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Abstract—The peak power of vanadium redox flow batteries 
(VRBs) reflects the continuous charging and discharging power 
capability. Accurate estimation of peak power is essential for the 
safe, reliable, and efficient operation of VRB systems, but also 
challenging as it is limited by several factors such as currents, flow 
rates, temperature, and state of charge. This paper proposes an 
online model-based peak power estimation scheme for VRBs. First, 
the model parameters and states are accurately estimated using 
the recursive least squares with forgetting and the unscented 
Kalman filter, respectively. Next, based on a linear time-varying 
VRB model and the estimated states, the peak power prediction 
problem is formulated into an optimal control problem and solved 
online using receding horizon control (RHC). The influence of the 
predictive horizon on the estimated peak power is discussed. 
Finally, the effectiveness of the proposed RHC-based peak power 
estimation scheme is verified experimentally on a 5-kW/3-kWh 
VRB platform.  
 

Index Terms—vanadium redox flow battery, online estimation, 
peak power estimation, receding horizon control, state of charge. 

I. INTRODUCTION 
anadium redox flow batteries (VRBs) have great potential 
for large-scale energy storage systems (ESSs) due to their 

high degree of safety, long cycle life, high overload capability, 
and considerable flexibility in independently selecting the 
power and energy capacities [1]–[4]. Such a large-scale VRB-
ESS can be used to effectively mitigate the impacts of variable 
and intermittent renewable powers on electricity grid systems. 
Conventionally, the VRBs have been designed for applications 
with very long-term operations where the delivered power is 
relatively low and less varying. However, modern power 
systems require the ESSs to actively participate in the grid 
regulation, such as to provide fast frequency response in a very 
short time frame. In this situation, the power capability of the 
ESSs shall play a critical role in maximizing the benefits both 
for the gencos and the system operators. Such a capability is 
usually signified by the peak power, defined as the maximum 
power that can be continuously delivered or absorbed over a 

specified period of time and within a safe operating area (SOA) 
[5]–[8]. The peak power can provide some basic information 
for scheduling and power flow control while ensuring system 
safety.  

Unfortunately, the actual peak power of VRBs is neither 
provided in system specifications nor directly measurable. Thus, 
the next-generation battery management systems (BMS) for the 
VRB-ESSs should be able to monitor the peak power capability 
accurately. Although the peak power estimation has been 
extensively investigated in the literature, most relevant works 
focus on more widely deployed lithium-ion batteries [9]. These 
methods can be divided into two major categories, i.e., the 
methods based on a static characteristic map (CM) and the 
methods based on a dynamic model. 

A CM method utilizes massive experimental data measured 
under different temperatures, state of charge (SOC), and time 
scales. The experimental data are usually obtained offline with 
the hybrid pulse power characteristic (HPPC) test method [10]. 
However, such a method has several disadvantages. First, it 
only considers the operating constraint on terminal voltage, 
resulting in inaccurate peak power estimation. Second, since the 
dynamic behaviors of the batteries are ignored in the HPPC test, 
the CM method cannot be used to estimate the peak power of 
the battery under practical operating conditions. Furthermore, 
this method can only estimate the instantaneous peak power, 
that is, the permissible power at the current time instant, but 
cannot be used to estimate a continuous peak power that the 
battery can provide within a long time horizon, which is usually 
required for power system planning and operation [10]. 

In contrast, the peak power estimation methods based on 
equivalent circuit models (ECMs) are more adaptable and 
robust by taking into account the constraints on current, voltage, 
SOC, as well as time-varying model parameters [11], [12]. 
However, the effectiveness of these methods depends heavily 
on the accuracy of the estimated SOC, model parameters, and 
peak power prediction algorithm, which poses two main 
challenges for VRBs. First, the SOC is determined by the 
concentration of vanadium ions in the stack [13], which cannot 
be measured directly. Second, the model parameters of VRBs 
are affected by the current, temperature, flow rate, SOC, 
amongst other factors, usually in a highly nonlinear and time-
varying manner [14]. Therefore, SOC estimation and parameter 
identification algorithms lay the foundation for reliable ECM-
based peak power estimation for VRBs. 

