
Modeling of PEMFC and Analysis of Multiple Influencing Factors
on Output Characteristics
Yang Yang,1,2 Wen-Chao Zhu,1 Yang Li,1 Bo Zhao,3 Lei-Qi Zhang,3 Jie Song,4 Zhan-
Feng Deng,4 Ying Shi,2 and Chang-Jun Xie1,2,z

1Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan
430070, People’s Republic of China
2School of Automation, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
3State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, People’s Republic of China
4Global Energy Interconnection Research Institute, Beijing 102211, People’s Republic of China

The output characteristics of the Proton-Exchange Membrane Fuel Cells (PEMFCs) are affected by multiple factors, but
quantitatively describing the relationships is challenging. In this paper, a semi-empirical dynamic model of PEMFC is established
firstly. The influence of a single factor on the output characteristics of PEMFC is analyzed longitudinally. Then, a derivative
significance weight analysis based on support vector regression (SVR-DSWA) algorithm is proposed to analyze the influence
weights of multi-factors on the output characteristics, and the optimal parameters combinations in different current density regions
are obtained by maximizing the output voltage values based on formulated SVR model. The Root-Mean-Square Error (RMSE) of
output voltage prediction results based on the SVR algorithm is less than 0.0458, and the accuracy of weight analysis results by
using the SVR-DSWA algorithm and the optimal parameters combinations analysis method are verified by 4-factor 3-level
orthogonal experiments in low, medium, and high current density regions. The SVR-DSWA algorithm and optimal parameters
combinations analysis method can replace the orthogonal experiment to analyze the influence weights and optimal combinations of
input factors on the output characteristics within the full current density range rapidly, and has much higher efficiency than the
orthogonal experiment. The analysis results can provide theoretical support for improving fuel cell performance and formulating a
control strategy.
© 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ac580a]
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Due to its merits of large reserves and environmentally-friendly
nature, hydrogen is considered a promising solution for developing
future energy storage.1 As a key power generation component of the
hydrogen-based energy storage systems, a fuel cell can convert the
chemical energy in the hydrogen into electricity and heat in a
pollution-free and zero-emission manner.2 Among various fuel cell
technologies, the Proton-Exchange Membrane Fuel Cell (PEMFC)
possesses distinct advantages: high energy and power densities, fast
response, no electrolyte leakage and corrosion, and a favorable
temperature range for practical applications.3 An accurate mathe-
matical model of the PEMFC is essential for verifying and predicting
the effectiveness of new materials, innovative structural designs, and
advanced system control strategies under different operating condi-
tions. However, accurately and efficiently describing the complex
dynamic behaviors of PEMFC, using multi-physical domain knowl-
edge ranging from electrochemistry, hydrodynamics, and thermo-
dynamics, are fundamentally challenging. Usually, a model should
be developed to consider the research objectives and the applica-
tions. Different types of PEMFC models have different applicability
to related problems. Accordingly, to predict the output performance
of the PEMFC, the PEMFC models can be generally categorized into
four types: (1) the mechanistic models, (2) the empirical models, (3)
the semi-empirical models, and (4) the data-driven models. The
advantages, disadvantages, and applications of these models are
summarized in Table I.

When the working process to be studied needs for analyzing the
internal mechanism characteristics of PEMFC, structural optimiza-
tion, and material development, the corresponding mechanism model
should be established. For example, Fuller et al.4 first established a
one-dimensional (1D) isothermal model for a small single cell.
Nalbant et al.5 showed a 1D steady-state model supplied by a
mixture of hydrogen and carbon monoxide, where the effects of
temperature, platinum loading, and the membrane materials on the
performance of high-temperature PEMFC were studied. Rahman
et al.6 developed a 1D non-isothermal model to predict the resistance
to dry oxygen and limiting current. Abdollahzadeh et al.7 proposed a

cathode two-dimensional (2D) multi-component mixture model to
study the effects of pressure difference, operating temperature, Gas
Diffusion Layer (GDL) thickness, GDL porosity, and inlet gas
humidity on PEMFC performance. The 2D model considers the
influence of changes, in the reaction gas transport along the flow
channel, on the PEMFC performance.8 Dutta et al.9 used the three-
dimensional (3D) model to predict the temperature behavior in the
PEMFC channel for the first time. They studied the influence of heat
generated by chemical reactions on the performance of the PEMFC.
Kahveci et al.10 established a 3D single-phase model to investigate
the performance of PEMFC with winding channels, and analyzed the
effects of operating pressure and temperature on the output
performance. Although such a 3D model is a multi-domain coupling
model that can accurately describe the transmission mechanism of
PEMFC in the whole space,9–11 the model structure is complex to
derive, and many model parameters are difficult to obtain. In
addition, the computational burden to solve these 3D models is
prohibitive, which impedes the use of these models for practical
control systems of PEMFCs.

