load cycle durability test data [15]. Using ensemble 
echo state networks (ESN) in the time-varying model space, Li et al. [16] 
developed an adaptive prognostic approach for PEMFC, where a pre-
diction model was established using a model identification method 
based on dynamic load cycle test data. Yue [17] et al. proposed an 
adaptive data-driven fuel cell prediction method based on multiplicative 
feature decomposition and ESN to predict fuel cell degradation behavior 
under dynamic operating conditions. The ESN algorithm in Ref. [18] 
also performed RUL prediction on PEMFC under dynamic conditions and 
used a Linear Parameter Varying (LPV) model to simulate the dynamic 
process of the system. After extracting the degradation indicators 
through the electrochemical mechanism model, Wang [19] et al. 
developed a long short-term memory network (LSTM) based on 
dimensionality reduction symbol representation to predict the perfor-
mance degradation of vehicle-oriented PEMFC. In addition, a degrada-
tion model with a sliding window was proposed to extract the health 
indicators. Then a symbolic representation-based LSTM was developed 
to predict the trend under dynamic conditions [20]. In these data-driven 
methods, different health indicators or degradation indicators are 
selected to achieve degradation prediction [15–20]. These methods 
achieved accurate predictions point estimations of prediction perfor-
mance through deterministic neural networks. However, the absence of 
uncertainty quantification may cause difficulty in giving confidence in 
the prediction results, where the predicted results can sometimes be 
unreliable [21]. Furthermore, making control decisions based on 
single-point predictions is error-prone, which could lead to various po-
tential safety issues. 

In the area of machine learning, uncertainty can be considered either 
epistemic or aleatoric [21]. The epistemic uncertainty is always caused 
by predictive models and is also commonly referred to as model un-
certainty. On the other hand, data collection methods affect the aleatoric 
uncertainty, which measures the noise in the observed dataset. Perfor-
mance predictions can be affected by various uncertainty, such as model 
uncertainty, measurement uncertainty of data, and forecast uncertainty 
under operating conditions [22,23]. 

Currently, there are limited investigations on quantifying prediction 
uncertainty in deep learning-based performance prediction. Ghahra-
mani et al. [21] highlighted the Bayesian approach as a promising 
approach. Bayesian inference is used to deal with uncertainty using 
Bayesian theory as the language of mathematics. Combining Bayesian 
theory and neural network, Wang et al. [24] developed a Bayesian 
Neural Network (BNN) for uncertainty quantification prediction of 
diesel engines. Peng et al. [25] proposed a Bayesian Deep Learning 
(BDL)-based method for quantifying health prediction with uncertainty 
and demonstrated the effectiveness of the method on ball-bearing 
datasets and turbine engine datasets. Cheng et al. [26] proposed a 
hybrid forecast way based on the least squares support vector machine 

(LSSVM) and regularized particle filter (RPF) to describe the uncertainty 
of RUL prediction through probability density distribution. Among 
them, the cores of particle filtering and Kalman Filtering methods are 
again Bayesian methods. 

1.2. Research gap and contributions 

For periodic sequence data such as diesel engines and ball bearings, 
BNNs that combines Bayesian theory and DNNs have shown their 
effectiveness. However, recurrent neural networks (RNNs) are superior 
to DNNs in feature extraction and performance prediction for more 
general time series data. It is highly desirable to incorporate uncertainty 
representation into advanced deep learning models for complex time- 
series data generated by fuel cells and further embed uncertainty 
inference into mature deep learning methods. The scalability and the 
generalization ability brought by the learned model are reflected in the 
field of fuel cell performance prediction. A more accurate life prediction 
of fuel cells could be made using voltage prediction results with un-
certainty quantification. 

This paper proposes a performance prediction method for fuel cells 
from the perspective of uncertainty quantification for the first time. We 
present a new tool named the Bayesian Gated Recurrent Unit (B-GRU), 
which extends the advanced deep learning model with Bayesian theory 
and variational inference. The novelty and advantages of the proposed 
methods are summarized as follows:  

1) Compared to other mainstream neural network methods, B-GRU can 
provide more accurate prediction performance with less training 
data by averaging.  

2) B-GRU has a strong fault tolerance for noise in data collection in 
terms of interval estimation. In addition, with the increase of training 
data, the confidence interval (CI) of interval estimation would be 
more concentrated and close to the true value. 

3) The B-GRU is studied and compared with the current advanced in-
terval estimation method BNN, and the superiority of B-GRU is 
verified from different dimensions. 

The article is organized as follows: The framework for predicting fuel 
cell voltage with uncertainty quantification is presented in Section 2, 
where B-GRU, variational inference, and Adaptive Moment estimation 
(ADAM) optimization are incorporated. The parameters of the B-GRU 
are trained and optimized in Section 3. The superiority of the new model 
is fully demonstrated from different dimensions in Section 4. Conclu-
sions are given in Section 5 of the paper. 

Fig. 1. Proposed fuel cell performance prediction framework.  

W. Zhu et al.                                                                                                                                                                                                                                     



eTransportation 16 (2023) 100230

3

2. Methodology 

2.1. Prediction framework 

Fig. 1 shows the proposed uncertainty quantification framework for 
the fuel cell stack voltage prediction. The framework mainly includes 
the following steps: Data preprocessing, B-GRU modeling, model 
training based on variational inference, and ADAM optimization. 

First, the operational data of the fuel cell stack are collected, and the 
training dataset is preprocessed using the random forest for extracting 
main features. Then, the B-GRU is constructed by replacing the param-
eters in a classical neural network model with random variables, and the 

uncertainty is quantified as a probability density distribution. Thirdly, 
gradient-based learning and ADAM optimization are used to train a 
variational inference model. Finally, the result of uncertainty quantifi-
cation prediction can be obtained from the training and the operational 
data. 