Existing SOC estimation methods can be divided into three 
categories [15]: 1) Direct measurement methods; 2) Data-
driven estimation methods; 3) Model-based estimation methods. 
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The direct measurement methods include the Coulombic 
counting and the open-circuit voltage (OCV) methods. The 
Coulombic counting method uses the applied current for time 
integration. This technique is straightforward, but the 
performance is subject to the accuracy of the current sensor, 
Coulombic efficiency, and initial SOC. The OCV method 
applied the measured OCV and the OCV−SOC relationship to 
estimate the SOC. For VRBs, the performance of the direct 
measurement method is poor, and thus it is rarely used [15]. The 
data-driven methods adopt neural networks [16], fuzzy logic 
[17], or support vector machines [18]. For example, Weigert et 
al. [16] proposed a backpropagation neural network for the 
VRB SOC estimation. Mellado et al. [17] used a fuzzy battery 
model for an online SOC estimation method. Although simple 
to design and implement, the data-driven methods require 
massive data for model training and validation, which may not 
be available for practical systems. Besides, the computational 
costs of these methods are high, and thus it is not desirable to 
use such a method for low-cost implementation. The model-
based methods include the sliding mode observer (SMO) [19], 
the extended Kalman filter (EKF) [20], and the unscented 
Kalman filter (UKF) [21], and they have shown an excellent 
balance between computational efficiency and predictive 
accuracy. For instance, Xiong et al. [19] designed an SMO to 
estimate the SOC and capacity of VRBs jointly. Qiu et al. [20] 
proposed an EKF-based SOC estimator based on a dynamic 
electrical model of VRBs. However, the linearization error of 
the EKF-based method leads to low accuracy, and the algorithm 
is computationally inefficient since it needs to calculate the 
Jacobian matrix sequentially. To solve the problems of the EKF, 
Zheng et al. [21] proposed the UKF to estimate SOC. 
Unfortunately, the time-varying parameters of these models 
have not been considered for practical applications, which can 
lead to significant estimation error. 

Also, many works study parameter identification for VRBs 
[22]-[25]. For example, Qiu et al. [22] proposed a simplified 
VRB equivalent model for the integration with wind energy 
systems. In their work, the model parameters were identified 
with empirical equations, whereas experimental validation is 
lacking. In [23], Zhang et al. developed a comprehensive ECM 
of VRBs considering the influence of self-discharge and pump 
power losses. The authors also analyzed the model parameters 
under various current and flow rates. Later, Xiong et al. [24] 
proposed an improved VRB electro-thermal model and used 
particle swarm optimization to identify the model parameters 
offline. However, the offline methods require time-consuming 
off-grid experiments that can interrupt the operation of the 
system in practice. Furthermore, since the parameters of VRBs 
are affected by many factors, high-dimensional look-up tables 
are needed to cover the entire operating regimes, increasing the 
computational burden significantly. Hence, online methods 
have received growing research attention in recent years. For 
example, Mohamed et al. [25] proposed a second-order 
resistor-capacitor (RC) model for VRBs and used the EKF to 
identify the model parameters online. However, the 
computational burden for generating the Jacobian and 
performing matrix inversion in the EKF is heavy for a seventh-

order battery model. The least-squares (LS) method can be used 
to avoid this problem, exhibiting its excellence for online 
parameters identification [26]. However, the OCV of the 
battery needs to be captured offline in the parameter 
identification methods mentioned above. A recursive LS 
method (RLS) was thus proposed in [27] for online parameter 
identification where the OCV is measured under low current 
conditions. Nevertheless, the OCV cannot be accurately 
measured under high power conditions due to the large voltage 
drop in the stack and the presence of measurement noises. 