The empirical models are established based on the empirical
equations or equivalent circuits, and relevant model parameters are
identified with experimental data of different types of PEMFCs.12,13

An empirical model has a small set of parameters, simple model
structures, and low computational costs and is mainly used in
designing system control strategies and real-time simulation.
However, the accuracy of the empirical models is low and not
suitable for optimizing the system performance. In contrast, a semi-
empirical model uses some knowledge of the PEMFC mechanisms
to develop simple empirical equations instead of complex mechan-
istic equations. Some parameters that are difficult to determine can
be obtained by parameter identification, which can be regarded as a
simplification of the full-order mechanism models. The semi-
empirical models can be used when the internal mechanisms of a
PEMFC are difficult to describe accurately, or the details of the
internal processes are insignificant to the applications. The semi-
empirical models are suitable for structural optimization and system
control. For instance, Corrêa et al.14 proposed a semi-empirical
dynamic electrochemical model as a function of the load current and
several constructive and operational parameters to predict the outputzE-mail: jackxie@whut.edu.cn
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Table I. Comparison of PEMFC modeling methods.

Modeling methods Advantages Disadvantages Applications

Mechanism modeling Describing internal mechanisms Accurate and detailed Complex Characteristic analysis
Difficult to solve Structure optimization
High calculation cost Material development

Semi-empirical
modeling

Describing internal mechanisms Partial simplification of the
model

Mechanism description is incom-
plete

Structure optimization System
control

Empirical modeling Simple equation Fewer parameters to calculate Lack of internal mechanism de-
scription

Parameter optimization System
control

Data-driven modeling Not limited by physical parameters Large data sets are required Characteristics prediction
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voltage, efficiency, and power of PEMFCs. Tirnovan et al.15

measured voltage and current density under certain experimental
conditions, established a numerical model, and analyzed the
influence of operating pressures and temperatures on the cell
voltage. Youssef et al.16 developed a lumped model for PEMFC
based on linear algebra equations, and studied the effects of several
operating and design parameters on the performance of the fuel cells.
These parameters include temperature, pressure, stoichiometric ratio,
membrane thickness, and gas diffusion layer thickness. Tiss et al.17

developed a nonlinear state-space model for describing a non-
isothermal PEMFC, studied the effects of load resistance, hydrogen
partial pressure, oxygen partial pressure, and liquid water in the gas
diffusion layer on the dynamic performance of the fell. Nascimento
et al.18 and Lan et al.19 developed equivalent circuit models
considering electrothermal characteristics, studied the output char-
acteristic curves and the transient response to load current and stack
temperature change. Hernández-Gómez et al.20 considered the
influence of the current ripple of power electronic devices on cell
performance, proposed a cell voltage static-dynamic model with
adaptive parameters to consider the influence of the input current.

Due to the advancements of artificial intelligence, the rapidly
increased computational capability of microprocessors, and the avail-
ability of big data, data-driven models are received extensive research
attention in recent years. In such a method, a “black box” model is
trained using a large number of experimental data, and the process does
not need to involve the knowledge of internal mechanisms of the
PEMFCs. Such a model can predict the behaviors with unknown
mechanisms or when some physical parameters are difficult to obtain,
but it requires a substantial high-fidelity dataset.21,22 For example,
Nanadegani et al.23 developed a data-driven PEMFC voltage model
using an artificial neural network, where the inputs of the model are
temperature, excess coefficient of the anode and cathode gas, relative
humidity, and load current. Wang et al.24 proposed a surrogate
modeling method that combines a state-of-the-art 3D PEMFC physical
model and data-driven model, and established a multi-physics-resolved
digital twin of PEMFCs, exhibited low requirements on computation.

The above studies have actively contributed to the longitudinal or
local analyses of the impact of a single factor on the output
performance of PEMFC but neglected the dependent effects of
different factors. However, for a practical PEMFC system, the
output characteristics of PEMFC are simultaneously affected by
factors of water, heat, electricity, gas, force, amongst others.
Therefore, it is beneficial to analyze the influence of multiple factors
globally on the output characteristics of PEMFC. A multi-dimen-
sional analysis can be used to obtain a more accurate description of
how different factors can impact the output performance of PEMFC,
and several recent studies show that the orthogonal experimental
method is effective for relevant investigation.25 Orthogonal experi-
mental is a multi-factor and multi-level design method, according to
orthogonality, representative points of “uniform dispersion” are
selected from the comprehensive test for experiment. For example,
Xia et al.26 designed nine orthogonal experiments to study the effects
of fuel cell operating temperature, inlet pressure, relative humidity,
and oxidant stoichiometry on the performance of PEMFC. As a
result, the optimal combination of operating parameters under
different load current densities was found. Wang et al.27 obtained
the optimum levels of relative humidity, working temperature, and
stoichiometric ratio of air by an orthogonal test.

However, the orthogonal experimental can only analyze the
influence of multiple factors under a specific current density at a
time. Multiple tests are required and more time consuming, when it
is necessary to analyze the influence of multiple factors in the full
current density region. Efficient and rapid analysis is needed.
Therefore, establishing voltage prediction model based on limited
data samples is considered for rapid analysis of multiple influencing
factors. Support Vector Machine (SVM) is a powerful tool for
Gaussian regression estimation and is suitable for small sample
training. Its generalization performance is not affected by the
dimension of input data and can consider both the complexity and

generalization ability under the condition of a limited sample size.
The technique has been applied to modeling PEMFC, parameter
identification, and power density model optimization.26,28–30 In this
paper, to determine the sensitivity of the network output to the
variation of partial derivatives of characteristic variables in the
model prediction process and to determine the weights of character-
istic variables, a Derivative Significance Weight Analysis based on
Support Vector Regression (SVR-DSWA) algorithm is proposed.