In this framework, besides the interval estimation of the stack 
voltage prediction, the uncertainty of a point prediction can be reduced, 
and more instructive decision-making suggestions can be provided from 
the result. At the same time, the probability density distribution of the 
predicted results can also be obtained for practical use. The mathe-
matical models involved in establishing this framework will be detailed 
below. 

2.2. Random forest 

The random forest is capable of processing high-dimensional data 
with fast training process [27]. It is thus selected as a method for pre-
processing the raw data. The main steps are as follows:  

1) The importance score VIM and the Gini coefficient GI of the feature 
are used as indicators to measure the contribution. 

First, denote the feature as X1, X2, ⋯Xc, the average change of the 
node split impurity of the jth feature in all decision trees of the random 
forest denote as Xj, we have 

GIm = 1 −
∑|k|

k=1
p2

mk (1)  

where k represents the number of categories and pmk is the fraction of the 
kth category in the mth node. 

Next, the importance of the feature Xj in the mth node can be 
calculated as: 

VIMgini
jm =GIm − GIl − GIr (2)  

where GIl and GIr are the Gini indices of the two nodes before and after 
the corresponding branch.  

2) For the case that the feature Xj is contained in different nodes of the 
decision tree I, let m belong to the set M (m ∈ M). The importance of 
the first tree i can be expressed as: 

VIMgini
ij =

∑

m∈M
VIMgini

jm (3)    

3) We set the number in the random forest to 100 and the initial data 
feature to 18. The contribution of the feature Xj Gini indicator is: 

VIMj =

∑100

i=1
VIMgini

ij

∑18

j=1

∑100

i=1
VIMgini

ij

(4)  

2.3. Gated recurrent Unit——GRU 

GRU is very similar to LSTM [28]. However, compared to the three 
gate functions in an LSTM, there are only two gates (the update gate zt 
and the reset gate rt) in a GRU model in a GRU model, as shown in Fig. 2. 

The expression of each component in the GRU structure is given as 
follows:  

1) Input: xinput = concat[ht− 1, xt ] ;  
2) Reset gate neuron: rt = σ(xinputWτ + bτ);  
3) Memory gate neuron: h̃t = tanh([rt ⊙ht− 1,xinput ]Wh + bh);  
4) Input gate neuron: zt = σ(xinputWz + bz);  
5) Memory after input: h̃′

t = zt ⊙ h̃t; 

Fig. 2. GRU structure diagram.  

Table 1 
Calculated Gini index contribution of each data feature.  

Feature Importance Feature Importance 

Current density 0.036242 Air inlet pressure 0.006749 
Current 0.042839 Air outlet 

pressure 
0.012470 

H2 inlet temperature 0.119115 H2 outlet pressure 0.002881 
H2 outlet temperature 0.012176 H2 inlet pressure 0.003073 
Air inlet temperature 0.004397 H2 inlet flow 0.002421 
Air outlet temperature 0.007434 H2 outlet flow 0.005698 
Cooling water inlet temperature 0.015407 Air inlet flow 0.001926 
Cooling water outlet 

temperature 
0.005840 Air outlet flow 0.672150 

Cooling water flow 0.041152 Air inlet humidity 0.008026  

Fig. 3. Relationship between the loss and epochs with 20 neurons in the hid-
den layer. 
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6) Forget gate neuron: ft = 1 − zt;  
7) The memory at time instant t − 1 after forgetting: h′

t− 1 = ft⊙ ht− 1 ;  
8) The memory at the current moment t: ht = h′

t− 1 + h̃′

t. 

The input xinput is obtained by performing the feature dimension on 
the memory state ht− 1 obtained at time t − 1 and the word vector input 
xt at time t. σ refers to the sigmoid function. The output result of the reset 
gate neuron rt and the input gate neuron zt is a vector. Since both gate 
neurons use the sigmoid function as activation function, each element of 

the output vector is between 0 and 1, which is used for controlling the 
amount of information flowing through the valve in each dimension. 
The output result of the memory gate neuron h̃t is also a vector, and it is 
the same as the output vector dimension of the reset gate and the input 
gate neuron. Since the activation function used by the memory gate 
neuron is the tanh function, each element of the output vector is be-
tween − 1 and 1. Furthermore, Wτ, bτ, Wh, bh, Wz, and bz are the pa-
rameters of each gate neuron, which shall be learned in the training 
process. 

2.4. Modeling of B-GRU 

In the B-GRU, the incorporation of the Bayesian inference with the 
GRU offers several advantages. On the one hand, B-GRU provides a 
probabilistic extension for the classic deep learning models. It retains the 
network topology of the classic deep learning model with high modu-
larity and scalability. On the other hand, the constant parameters in 
classical DNNs are replaced with random variables. This can quantify 
the uncertainty through probability distribution and obtain the CI of the 
prediction result. 

Given the training samples x and y, the B-GRU, denoted by y = fω(x), 
consists of a prior distribution p(ω) on the parameter space and a like-
lihood function of Bayesian regression p(D |ω) =

∏N
i=1l(y(i)

⃒
⃒fω(x(i))). A 

Fig. 4. Network parameter distribution. 
(a) Weight distribution in the first hidden layer. (b) Bias distribution in the first hidden layer. 
(c) Weight distribution in the first hidden layer. (d) Bias distribution in the second hidden layer. 

Table 2 
Performance of point estimation under different length training data.  