Accurate estimation of peak power is also affected by the 
prediction algorithm for peak power. Feng et al. [28] proposed 
a peak power prediction method in which the OCV is 
considered constant over a short time horizon. However, as the 
time horizon increases, the OCV can change significantly, 
especially under high power conditions. Yang et al. [26] solved 
this problem by considering the dependence of the OCV on 
SOC and obtained improved peak power prediction over a long 
period. However, this method only considers the limits of the 
terminal voltage and current. It should be noted that the SOC 
can also affect the peak power, especially at very high or very 
low SOC regions [29]. Wei et al. [27] thus proposed a peak 
power estimation algorithm considering the constraints on 
current, terminal voltage, and SOC. This algorithm has the 
same structure as the peak power estimation algorithm adopted 
in [5]-[7], [30], where the current in the estimation period was 
assumed constant. The peak power estimation is further 
simplified to the peak current estimation due to the strict 
correlation between the terminal voltage and the current. 
However, this method can cause considerable estimation error 
at the high and low SOC regions. In addition, the maximum 
allowable currents are highly dynamic due to the rapidly 
changed terminal voltage, and there is also a highly nonlinear 
relationship between the peak power and the peak current. 

Hence, although the model-based peak power estimation 
methods are promising for VRBs, they still present two 
challenges. First, the SOC cannot be accurately estimated due 
to time-varying model parameters. Second, the peak power can 
vary significantly with increased prediction horizons and more 
dynamic operation conditions. To this end, this paper proposes 
a new peak power estimation scheme to address the above 
research problems. The method is based on an experimentally 
verified ECM of the VRBs, where the model parameters are 
identified based on a combination of offline tests and the online 
recursive least squares with forgetting (FRLS), and the UKF is 
adopted to estimate the states of VRBs. With the verified high 
accuracy in estimated battery states and parameters, as the 
major contribution of the present investigation, we next 
formulate the peak power prediction as a finite time-horizon 
optimal control problem, and the problem was solved using the 
receding horizon control (RHC). Specifically, by rewriting the 
developed nonlinear VRB model as a linear time-varying (LTV) 
form and considering the constraints on current, voltage, and 
SOC, the optimization problem is updated and solved 
repeatedly online using the quadratic programming, achieving 
accurate and low-cost peak power estimation.  
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II. MODELING AND SOC ESTIMATION OF VRBS 
A. Vanadium Redox Flow Battery Model 

To capture the complex characteristics of VRBs during 
operation, an accurate model of VRBs needs to be established 
first. Among various existing VRB modeling methods, the first-
order RC ECM has shown high accuracy under a wide range of 
operating conditions with a simple model structure. As shown 
in Fig. 1, such an ECM consists of four components, including 
1) a voltage source Eocv, representing the OCV and it is affected 
by the concentrations of various vanadium species and protons; 
2) a resistance Rshunt, connected in parallel with Eocv, and it is 
used to describe the self-discharge phenomenon due to the 
movement of vanadium ions through the conduits and channels; 
3) a series-connected R0, representing the ohmic loss due to the 
resistances in the electrodes, electrolyte, and membrane; and 4) 
a parallel RC pair consisting of a polarization resistance R1 and 
a polarization capacitance C1, which is used for emulating the 
dynamic behavior due to ion diffusion. The ion diffusion results 
in the concentration gradient between the bulk electrolyte and 
the electrode surface, which causes the concentration 
overpotential as a consequence. The ECM in Fig. 1 is described 
by, 

SOC( ) ( )

N

d t I t
dt C

η
=               (1) 

1 1

1 1 1

( ) ( ) ( )dU t U t I t
dt R C C

= − +              (2) 

ocv 1 0( ) ( ) ( ) ( )tU t E t U t R I t= − −          (3) 

where I is the applied current, Ut is the terminal voltage, U1 is 
the voltage across the RC pair, and CN is the nominal capacity 
of the VRB. In (3), the OCV is a nonlinear function focv(∙) of 
SOC, i.e., 

ocv ocv

1 2

(SOC)
2

[ ln(SOC) ln(1 SOC)]g S

E f
R T

E m k k
Fζ

Θ

= =

+ − −
         (4) 

where EΘ, Rg, F, ζ, and m are the formal potential of the VRB, 
the universal gas constant, Faraday’s constant, the number of 
electrons transferred, and the number of cells in the stack, 
respectively. k1 and k2 are two correction coefficients. TS is the 
electrolyte temperature in the stack, considered as a constant (TS 
= 298.15 K) in this work. In addition, η is the Coulombic 
efficiency, defined by 

ocv

shunt

1
E

R I
η = −               (5) 