This paper aims at analyzing the influence weights of multiple
factors on the output characteristics and the optimal parameter
combinations regarding the multiple factors. The main contributions
of this work are:

1. The establishment of a semi-empirical dynamic model of
PEMFC, which considers the dynamic partial pressure of
cathode and anode gases and a delay between the change in
load current and the flow of fuel and oxidizer.

2. The quickly analysis of the influence weights of multiple factors
on the output characteristics within the total current density
range based on the proposed SVR-DSWA algorithm.

3. Optimal parameter combination analysis for maximum output
voltage using a standard simplex method based on SVR model
optimization.

4. The verification of the accuracy of weight analysis results using
the SVR-DSWA algorithm and optimal combination analysis
method by 4-factors 3-levels orthogonal experiments.

The structure of this paper is as follows: The output voltage
model is introduced in the second part. The verification of the model
and the single factor longitudinal simulation analysis are introduced
in the third part. In the fourth part, the key idea of SVR-DSWA
algorithm and its implementation are described. In the fifth part, the
results of multi-factors weight analysis using SVR-DSWA algorithm
and optimal parameter combination analysis are presented, and
compared with the results of orthogonal experiment. In the last
part, the thesis is summarized.

PEMFC Model

Operating principles of PEMFC.—PEMFC is a low-temperature
fuel cell using a solid polymer film as the electrolyte. The schematic
of a typical PEMFC is illustrated in Fig. 1a. The PEMFC consists of
two electrodes and an electrolyte sandwiched in between. Hydrogen
enters the anode side of the membrane electrode from the anode air
inlet, passes through the gas diffusion layer to the surface of the
catalyst layer, and forms protons (H+) and electrons (e−) through an
oxidation reaction. The corresponding reaction equation is as follows.

→ + [ ]+ −Anode: H 2H 2e 12

Protons pass through the proton-exchange membrane (PEM) to
the cathode, and electrons move to the cathode through the external
circuit to generate electric currents.14 On the other side of the cell,
oxygen enters the cathode side of the membrane electrode from the
cathode air inlet, and it combines with electrons and hydrogen ions
that have passed through the PEM to generate water and release heat.
The electrochemical reaction that happens in the cathode is

+ + → + [ ]+ −Cathode: 2H
1

2
O 2e H O Heat 22 2

The complete chemical reaction can be expressed by

+ → [ ]H
1

2
O H O 32 2 2

Output voltage model of PEMFC.—A semi-empirical model of
PEMFC is first developed in this section. In this work, the output
voltage of PEMFC is expressed as a function of cell current, cathode

Journal of The Electrochemical Society, 2022 169 034507



inlet pressure, anode inlet pressure, fuel cell temperature, and water
content of the PEM. The stack voltage is calculated by scaling up the
single-cell voltage with the number of connected cells in series.

In the steady-state, the output voltage of the PEMFC should be
the thermodynamic electromotive force ENernst, i.e., the reversible
electromotive force for an open circuit or the open-circuit voltage.
During operations, various irreversible losses lead to the deviation of
the cell voltage to ENernst, and these factors include the fuel and
oxidant delays, activation polarization overvoltage (Vact), ohmic
polarization overvoltage (Vohm), and concentration polarization
overvoltage (Vcon).

31,32 In this condition, the output voltage can be
expressed as

= − − − [ ]V E V V V 4cell Nernst act ohm con

where the open-circuit voltage can be calculated by the Nernst
equation,14,32 i.e.,

* *

= − × × ( − )

+ [ ·( ) ] [ ]

−E T
RT

F
P P

1.229 8.5 10 298.15

2
ln 5

Nernst
4

H O
0.5

2 2

In Eq. 5, R is the general gas constant, F is the Faraday constant,
and T is the cell temperature. Furthermore, PH2 and PO2 are the
effective partial pressures of hydrogen and oxygen, respectively,
defined as31,32
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where i is the load current and A is the activation area. Pa and Pc are
the inlet gas pressures of anode and cathode, respectively. RHa and
RHc are the relative humidity of water vapor of anode and cathode,

respectively. PH2O represents the saturated partial pressure of water
vapor, which is calculated by 33,34

( ) = × ( − ) − ×
× ( − ) + × ( − )

− [ ]

− −

−

P T

T T

log 10 2.95 10 273.15 9.18 10

273.15 1.44 10 273.15
2.18 8

H O
2 5

2 7 3
2

During transient, a delay can be observed between the change in
load current and the fuel and oxidizer flow. In order to simplify the
analysis, the overall impact of the delay is considered by subtracting
a term Ed from the right-hand side of Eq. 5. Here, Ed is given by 31

λ τ= [ − ⊗ (− / )] [ ]E i i texp 9d e e

where ⊗ represents the tensor product, τe is the total delay time of
the flow of fuel and oxidant and λe is the gain. The revised open-
circuit voltage is thus expressed as