Model Training data MSE RMSE MAE 

B-GRU 80h 1.59E-4 1.261E-2 9.002E-2 
180h 4.9E-5 7.01E-3 4.024E-3 
280h 3.3E-5 5.744E-3 3.907E-3 
380h 3.0E-5 5.477E-3 3.358E-3 
480h 1.87E-4 1.368E-2 9.057E-2 
580h 2.29E-4 1.513E-2 1.087E-2  
680h 9.31E-5 9.539E-3 9.837E-3 
780h 3.15E-5 5.612E-3 3.551E-3 
880h 1.6E-5 4.006E-3 2.599E-3 
980h 1.3E-5 3.638E-3 2.247E-3  
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Gaussian distribution can be used for l(y(i)
⃒
⃒fω(x(i)) [27], and the model 

parameters ω are independent of the training input samples x. From 
Bayes’ theorem, the posterior distribution of the model parameters is 

p(ω|D)=
p(ω)p(D |ω)

p(D )
=

p(ω)p(D |ω)
∫

p(ω)p(D |ω)dω

=
p(ω)

∏N
i=1l

(
y(i)

⃒
⃒f ω( x(i)

))

∫
p(ω)

∏N
i=1l(y(i)|f ω(x(i)))dω

(5) 

Based on the posterior distribution p(ω|D ), the B-GRU model y =

fω(x) can be used for subsequent inference of uncertainty quantification. 
Specifically, given any sample data X*, the predicted output Y* can be 
obtained by 

p(Y∗|X∗,D )= lim
Δω→∞

∑
p(Y∗|X∗,ω+Δω)× p(ω+Δω|D )×Δω

=

∫

p(Y∗|X∗,ω)p(ω|D )dω
(6)  

2.5. Variational inference 

The main challenge of the B-GRU is that the posterior distribution 
p(ω|D ) is difficult to obtain. This problem would be more complicated 
when the model has a complex structure with high-dimensional data. 
Variational inference is a method for approximating intractable distri-
butions, effectively solving various machine learning and inference 

Fig. 5. Prediction results with the training data of length (a) 80 h, (b) 180 h, (c) 280 h, (d) 380 h, (e) 480 h, and (f) 580 h.  
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problems [29]. The core idea of the variational inference is to approx-
imate the actual posterior distribution through a probability density 
distribution (variational distribution) that is easy to evaluate and infer. 

By variational inference, a distribution qθ(ω|θ) controlled by a set of 
parameters θ is used to approximate the true posterior distribution 
p(ω|D ) [30]. A Gaussian distribution is used as the approximation. Let 
θ = (μ,σ), and each network parameter ωi obeys a Gaussian distribution 
with a parameter of (μi,σi). The difference between qθ(ω|θ) and p(ω|D) is 
measured using the Kullback-Leibler (KL) divergence, i.e., 

θ∗ = argmin
θ

KL[qθ(ω|θ)‖p(ω|D )] (7)  

where  

Since KL > 0, the following inequality holds 

log p(D ) ≥

∫

qθ(ω|D )log[p(ω,D ) / qθ(ω|D )]dθ (9)  

where the LHS is the likelihood of the data, namely the evidence, and the 
RHS is called the evidence lower bound (ELBO). Assuming the evidence 
is constant, minimizing KL is equivalent to maximizing the ELBO. This 
gives 

θopt = argmin
θ

KL = argmax
θ

ELBO (10)  

where 

ELBO=

∫

qθ(ω|D )log
p(ω,D )

qθ(ω|D )
dθ

=

∫

qθ(ω|D )log
p(D |ω)p(ω)

qθ(ω|D )
dθ

=

∫

qθ(ω|D )log p(D |ω)dθ+
∫

qθ(ω|D )log
p(ω)

qθ(ω|D )
dθ

= Eqθ(ω|D ) log p(D |ω) − KL[qθ(ω|D )‖p(ω)]

(11) 

By estimating (11) using the sampling Monte Carlo method [31], and 
the loss function can be found as 

F (D , θ) =KL[qθ(ω|D )‖p(ω)] − Eq(ω|D ) log p(D |ω)

=
∑n

i=1
logqθ

(
w(i)

⃒
⃒D

)
− log p

(
ω(i)) − log p

(
D

⃒
⃒ω(i))

(12)  

2.6. ADAM optimization algorithm 

In order to solve for the model parameters, an optimization algo-
rithm with fast convergence speed and high computational efficiency 

Table 3 
Prediction errors of various algorithms under different training sets.  

Training data Model MSE RMSE MAE 

80 h B-GRU 1.59E-4 1.261E-2 9.002E-3 
B-LSM 2.05E-4 1.432E-2 9.247E-3 
BNN 2.23E-4 1.517E-2 9.451E-3 
RNN 1.627E-3 4.033E-2 3.347E-2 
LSTM 1.469E-3 3.832E-2 3.029E-2 
GRU 1.031E-3 3.211E-2 2.437E-2 
DNN 2.361E-3 4.859E-2 4.479E-2 

180 h B-GRU 4.9E-5 7.01E-3 4.024E-3 
B-LSTM 5.16E-5 7.183E-3 4.178E-3 
BNN 5.3E-5 7.304E-3 4.344E-3 
RNN 1.184E-3 3.442E-2 2.799E-2 
LSTM 1.044E-3 3.231E-2 2.651E-2 
GRU 6.58E-4 2.565E-2 2.159E-2 
DNN 1.352E-3 3.677E-2 3.123E-2 

280 h B-GRU 3.3E-5 5.744E-3 3.907E-3 
B-LSTM 3.42E-5 5.848E-3 3.945E-3 
BNN 3.5E-5 5.931E-3 3.987E-3 
RNN 6.83E-4 2.613E-2 2.113E-2 
LSTM 2.22E-4 1.489E-2 1.166E-2 
GRU 1.36E-4 1.166E-2 8.643E-3 
DNN 7.68E-4 2.604E-2 2.058E-2 

380 h B-GRU 3.0E-5 5.477E-3 3.358E-3 
B-LSTM 3.06E-5 5.532E-3 3.373E-3 
BNN 3.1E-5 5.602E-3 3.419E-3 
RNN 2.53E-4 1.592E-2 1.181E-2 
LSTM 2.2E-5 4.675E-3 2.834E-3 
GRU 2.1E-5 4.583E-3 2.758E-3 
DNN 3.95E-4 1.987E-2 1.383E-2 