λ τ′ = − [ − ⊗ (− / )] [ ]E E i i texp 10Nernst Nernst e e

The activation overvoltage Vact is the potential barrier to be
overcome when electrons move between the electrodes, as well as
due to the destruction and recombination of chemical bonds in the
chemical reaction between the anode and cathode.30 The activation
overvoltage includes the loss of cathode and anode activation,
calculated as below:14

ε ε ε ε
ε ε
= −( + + +

+ + ) [ ]
V T T A T C

T C T i

ln ln

ln ln 11
act 1 2 3 4 H

5 O 6

2

2

where ɛ1 − ɛ6 are fitting coefficients. CO2 and CH2 are the mass
fractions of oxygen and hydrogen concentrations, respectively, and
they can be obtained by Henry’s law.33
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The ohmic overvoltage Vohm is the voltage drop on the resistance
Rc when electrons move between the electrodes and the resistance Ra

when protons pass through the membrane. The ohmic overvoltage
can be expressed as33,34

⎛
⎝⎜

⎞
⎠⎟

ρ
= ( + ) =

×
+ [ ]V i R R i

l

A
R 13ohm a c

m
c

where l is the thickness of the PEM. The resistivity ρm can be
calculated as

⎜ ⎟ ⎜ ⎟
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T
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303

0.634
3

exp 4.18
303

14

m

2 2.5

where λ is the water content of the PEM.
Next, the mass diffusion from the flow channel to the catalyst

surface will form a concentration gradient.34 The concentration loss
is significant when the current density J is high, which is the leading
cause of the voltage loss. The water film of catalyst on the surface of
anode and cathode is another reason for the pressure drop.
According to Fick’s first law and Faraday’s law, the concentration
overvoltage Vcon can be expressed by33

Figure 1. (a) Schematic of the PEMFC. (b) PEMFC equivalent circuit.
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RT
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exp
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where Jmax is the maximum current density, ɛ7 − ɛ9 are fitting
coefficients.

As mentioned earlier, the PEM allows hydrogen ions to transport
between the two electrodes and prevents electrons from passing through.
Electrons flow from the anode through an external load and collect on
the surface of the cathode, while hydrogen ions are attracted to the
interface cathode membrane. The boundary between the porous electrode
and the PEM forms two charged layers with opposite polarities, which
causes the double-layer capacitance effect. The accumulation of the
charges generates a voltage that combines the activation overvoltage and
the concentration overvoltage. Due to the double-layer capacitance
effect, when the load current varies, there is a lag in the change of the
activation overvoltage and the concentration overvoltage, whereas it does
not affect the ohmic voltage. An equivalent circuit in Fig. 1b can be used
to simulate the double-layer capacitance effect, mathematically

⎜ ⎟⎛
⎝

⎞
⎠− = − ( + ) [ ]V V i C

dV

dt
R R 16C 0

C
act con

where C is the equivalent double-layer capacitance, VC is the voltage
at both ends of capacitor C, and V0 is the voltage drop when under
no-load conditions, expressed as31
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By considering the double-layer capacitance, the cell voltage Vcell

of PEMFC can be modified to

= ′ − − [ ]V E V V 18cell Nernst C ohm

Finally, the output voltage of the PEMFC stack with n cells can
be calculated by

= [ ]V nV 19stack cell

Model verification and simulation analysis

Model verification.—In order to verify the proposed model, two
different sets of parameters of PEMFC stacks are used in our work,
and we refer them to as Stack 1 and Stack 2, respectively.

Table II shows the basic parameters of Stack 1, which are
obtained from Refs. 34, 35, and the parameters of the output voltage
model proposed in this paper. Three sets of experimental data from
Ref. 33 are selected for model verification. Considering the opera-
tion range of the stack and the rationality of the model verification,
Pa/Pc/T corresponding to the three sets of experimental data are
3 bar/5 bar/353.15 K, 1 bar/1 bar/343.15 K, and 2.5 bar/3 bar/
343.15 K, respectively. As shown in Fig. 2a, the RMSE between
the simulation results and the experimental data is 0.519 V, and the
Mean Relative Error (MRE) is 5.016%.

The parameters of Stack 2 are shown in Table III.14,31 The
parameters were obtained from an SR-12 Modular PEM Generator
manufactured by Avista Laboratories. There are 37 sets of manu-
facturer data generated by the SR-12 Modular PEM Generator. This
PEMFC is a modular fuel cell stack and has some characteristics
adequate for use in electrical generation systems. The simulated
voltage is shown in Fig. 2b, where it shows that the RMSE between
the simulated voltage and the experimental data is 0.424 V, and the
MRE is 1.11%. The results show that the accuracy of the proposed
model is comparable and higher than the existing methods in Refs.
18, 19, e.g., the MRE described in the Ref. 18 is 1.26%.

The above results verify the static relationship based on the
simulated I-V curves. Next, we use Stack 2 to further verify the

model accuracy in terms of the dynamic response based on the
parameters in Table III. Figure 3 shows the multiple-step responses
of the proposed model when the load current changes rapidly, and
the transients are validated by comparing the simulation results with
the reference data of the 500-W SR-12 Avista Labs PEMFC reported
in Refs. 18, 31. As shown in Fig. 3, when the load current rises from
5 A to 9 A at 210.35 s, the voltage drops to about 33 V due to the
instantaneous change of ohmic overvoltage. Due to the double
capacitance effect, the voltage gradually decreases to 32.5 V.
Corresponding observations are made for the following fast step
load changes. It can be observed that the fast transients are in close
agreement with the experimental data.

Single-factor longitudinal simulation analysis.—The simulation
parameters are set according to the parameters of the PEMFC stack, as
shown in Table I. Figure 4a shows the output voltage and polarization
overvoltage of a single cell changing with load current when the cell
temperature is 70 °C, the inlet pressures of anode and cathode are
1 bar, and the water content of membrane is 23. As shown in Fig. 4a,
the output voltage decreases with the increase of current due to the
influence of irreversible electromotive force. The activation over-
voltage increases with the increase of load current, but the increasing
trend is slower and slower. The ohmic overvoltage rises almost
linearly with the increase of load current. The concentration over-
voltage rises with the increase of load current. In the low current
density region, the concentration overvoltage slowly increases in a
linear manner. In the high current density region, the concentration
overvoltage rises sharply, and the trend is getting steeper and steeper.

Figures 4b–4e show the output voltage curves of the PEMFC
stack when a single factor changes.

Figure 4b shows the PEMFC output voltage curves when the
operating temperature is 343.15 K, 348.15 K, and 353.15 K, respec-
tively, and Pa, Pc, and λ are 2.5 bar, 3 bar, and 23 bar, respectively.
When the current is the same, the higher the working temperature is,
the greater the output voltage is. Because the increase of temperature
will increase catalyst activity, the water diffusion and gas diffusion
ability in the membrane will be improved, which will reduce the
membrane resistance and improve the output performance.

In Fig. 4c, T, Pc, and λ are 343.15 K, 3 bar, and 23, respectively.
In Fig. 4d, T, Pa, and λ are 343.15 K, 2.5 bar, and 23, respectively. It
can be seen from Figs. 4c and 4d that for the same current, higher
anode and cathode pressures generally lead to better output
performance of the cell. This is because increasing the inlet pressure
of anode and cathode can increase the effective partial pressure of
the hydrogen and oxygen, leading to an increase in the gas
concentration and accelerating the chemical reaction.

Figure 4e shows the PEMFC output voltage curves when the
water content of the membrane is 14, 18.5, and 23, respectively, and
Pa, Pc, and T are 2.5 bar, 3 bar, and 343.15 K, respectively. Under
the same current, increasing the membrane water content will
increase the output voltage of the stack. The reason is that when

Table II. Parameters of PEMFC Stack 1 and the proposed model.

Parameters Value Parameters Value

n 24 ɛ1 −0.9514
A (cm2) 27 ɛ2 0.00286
l (μm) 127 ɛ3 0.0002
Jmax (A∙cm

−2) 0.86 ɛ4 4.3 × 10−5

Rated Power (W) 250 ɛ5 7.4 × 10−5

Pa (bar) 1−3 ɛ6 −1.87 × 10−4

Pc (bar) 3−5 ɛ7 3.8337 × 10−6

T (K) 343.15−353.15 ɛ8 0.467
RHa 1 ɛ9 0.1855
RHc 1 Rc (Ω) 0.0001
R (J/(K∙mol)) 8.314 C (F) 2.5
F (C/mol) 96485 λ 23
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the membrane water content increases, the proton conduction
velocity increases, and the membrane resistance decreases, which
improves the output performance.

SVR- DSWA Algorithm

When an SVM is used for regression analysis, a nonlinear
mapping Φ(x) is used to map the input vector to a high-dimensional
feature space. Then, linear regression is carried out in the high-
dimensional feature space to find the optimal hyperplane and
minimize the error of all samples from the optimal hyperplane.28

Support vector regression.—The training sample set is {(xi, yi),
i = 1, 2, ···, N}, N is the number of samples, xi is the input value, and
yi is the expected output value. The regression model of the SVM is:

( ) = ·Φ ( ) + [ ]f x w x b 20

where w and b are weight vector and bias, respectively.
The penalty factor c and relaxation variable ξi (i= 1, 2, ···, N ) are

introduced under the insensitive loss function ε. Then, the solution
of SVR becomes an optimization problem:
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By introducing Lagrangian multiplier {αi, αi*, βi, βi*, (i = 1, 2,
···, N)}, Eq. 21 can be rewritten as follows:
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Figure 2. (a) The polarization curve of the PEMFC Stack 1. (b) The polarization curve of the PEMFC Stack 2.

Table III. Parameters of the SR-12 modular PEM Generator and the
proposed model.