480 h B-GRU 1.87E-4 1.367E-2 9.057E-2 
B-LSTM 1.90E-4 1.378E-2 9.471E-2 
BNN 1.94E-4 1.393E-2 1.018E-2 
RNN 1.23E-4 1.112E-2 8.032E-3 
LSTM 3.13E-4 1.769E-2 1.408E-2 
GRU 2.02E-4 1.421E-2 1.254E-2 
DNN 3.04E-4 1.744E-2 1.283E-2 

580 h B-GRU 2.29E-4 1.513E-2 1.087E-2 
B-LSTM 2.31E-4 1.520E-3 1.093E-2 
BNN 2.34E-4 1.531E-2 1.109E-2 
RNN 1.01E-4 1.004E-2 7.336E-3 
LSTM 4.56E-4 2.157E-2 1.659E-2 
GRU 3.84E-4 1.960E-2 1.489E-2 
DNN 4.03E-4 2.007E-2 1.563E-1  

KL[qθ(ω|D )‖p(ω|D )] =

∫

qθ(ω|D )
qθ(ω|D )

p(ω|D )
dθ

=

∫

qθ(ω|D )
qθ(ω|D )p(D )

p(ω,D )
dθ

=

∫

qθ(ω|D )log qθ(w|D )dθ+
∫

qθ(ω|D )log p(D )dθ −
∫

qθ(ω|D )log p(ω,D )dθ

=

∫

qθ(ω|D )log qθ(ω|D )dθ+ log p(D ) −

∫

qθ(ω|D )log
p(ω,D )

qθ(ω|D )
dθ −

∫

qθ(ω|D )log p(ω,D )dθ

(8)   

Fig. 6. Error analysis of different algorithms.  
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needs to be developed. In this paper, the ADAM optimization algorithm 
is adopted, which consists of the following steps:  

1) Calculate the gradient g of the objective function f(θ) with respect to 
parameter θ 

at time t: 

gt =∇θft(θt− 1) (13)    

2) Calculate the first moment mt of the gradient at time t, which is a 
weighting 

average between the first moment at the previous time t− 1 and the 
current gradient gt: 

mt = β1 ⋅ mt− 1 +(1 − β2)⋅gt (14)  

where mt is the first moment of the gradient at time t, m0 = 0.  

3) Calculate the second moment of the gradient, which is the average of 
the pastgradient squares and the current gradient squares: 

vt = β1 ⋅ vt− 1 +(1 − β2)⋅g2
t (15)  

where β1 and β2 are the exponential decay rates of the first and the 
second moment estimations. We set β1 = 0.9 and β2 = 0.999 in this 

work.  

4) Correct the first-order moment mt . The initial value mt is zero, 
reducing theinfluence of this bias after processing. The calculation 
equation is: 

m̂t =mt
/ (

1 − βt
1

)
(16)  

where m̂t is the modified first moment of the gradient at time t.  

5) Correct the second-order moment vt to reduce the influence of this 
bias afterprocessing: 

v̂t = vt
/ (

1 − βt
2

)
(17) 

Fig. 7. Interval estimation of B-GRU under noises effect. (a) Interval estimation of raw data. (b) A zoomed-in view of the interval estimation at 590 h. (c) Probability 
density distribution of voltage based on original data at 590 h. (d) Interval Estimation of filtered data. (e) A zoomed-in view of the interval estimation of filtered data 
at 590 h. (f) Probability density distribution of voltage based on filtered data at 590 h. 

Table 4 
Interval estimation results at different times.  

Time/h Actual value Point estimation 95%CI Length of CI 

400 3.28 3.278876 [3.2687, 3.2901] 0.0214 
450 3.272 3.272865 [3.2626, 3.2845] 0.0219 
500 3.2628 3.263 [3.255, 3.273] 0.018 
550 3.26 3.26165 [3.2508, 3.2706] 0.0198 
600 3.2555 3.25591 [3.24467, 3.26382] 0.01915 
650 3.2356 3.2358 [3.22763, 3.24596] 0.01833 
700 3.2485 3.24915 [3.2393, 3.2605] 0.0212 
800 3.2355 3.23485 [3.22467, 3.24382] 0.01915  
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Fig. 8. Probability density distribution of the prediction results at (a) 400 h, (b) 450 h, (c) 500 h, (d) 550 h, (e) 600 h, (f) 650 h, (g) 700 h, and (h) 800 h.  
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where v̂t is the modified second moment of the gradient at time t.  

6) Update parameters θt according to 

θt = θt− 1 − α⋅m̂t / (
̅̅̅̅
v̂t

√
+ ε) (18)  

where α = 0.1 is the learning rate and ε = 10− 8. 

3. Model training 

3.1. Data preprocessing 

The data used in this work were obtained from IEEE PHM 2014 data 
challenge. 

Regeneration phenomena, material properties, and experimental 
conditions can significantly affect the prognostic outcomes. In data- 
driven methods, the raw data is rarely used directly as the input, since 
extracting the correct global degradation trend from the complex high- 
dimensional experimental data is difficult. We preprocessed the high- 
dimensional raw data using the random forest algorithm as described 
in Section 2.2. The calculated contribution of the Gini index (impor-
tance) of each data feature is shown in Table 1. 

It can be seen from Table 1 that some features have negligible in-
fluence on the fuel cell voltage. We selected the features with a contri-
bution greater than 0.01 as the input for subsequent neural network 
training. As a short-term prediction method, the B-GRU model would 
use the data of the first 60 h of these 8 variables to predict the results of 
the 61st h. It then uses the 8 variables of the 61st h to predict the voltage 
of the same hour. 