Parameter Value Parameter Value

n 48 ɛ1 −0.9514
A (cm2) 62.5 ɛ2 0.00286
l (μm) 25 ɛ3 0.0002
Jmax (A/cm

−2) 0.672 ɛ4 4.3 × 10−5

Capacity (W) 500 ɛ5 7.4 × 10−5

λe (Ω) 0.00333 ɛ6 −1.87 × 10−4

τe (s) 80 ɛ7 3.8337 × 10−6

T (K) 323.15 ɛ8 0.467
PH2 (atm) 1.47628 ɛ9 0.1855
PO2 (atm) 0.2095 λ 23
Pc (atm) ≈1 C (F) 1
R (J/(K∙mol)) 8.314 Rc (Ω) 0.0003
F (C mol−1) 96485

Figure 3. Transient response of the proposed model.
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Taking the partial derivative of w, b, ξi, and ξi* in Eq. 22, we can
get:
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Substituting Eq. 23 into Eq. 22, the dual form of Eq. 21 can be
obtained:
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Introduce the kernel function K(xi, xj) = Φ(xi)Φ(xj) to map the
data from the low-dimensional space to the high-dimensional space,
thereby transforming the linearly inseparable problem into a linearly
separable problem and converting the inner product calculation of
the high-dimensional space to the function calculation of the low-
dimensional space. According to the quadratic programming
method, the optimal solution (αi, αi*) of Eq. 24 is obtained, and
the decision function of SVR is obtained as:

∑ *α α( ) = ( − ) ( ) + [ ]
=

f x K x x b, 25
i

N

i i i j

1

Since the Radial Basis Function (RBF) has the advantages of
high accuracy and low computational complexity, RBF is used for
training and prediction, which is defined as:

γ( ) = (− ∥ − ∥ ) [ ]K x x x x, exp 26i j i j
2

where γ is the undetermined nuclear parameter.
The prediction results are evaluated by MRE, Mean Absolute

Error (MAE), Mean Square Error (MSE), RMSE, and Squared
Correlation Coefficient (R2).

Derivative significance weight analysis.—The derivative signif-
icance analysis method based on SVR can be used to analyze the
influence weight of input value on the expected output value.

It can be seen from Eq. 25 that only training samples corre-
sponding to non-zero coefficients (αi − αi*) can be used by decision
functions. Therefore, the decision function can be expressed as:

∑ *( ) = ( − ) ( ) + [ ]
=

f x a a K x x b, 27i

j

N

j j i j

1

S

where Ns is the number of support vectors.
The sensitivity of SVR network output to the kth characteristic

input can be approximately obtained by calculating the partial
derivative.
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In Eq. 28, K is the number of feature input quantities. The
significance coefficient of the kth feature input is calculated as the
sensitivity absolute average of the output value of all training data in
the training set {(xi, yi), i = 1, 2, ···, N} to the input value. The value
can be expressed as:
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The influence weight of the kth feature input on the prediction
result f(x) is:
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Substituting Eqs. 28 and 29 into Eq. 30 yields the weight of the
kth feature input:
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SVR-DSWA algorithm implementation.—The process of using
MATLAB to implement the SVR-DSWA algorithm is shown in
Fig. 5, which includes eight steps as follows.

Step 1: Construct training set and test set. According to the given
n data samples, select N data samples as the training set. The
remaining (n−N) data samples are used as the test set.

Step 2: Normalize the data sample. The mapminmax function is
used to normalize the data samples to [−1, 1] to improve the
convergence speed and accuracy of SVR.

Step 3: Parameter optimization. The Gaussian radial basis kernel
function is used for training and prediction. The grid search method
combined with the ten-fold cross-validation method is used to find
the optimal penalty factor c and the kernel parameter γ. The training
set is randomly divided into ten parts, nine of which are used as the
training set, and one is used as the validation set. The training set and
validation set are iterated alternately ten times. In each iteration, the
prediction model is trained with the svmtrain function, and the
RMSE ei of the prediction model is recorded, and then the average
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is obtained. Next, change the parameters,

traverse the grid to train the model for m rounds, and get the average
RMSE Em of each round of training. Obtain the minimum value of
Em, and determine the optimal parameters of the model.

Step 4: Find out the prediction result. The prediction model is
trained with the optimal parameters, and the prediction model is used
to predict (n−N) test samples to obtain the output value of the model.

Step 5: Analyze the forecast results. Denormalize the predicted
output data and compare them with the experimental data. Calculate
MRE, MAE, MSE, RMSE, and R2 between the predicted value and
the experimental data. Analyze the predicted results.

Step 6: Construct the training sample input matrix and support
vector matrix. Find all training samples corresponding to non-zero
coefficients (αi − αi*), i.e., the support vectors. Construct training
sample input matrix XN×K and support vector-matrix VNs×K, where
N is the number of training samples, K is the number of

Figure 4. (a) voltage vs current curve of a single cell. (b) Stack voltages When T changes. (c) Stack voltages When Pa changes. (d) Stack voltages When Pc

changes. (e) Stack voltages When the membrane water content changes.
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influencing factors, Ns is the number of support vectors, and Ns ⩽
N.

Step 7: Calculate the partial derivative of the decision function.
According to the optimal kernel parameter γ of the Gauss radial
basis kernel function and the coefficient of the support vector (αi −
αi*), the partial derivative ∂ ( ) /∂f x xi ik of the decision function of the
kth input variable is calculated.

Step 8: Calculate the significance coefficient and weight.
According to the mean value of the absolute value of the partial
derivative of the decision function of all training samples of the kth
influencing factor, the corresponding significance coefficient S(k) is
calculated. Calculate the weight C(k) of the kth influencing factor
according to S(k).

Results and Discussion

The numerical experiments are based on the PEMFC Stack 1
obtained from Refs. 33–35.

Prediction results.—The stack temperature affects the gas
diffusion ability and proton conduction of the membrane. The inlet
gas pressures of anode and cathode affect the chemical reaction rate.
The cathode gas pressure also affects the discharge of water
generated by the cathode reaction. When the PEM is flooded, the
catalyst activity decreases, accelerating material corrosion and
catalyst loss, resulting in a poor gas flow, which affects the
performance and service life of the cell. When the membrane is
dry, the proton conduction capacity decreases significantly, the
membrane resistance increases, and the PEM will be burned in
serious cases. Stack temperature, inlet gas pressure of cathode and
anode and water content of PEM are the main factors affecting the
performance of PEMFC, therefore, taking T, Pa, Pc, and λ as
characteristic inputs, and PEMFC output voltage as output, an SVR-
based PEMFC output performance prediction model is established.
In the low, medium, and high current regions, the corresponding
stack operating currents are set as 2 A, 12 A, and 22 A, respectively.
The output voltage model proposed in this paper is used to simulate
150 sets of data samples. Among them, 120 sets of data are
randomly selected as training samples, and the remaining 30 sets
of data as test samples. Use the trained PEMFC output performance
prediction model to predict the output voltage of the test sample, and
the prediction results are shown in Figs. 6a–6c. It can be seen that
the predicted results are in good agreement with the experimental
data.

To verify the accuracy of the SVR-based PEMFC output
performance model, the test samples are predicted every 1 A within
the full current density range (operating current is 1 A–23 A). The
errors and R2 between the predicted result and the experimental data
are shown in Figs. 6d. Figure 6d shows that the MRE between the
predicted result and the experimental data is less than 0.51%, the
MAE is less than 0.0657, the MSE is less than 0.0021, the RMSE is
less than 0.0458, and R2 is higher than 99.36% within the current
range of 1 A–22 A, R2 is higher than 97.78% within the current
range of 22 A–23 A. The prediction accuracy of the SVR model is
very high.

Weight and optimal levels analysis.—The SVR-DSWA algo-
rithm is used to analyze the influence degrees of multiple factors on
the output performance of the PEMFC. The standard simplex
approach is used for performing the optimization of the formulated
SVR model. The objective function is to maximize the output
voltage, to obtain the optimal levels of different factors at a given
current density.

In the low, medium, and high current density regions, respec-
tively, a 4-factors 3-levels L9 (34) orthogonal experiment is
performed, 4-factors 3-levels are shown in Table IV. Then the
accuracy of analysis results of the SVR-DSWA algorithm and the
standard simplex approach are verified by comparing with ortho-
gonal experiment results.

In the low, medium, and high current regions, when the operating
current of the stack is 2 A, 12 A, and 22 A, the orthogonal
experiment results and the SVR-DSWA algorithm analysis results
are shown in Table V–VII, respectively. K1, K2, and K3 respectively
represent the average value of the output voltage of the stack
obtained from three experiments for each factor. R is the range of the
average value. The higher the R is, the greater the influence of the
level change of this factor on the output voltage, and the greater the
weight of the factor is. Table VIII shows optimal levels of different
factors analyzed by the standard simplex approach and the influence
degrees.

As shown in Table VIII, among the four factors, the factor that
has the greatest influence on PEMFC output performance is cathode
inlet gas pressure. The influence of operating temperature is
minimal. At 2 A and 12 A, the order of the influence degree of the
four factors on the output voltage is: R (C) > R (B) > R (D) > R (A)
and Pc (C) > Pa (B) > λ (D) > T (A). At 22 A, the order of the
influence degree of the four factors on the output voltage is: R (C) >
R (D) > R (B) > R (A) and Pc (C) > λ (D) > Pa (B) > T (A). For

Figure 5. Flow chart of the SVR-DSWA algorithm.
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different levels of a certain factor, the maximum value of K1, K2, and
K3 determines the optimal level of this factor. At 2 A, the optimal
levels of T, Pa, Pc, and λ are A2 (348.15 K), B3 (3 atm), C3 (5 atm),
and D1 (14), respectively. At 12 A, the optimal levels of T, Pa, Pc,

and λ are A2 (348.15 K), B3 (3 atm), C3 (5 atm), and D3 (23),
respectively. At 22 A, the optimal levels of T, Pa, Pc, and λ are A3
(353.15 K), B3 (3 atm), C3 (5 atm), and D3 (23), respectively.

The analysis results of the SVR-DSWA algorithm and the
standard simplex approach are consistent with the results of the
orthogonal experiment, which proves their feasibility. However,
using the orthogonal experiment method can only analyze the weight
of influencing factors at a given current density each time, so the
efficiency is low. The influence weights of the four factors on the
output voltage in the full current density regions can be rapidly
analyzed by using the SVR-DSWA algorithm. As shown in Fig. 7,
when the current is in the range of 0–20 A, the order of influence
degree is Pc > Pa > λ > T, and when the current is in the range of

20 A–23.22 A, the order of influence degree is Pc > λ > Pa > T. The
cathode and anode inlet pressures have great influence on PEMFC
output performance, which is in agreement with the analysis of
Derbeli et al.36 The temperature has little impact on output
performance, and this conclusion agrees with the results obtained
by Xia et al.26 and Derbeli et al.36 Furthermore, the influence of
cathode inlet gas pressures is the largest within the full current
density region, but the influence degree of anode inlet gas pressure
decreases with the increase of current. The influence degree of
operating temperature on the output voltage has little change with
the increase of current. The influence degree of membrane water
content on the output performance increases with the increase of
current. Under the condition of low and medium current density, the
effect of anode inlet gas pressure is larger than the effect of
membrane water content. However, under the high current density,
the effect of membrane water content is larger. The above conclu-
sions are also consistent with the results of single-factor longitudinal
simulation analysis, this further proves the reliability of the SVR-
DSWA algorithm.