3.2. Network hyperparameter selection and visualization 

The hyperparameters of the B-GRU, such as the numbers of hidden 
layers and neurons, significantly impact the prediction performance. 
The mean absolute error (MAE), root-mean-square error (RMSE), and 
mean-square error (MSE) are used to quantify the impact of different 
hyperparameter settings. They are defined as 

MAE =
1
n
∑n

i=1
|yi − ŷi| (19)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
|yi − ŷi|

√

(20)  

MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (21)  

where yi and ŷi are the true and the predicted fuel cell voltages, and n is 
the number of test samples. 

It is found that the models with two hidden layers can provide the 
best performance, where the number of selected features directly de-
termines the number of neurons in the first layer. Therefore, the second- 
layer neurons should be given more attention. The number of hidden 
layers and the number of neurons in the second layer are detailed in 
Appendix A. The loss function in the B-GRU is calculated by changing 
the number of neurons in the hidden layer while keeping other param-
eters the same. For a model with 20 neurons in the hidden layer, the loss 
over the training epochs is visualized in Fig. 3, where it can be seen that 
the loss function can approach zero. The corresponding parameter 

distributions of the B-GRU are shown in Fig. 4. It can be seen that the 
obtained network parameters follow a Gaussian distribution, indicating 
that each prediction corresponds to a specific set of network parameters. 

4. Results and discussion 

This section will first evaluate the prediction performance of the B- 
GRU from three aspects: point estimation of B-GRU, interval estimation 
of B-GRU, and the comparative analysis of B-GRU. Then, we will analyze 
the results of the performance using both static and dynamic data. 
Specifically, the data were mainly analyzed under static conditions, and 
the performance is analyzed under dynamic conditions in Appendix B. 

4.1. Point estimation of B-GRU 

Not only can the B-GRU quantify the uncertainty and provide in-
terval estimates for the final prediction results, but it also provides point 
estimation of the prediction results by averaging. Two aspects of the 
research results are described to offer a more comprehensive analysis of 
point estimation performance. In the first step, the training sets with 
different data lengths are used to evaluate the performance of the B-GRU 
point estimation. Next, the B-GRU point estimation is compared with 
other data-driven approaches, including Deep Neural Network (DNN), 
RNN, LSTM, GRU, and BNN (point estimation) under the same length of 
the training set. The parameters of neural networks for comparison are 
given in Appendix C. Note that the B-GRU output would differ slightly 
due to uncertainty in network parameters. The point estimation is 
derived from the average of 100 predictions. The MSE, MAE, and RMSE 
are used as evaluation indicators. 

4.1.1. Analysis under different length data sets 
The IEEE PHM 2014 Data Challenge provides about 1000 h of stack 

operating data. The data in the first 80, 180, 280, 380, 480, 580, 680, 
780, 880, and 980 h were used to train the B-GRU model and predict the 
subsequent results. Example prediction results are shown in Table 2, and 
the calculated evaluation indicators are shown in Fig. 5. 

As shown in Table 2, the three prediction errors show a common 
trend: it first decreases, increases, and finally decreases. Initially, the 
increase of the data set can improve the accuracy of the prediction. 
When the training data set increases to a certain extent, the prediction 
model would appear overfitting. As the training dataset further in-
creases, the prediction error would decrease again. As most of the data 
are used in training, the B-GRU model becomes familiar with the data 
set, reducing the error in the training process and thereby improving 
prediction accuracy. 

Although the error would continue to decrease after 780 h, using 
smaller training data to obtain lower training errors is a cost-effective 
choice. Therefore, the research in the following sections is mainly car-
ried out around the training dataset for around 380 h. 

4.1.2. Comparison with other algorithms 
We compare the B-GRU point estimation with RNN, LSTM, DNN, 

GRU, BNN (point estimation), and B-LSTM (point estimation). The 
evaluation indicators of various algorithms under different training sets 
are shown in Table 3. 

As shown in Table 3, the B-GRU point estimation prediction error is 
smaller than that of the B-LSTM, BNN, RNN, LSTM, DNN, and GRU when 
the length of training data is shorter than 380 h. Using the MSE as the 
comparison index, the error comparison chart in Fig. 6 illustrates the 
trend of the prediction errors of these algorithms with the training data. 
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Fig. 9. B-GRU model interval estimation and probability density distribution of its prediction results at time 580 h (a) Interval estimation with training data length of 
180 h. (b) Probability density distribution of prediction results at 580 h in Fig. 9(a). (c) Interval estimation with training data length of 280 h. (d) Probability density 
distribution of prediction results at 580 h in Fig. 9(c). (e) Interval estimation with training data length of 380 h, (f) Probability density distribution of prediction 
results at 580 h in Fig. 9(e). 
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Compared to the conventional neural networks without Bayesian 
inference (e.g., RNN, LSTM, DNN, and GRU), the prediction accuracy of 
the neural network with Bayesian inference (BNN, B-GRU, and B-LSTM) 
is significantly improved when the length of training data is shorter than 
380 h. This illustrates the superiority of the Bayesian part. The Bayesian- 
based neural network can quantify the uncertainty of the data. Specif-
ically, they can achieve high accuracy with insufficient training data. At 
the same time, the prediction results of the Bayesian-based neural 
network fluctuate within a certain range. Their point estimation results 
are calculated based on multiple prediction results, which ensure low 
uncertainty and accuracy of point estimations. 

Compared with BNN and B-LSTM, the prediction results of B-GRU 
also show its superiority, which may illustrate the superiority of the GRU 
part. Specifically, GRU and LSTM belong to recurrent neural networks, 
which are more suitable for life prediction of time series than DNN 
(neural network part of BNN). 

Although the B-GRU prediction results cannot always be maintained 
at the lowest level, the B-GRU point estimation errors are smaller than 
those of BNN, RNN, LSTM, DNN, and GRU before 380 h and even smaller 
than those of RNN and LSTM at 480 h and 580 h. The results demon-
strate the suitability to predict fuel cell performance using the superi-
ority of the B-GRU point estimation with a small amount of data. 