Conclusions

This paper establishes a semi-empirical dynamic output voltage
model of PEMFC. An SVR-DSWA algorithm is proposed to analyze
the influence weights of four factors (Operating temperature, inlet
pressure of anode, inlet pressure of cathode, and water content of
PEM) on the output characteristics of the PEMFC. The standard
simplex approach is used for obtaining the optimal levels of different
factors at a given current density. It is shown that the prediction

Figure 6. (a) Prediction results at 2 A. (b) Prediction results at 12 A. (c) Prediction results at 22 A. (d) Errors and R2 between the prediction result and the
experimental data.

Table IV. The combinations of operating parameters with 4-factors
3-levels.

Levels A (T/K) B (Pa/bar) C (Pc/bar) D (λ)

1 343.15 1 1 14
2 348.15 2 3 18.5
3 353.15 3 5 23
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accuracy of the proposed model based on the SVR algorithm is high
as the RMSE is smaller than 0.0458 and R2 is higher than 97.78%.
The order of influence degree of the four factors is affected by the

current levels. It is also found that the optimal operating temperature
and optimal λ are different at different current density levels, while
the optimal anode and cathode inlet gas pressures are not affected.

Table V. Analysis results at 2 A.

Levels
Vstack

Methods Test numbers A B C D (V)

Orthogonal experiment 1 1 1 1 1 18.8465
2 1 2 2 2 20.5940
3 1 3 3 3 21.3889
4 2 1 2 3 19.9919
5 2 2 3 1 21.0595
6 2 3 1 2 19.8510
7 3 1 3 2 20.4000
8 3 2 1 3 19.4651
9 3 3 2 1 21.0191
K1 20.2765 19.7462 19.3876 20.3084
K2 20.3008 20.3729 20.5350 20.2817
K3 20.2947 20.7530 20.9495 20.2820
R 0.0243 1.0068 1.5619 0.0267

SVR-DSWA Weight (%) 2.442 36.768 57.576 3.214

Table VII. Analysis results at 22 A.

Levels
Vstack

Methods Test numbers A B C D (V)

Orthogonal experiment 1 1 1 1 1 9.3532
2 1 2 2 2 14.0580
3 1 3 3 3 15.2585
4 2 1 2 3 13.8611
5 2 2 3 1 13.8388
6 2 3 1 2 11.1210
7 3 1 3 2 13.8990
8 3 2 1 3 11.1157
9 3 3 2 1 13.8460
K1 12.8899 12.3711 10.5300 12.3460
K2 12.9403 13.0042 13.9217 13.0260
K3 12.9536 13.4085 14.3321 13.4117
R 0.0637 1.0374 3.8021 1.0657

SVR-DSWA Weight (%) 4.239 23.463 45.828 26.469

Table VI. Analysis results at 12 A.

Levels
Vstack

Methods Test numbers A B C D (V)

Orthogonal experiment 1 1 1 1 1 14.7237
2 1 2 2 2 16.7930
3 1 3 3 3 17.7581
4 2 1 2 3 16.3492
5 2 2 3 1 16.9699
6 2 3 1 2 16.0250
7 3 1 3 2 16.5900
8 3 2 1 3 15.7876
9 3 3 2 1 16.9374
K1 16.4249 15.8876 15.5121 16.2104
K2 16.4481 16.5168 16.6932 16.4694
K3 16.4383 16.9069 17.1060 16.6316
R 0.0232 1.0193 1.5939 0.4212

SVR-DSWA Weight (%) 2.753 31.677 49.812 15.757
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Furthermore, the results of the weight analysis based on the
proposed SVR-DSWA algorithm are in good agreement with the
single-factor simulation analysis and the orthogonal experiment. The
SVR-DSWA algorithm and the standard simplex approach based on
optimized SVR model are superior to the orthogonal experiment to
analyze the influence degrees of input factors on the output voltage
and the optimal parameter combinations within the full current
density range as they take less time and are more efficient. The result
can also provide a reference for the weight analysis of multiple-input
influencing factors of other complex systems for future investiga-
tion.
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Table VIII. The influence degrees and optimal levels of different factors.

Optimal parameters

Current Influence degree A(T/K) B(Pa/bar) C(Pc/bar) D(λ)

2 A C > B > D > A A2(348.15) B3(3) C3(5) D1(14)
12 A C > B > D > A A2(348.15) B3(3) C3(5) D3(23)
22 A C > D > B > A A3(353.15) B3(3) C3(5) D3(23)
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