4.2. Interval estimation of B-GRU 

Interval estimation is very important for the quantification of un-
certainty. The distribution of the prediction results output by the B-GRU 
is similar to the Gaussian distribution. The prediction of uncertainty 
quantification can be realized by selecting different CIs. 

4.2.1. Performance analysis under noises effect 
During data acquisition, noise is an inevitable source of uncertainty. 

In many data-driven methods, it is usually necessary to filter the raw 
data to achieve a better prediction effect [32]. To compare B-GRU’s 
prediction performance, raw and filtered data are put into B-GRU and 
compared. 

The Averaging Filtering (AF) is adopted to process the raw data of the 
PEMFC, which is a commonly used method to filter out noise [33]. 
According to the analysis results of the Random Forest, it is necessary to 
use the AF to preprocess the 18 kinds of data. After smoothing, the 
uncertainty in the data would be reduced. Appendix D shows the raw 

and filtered data with a relatively large Gini coefficient. 
The raw data and filtered data of the first 480 h are used for the 

training of B-GRU, and the results of interval estimation are shown in 
Fig. 7. The interval estimation results based on the filtered data are more 
compact due to the less uncertainty created by the filtered data. 
Compared to the raw data, the predicted results have a tighter kernel 
distribution. It may be possible to understand the problem more clearly 
by simultaneously comparing the voltage probability density distribu-
tions of the raw data and the filtered data. Fig. 7(b) and (c) show the 
voltage distribution at 590 h, respectively. When the confidence coef-
ficient is selected as 0.95, the CI length would only make a slight dif-
ference. The CI based on filtered data is [3.2371, 3.25602], and the 
confidence interval length is 0.01892. The confidence based on raw data 
is [3.2348, 3.2562], and the confidence interval length is 0.0214. 

This comparison result shows that the noise contained in the raw 
data has little impact on the prediction results of B-GRU. The original 
data would be denoised to obtain the neural network parameters with 
higher reliability in a large number of data-driven life predictions. 
However, B-GRU can also obtain the ideal prediction results with the 
raw data, which is the advantage of B-GRU. 

4.2.2. Performance analysis for different forecast times 
This section uses the operating data of the fuel cell for the first 380 h as 

the training set. The interval estimation and kernel distribution of the 
prediction results at different times are provided in Table 4 and Fig. 8, 
respectively. The green line represents the actual stack voltage, and the red 
line is the point estimation result of the B-GRU model. It can be observed 
that the kernel distribution is around the point estimation in the range of 
400–800 from the probability density distribution diagram (in Fig. 8). 

Furthermore, with a longer forecast horizon, the error between the 
point estimation based forecast result and the actual result does not 
change significantly, and the length of the confidence interval (CI) is 
kept around 0.02, which illustrates that the B-GRU model is credible for 
the forecast result in the next 400 h. 

Moreover, the uncertainty contained in RUL could be presented as 
confidence in the prediction results. The distribution of the probability 
density could characterize the reliability of the prediction method. The 
amount of the training data would have a certain impact on the RUL 
prediction result, and selecting an appropriate training data set would also 
have a certain impact on the confidence of the RUL prediction result. 

4.2.3. Performance analysis for different training times 
This section uses 180 h, 280 h, and 380 h data for training. The 

prediction results and the probability density distribution corresponding 
to 580 h are provided as follows. 

In order to facilitate comparative analysis, Fig. 9(b), (d), and (f) are 
set to the same coordinates in this section. With the increase of training 
data, the point estimation results of the three are not much different. In 
other words, the point estimation is less affected by the training data set. 
However, the interval estimation results gradually concentrate on the 
actual results, and the length of the CI gradually shortens. The increase 
in training data has a positive effect on the results of interval estimation. 
Overall, the predicted stack voltages are generally within the 95% 
confidence interval. 

4.3. Comparative analysis of B-GRU 

As mentioned in the Introduction section, B-GRU is mainly proposed 
to complete the prediction of time series data and quantify the uncer-
tainty. Despite the positive results discussed in Sections 4.1 and 4.2, a 
further comparison should be made to demonstrate its superiority over 
the state-of-the-art Bayesian neural network method. 

Both BNN and B-LSTM, proposed by Wang et al. [24] and Peng et al. 
[25], respectively, are used to compare the performance of B-GRU point 
estimation in Section 4.1. An intuitive evaluation of the improvement of 
point estimation and interval estimation is proposed using two 

Table 5 
Performance improvement results for B-GRU point estimation and interval 
estimation compared with BNN.  

Training 
data 

Point estimation MSE reduction 
ratio (ξ1) 

Interval estimation concentration 
ratio (ξ2) 

80 h 28.7% 9.23% 
180 h 7.55% 7.05% 
280 h 5.71% 6.11% 
380 h 3.23% 5.39% 
480 h 3.61% 1.57%  

Table 6 
Performance improvement results for B-GRU point estimation and interval 
estimation compared with B-LSTM.  

Training 
data 

Point estimation MSE reduction 
ratio (ξ1) 

Interval estimation concentration 
ratio (ξ2) 

80 h 22.44% 7.35% 
180 h 5.04% 6.47% 
280 h 3.51% 6.11% 
380 h 1.96% 4.38% 
480 h 1.56% 1.74%  

W. Zhu et al.                                                                                                                                                                                                                                     



eTransportation 16 (2023) 100230

12

Fig. 10. Comparison of prediction results before and after improvement when the training data is 80 h. (a) interval estimation of BNN; (b) probability density 
distribution of BNN at 600 h; (c) interval estimation of B-LSTM; (d) probability density distribution of B-LSTM at 600 h; (e) interval estimation of B-GRU; (f) 
probability density distribution of B-GRU at 600 h. 
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indicators to demonstrate the superiority of B-GRU. 

ξ1 =
RMSB − RMSB− GRU

RMSB
× 100% (21a)  

ξ2 =

⃒
⃒CIupper − CIlower

⃒
⃒

B −
⃒
⃒CIupper − CIlower

⃒
⃒

B− GRU⃒
⃒CIupper − CIlower

⃒
⃒

B

× 100% (22)  

where ξ1 and ξ2 represent the MSE reduction rate of point estimation 
and interval estimation concentration ratio. RMSB and RMSB-GRU are the 
RMSE of the point estimation prediction of the Bayesian neural network 
method (BNN and B-LSTM) and B-GRU, CIupper and CIlower are the upper 
and lower bounds of the 95% confidence interval of the interval esti-
mation, respectively, 

⃒
⃒CIupper − CIlower

⃒
⃒
B and 

⃒
⃒CIupper − CIlower

⃒
⃒
B− GRU are 

the length of the interval estimation of BNN and B-GRU, respectively. 
The training data is 80 h, 180 h, 280 h, 380 h, and 480 h. The perfor-
mance improvement results are shown in Table 5 and Table 6. 

Under the training data from 80 to 480 h, the B-GRU shows varying 
degrees of improvement. This trend of improvement becomes more pro-
truding when the amount of training data is small. Specifically, when 
using 80 h of training data, compared with BNN, the improvement of ξ1 
and ξ2 can reach 28.7% and 9.23%, respectively. Compared with B-LSTM, 
the improvement of ξ1 and ξ2 can reach 22.4% and 7.35%, respectively. 

As is shown in Fig. 10, the kernel distribution of interval estimation 
in the B-GRU is more concentrated, and the point estimation result is 
closer to the actual value. Since all three algorithms share a common 
Bayesian component, their neural network part may play a more 
important role. Compared with BNN, benefitting from the properties of 
recurrent neural networks, GRU can get an expanded data set, which is 
trained and predicted based on the original training set and could make 
the training set more accurate. When compared to B-LSTM, it can be 
seen from Fig. 6 that although both GRU and LSTM belong to RNNs, the 
performance of GRU is better than that of LSTM. 

However, this performance improvement gradually diminishes as 
the training dataset increases. Specifically, when the training data are 
more than 380 h, the improvement of B-GRU’s prediction results in ξ1 
and ξ2 is not obvious. With the increase of training data, the amount of 
data can meet the training requirements, in which case the GRU does not 
have significant advantages. In addition, the data expansion of GRU 
would bring cumulative errors and overfitting to the training process 
and reduce the prediction accuracy, affecting the results of subsequent 
uncertainty quantification. 

Overall, the B-GRU outperforms the BNN and B-LSTM in point esti-
mation and interval estimation for complex time series forecasting, 
especially in the scenarios with small training datasets. 

5. Conclusion 

In this paper, a method combining Bayesian theory and GRU is 

proposed for the first time. The B-GRU can realize uncertainty quanti-
fication in the prediction process and provide an important basis for the 
operational decision. A large number of performance studies have been 
carried out to verify the performance of the B-GRU, and the conclusions 
are as follows:  

1) When the training dataset is less than 380 h, the performance of B- 
GRU point estimation is better than the traditional mainstream 
neural network.  

2) B-GRU is less affected by noise and can quantify the uncertainty in 
the prediction process by interval estimation.  

3) Compared with the cutting-edge Bayesian-based neural network, B- 
GRU point estimation improvements up to 28.7% (BNN) and 22.4% 
(B-LSTM), and interval estimation improvements up to 9.23% (BNN) 
and 7.35% (B-LSTM). 

In future work, we will explore more appropriate parameter distri-
butions to improve performance prediction in the hydrogen vehicle 
field. 
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Appendix 

Appendix A 

The optimal number of hidden layers is explored by changing the number of hidden layers under the same training dataset. The variation of the loss 
with epoch under different number of hidden layers is shown in Figure A.1. When the number of hidden layers is 2, the loss change is minimized, so the 
optimal number of hidden layers for B-GRU is 2.   
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After determining the best hidden layer, under the same training data, changing the number of neurons in the second hidden layer to obtain the 
variation of the loss. The number of neurons varied from 5 to 30 were studied, when the number of neurons in the second hidden layer is 20, the loss 
can be achieved to the minimum. In order to save the length of the article, The number of neurons varied from 16 to 23 is shown in Figure A.2. 

Fig. A.1. Variation of the loss with epoch under different number of hidden layers. 
The number of hidden layers is (a)1; (b)2; (c)3; (d)4.  
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Fig. A.2. variation of the loss with epoch under different number of neurons.  
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Appendix B 

In order to further reflect the performance of the B-GRU, Appendix B predicts the point estimation and interval estimation of the voltage decay of 
the fuel cell under dynamic conditions. The data under dynamic conditions fluctuates widely and is inconsistent with previous and subsequent data 
around 35h, 181h, 342h, 505h, 666h, and 830h, which can be considered as “failure data”. Before applying these data, the data of these failure points 
were preprocessed using the averaging filtering (AF) method, and the preprocessed data was used for prediction. 

The results of the point estimation and interval estimation are shown in Tables B.1 and B.2. Among them, Table B2 is the interval estimation based 
on the prediction result of 380 h in Table B1. The interval estimation obtained by using the training data with the data length of 380h is shown in 
Figure B.1:  

Table B.1 
Performance of point estimation under different length training data  

Model Training data MSE RMSE MAE 

B-GRU 80h 1. 657E-3 4.071E-2 1.926E-2 
180h 1. 005E-3 3.171E-2 1.330E-2 
280h 6.98E-4 2.641E-2 1.001E-3 
380h 5.23E-4 2.287E-2 2.842E-3 
480h 6.53E-4 2.556E-2 3.296E-3 
580h 8.21E-4 2.866E-2 3.802E-3   

Table B.2 
Interval estimation results at different times  

Time/h Actual value Point estimation 95%CI Length of CI 

400 3.184 3.181 [3.164, 3.207] 0.043 
450 3.200 3.205 [3.186, 3.213] 0.027 
500 3.236 3.232 [3.218, 3.243] 0.025 
550 3.209 3.213 [3.197, 3.221] 0.024 
600 3.215 3.219 [3.186, 3.227] 0.041 
650 3.213 3.220 [3.193, 3.234] 0.041 
700 3.200 3.208 [3.186, 3.219] 0.033 
800 3.183 3.187 [3.165, 3.206] 0.041  

Fig. B.1. Interval estimation of B-GRU under dynamic conditions and its partial magnification  

It can be seen from the prediction results that B-GRU still shows good performance under dynamic conditions. Table B1 shows that the prediction 
performance first decreases and then increases with the increase of training data and reaches the minimum at 380h, which is highly consistent with the 
performance of the algorithm on static data. In Table B2, the prediction performance of BNN over time is depicted. Point estimation results are very 
close to actual results, while interval estimation is closely distributed around the point estimation. Although the length of the interval estimation 
ranges from 0.02 to 0.04, there is an excellent quantitative performance of uncertainty. 
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Appendix C: 

This part briefly describes the structure and parameters of the neural network used.  

1) DNN: Deep neural networks have multiple hidden layers and are suitable for classification and regression problems. The DNN structure used in this 
paper is as follows: the number of input, hidden and output layers is 1, 2, 1; the input layer has a total of 18 neurons, and each neuron has 50 wt 
parameters and 50 bias parameters; the first hidden layer has a total of 50 neurons, and each neuron has 25 wt parameters and 25 bias parameters; 
the second hidden layer has a total of 25 neurons, and each neuron has 10 wt parameters and 10 Bias parameter; the output layer which contains 1 
wt parameter and 1 bias parameter has 10 neurons.  

2) RNN: RNN is a basic recurrent neural network, which has an advantage over DNN in processing time series sequences. In this paper, RNN is used to 
predict the data of the first 60 moments to obtain the data of the 61st moment, and so on. The structure of RNN is as follows: the number of input, 
hidden and output layers is 1, 2, 1; the input layer has a total of 60 neurons, and each neuron has 100 wt parameters and 100 bias parameters; the 
first hidden layer has a total of 100 neurons, and each neuron has 80 wt parameters and 80 bias parameters; the second hidden layer has a total of 
80 neurons, and each neuron has 10 wt parameters and 10 bias parameter; the output layer which contains 1 wt parameter and 1 bias parameter 
has 10 neurons.  

3) LSTM: The structure of LSTM is as follows: the number of input, hidden and output layers is 1, 2, 1; the input layer has a total of 60 neurons, each 
with 100 wt parameters and 100 bias parameters; the first hidden layer has a total of 100 neurons, and each neuron has 80 wt parameters and 80 
bias parameters; the second hidden layer has a total of 80 neurons, and each neuron has 10 wt parameters and 10 bias parameter; the output layer 
which contains 1 wt parameter and 1 bias parameter has 10 neurons.  

4) GRU: the GRU is used to predict the data of the first 60 moments, and the data of the 61st moment is obtained, and so on. The structure of the GRU is 
as follows: the number of input, hidden and output layers is 1, 2, 1; the input layer has a total of 60 neurons, and each neuron has 100 wt pa-
rameters and 100 bias parameters; the first hidden layer has a total of 100 neurons, and each neuron has 80 wt parameters and 80 bias parameters; 
the second hidden layer has a total of 80 neurons, and each neuron has 10 wt parameters and 10 bias parameter; the output layer which contains 1 
wt parameter and 1 bias parameter has 10 neurons.  

5) BNN: Bayesian neural network is the product of the combination of Bayesian theory and ANN. Unlike ordinary neural networks, BNN regard 
weights as Gaussian distributions with mean and variance. Ordinary neural networks optimize the weights, while BNN optimizes the mean and 
variance of the weights. The structure of the BNN is as follows: the number of input, hidden and output layers is 1, 2, 1; the input layer has a total of 
8 neurons, and each neuron has 30 wt parameters and 30 bias parameters; the first hidden layer has a total of 30 neurons, and each neuron has 20 
wt parameters and 20 bias parameters; the second hidden layer has a total of 20 neurons, and each neuron has 10 wt parameters and 10 bias 
parameter; the output layer has 10 neurons, which contains 1 wt parameter and 1 bias parameter. All weight parameters and bias parameters in 
BNN obey their respective Gaussian distributions. All parameters in the network have their corresponding mean and variance.  

6) B-LSTM: Bayesian long short-term memory network is the combination of Bayesian theory and LSTM, which can quantify the uncertainty of time 
series data. The structure of the B-LSTM is as follows: the number of input, hidden and output layers is 1, 2, 1; the input layer has a total of 8 
neurons, and each neuron has 50 wt parameters and 50 bias parameters; the first hidden layer has a total of 50 neurons, and each neuron has 30 wt 
parameters and 30 bias parameters; the second hidden layer has a total of 30 neurons, and each neuron has 10 wt parameters and 10 bias 
parameter; the output layer has 10 neurons, which contains 1 wt parameter and 1 bias parameter. All weight parameters and bias parameters in B- 
LSTM obey their respective Gaussian distributions. All parameters in the network have their corresponding mean and variance. 

Appendix D: 

Appendix D uses the average filtering method to smooth the 8 sets of characteristic data of the fuel cell. Due to the large number of features, 
Appendix D selects four features with higher Gini coefficients for visualization and shown in Figure D.1. 
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Fig. D.1. Comparison before and after the average filtering method  
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