B. Parameter Identification 
Accurate model parameters are essential for reliable peak 

power estimation. Considering the time scale for peak power 
estimation, the parameters in the model presented in Section II-
A can be divided into two groups. First, the capacity CN, shunt 
resistance Rshunt, and parameters in (4) do not change rapidly, 
and thus they can be considered constant and identified offline 
[24]. On the other hand, the circuit parameters R0, R1, and C1 
are usually significantly affected by temperature, SOC, current, 
electrolyte flow rate, etc., and thus, they need to be identified 

online based on measured data. As mentioned earlier, the RLS 
method demonstrates the excellent capability for online 
parameters identification due to low requirements on 
computation. In this method, (2) and (3) are first discretized 
with the sampling time T using the bilinear transform, i.e., 

,
ˆ

t k k kU θ ϕ=                (6) 
where 

ocv, , 1 1k k t k k kE U I Iϕ − − =  
        (7) 

T
3 3 1 2

ˆ [1 ]k a a a aθ = −          (8) 
Here, the subscript k = t/T is the discrete-time instant, and the 

superscripted “ ” represents transpose. The coefficients a1, a2, 
and a3 are functions of circuit parameters and the sampling time: 

   

0 1 0 1 1
1

1 1

0 1 0 1 1
2

1 1

1 1
3

1 1

2
2

2
2

2
2

R T R T R R C
a

T R C
R T R T R R C

a
T R C

T R Ca
T R C

 + +
= +

 + − =
+

 −
=

+

                     (9) 

However, the accuracy of the RLS would drop dramatically 
due to data saturation. A forgetting factor λθ can thus be 
introduced into the RLS. As a result, smaller weights will be 
assigned to the previous data [5]. The model parameters can be 
updated with new information from measurements. Such an 
FRLS method is thus employed in this work to identify the 
time-varying R0, R1, and C1. The procedures for updating the 
parameter vector θk based on the FRLS algorithm are given in 
Table I. After θk is obtained, the circuit parameters can be 
calculated by:  

 
Fig. 1. A first-order RC ECM of VRBs: (a) schematic of first-order RC 
model considering self-discharge and (b) measured and fitted SOC–OCV 
relationship of Eocv = focv(SOC). 

TABLE I 
FRLS-BASED ONLINE VRB PARAMETER IDENTIFICATION 

1. Initialization: 

0 0 ,0 0 0 0 0
ˆ ˆ ˆE[ ],   E[( )( ) ]Pθθ θ θ θ θ θ+ += = − −   

where E[∙] represents the expected value and the hat “


” represents the 

estimated value. 
2. Prior (denoted by “+”) parameter and covariance matrix update: 

1 , , 1
ˆ ˆ   k k k kP Pθ θθ θ− + − +

− −= =                               (11) 
3. Gain update: 
                                    1

, , ,( )k k k k k kL P Pθ θ θ θϕ λ ϕ ϕ− − −= +                                (12)  
4. Posterior (denoted by “−”) parameter and covariance matrix update: 
                                 , ,

ˆ ˆ ˆ[ ( ) ]k k k t k k kL Uθθ θ θ ϕ+ − −= + −                              (13)  

                                     , ,
1

4 ,( )k kk kP I L Pθ θθ θϕ λ+ − −= −                                    (14)  
where I4 is a 4×4 identity matrix, and λθ is set to 0.97 as an initial value. 
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[ ]
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2( ) ( 1)
1 4( )1

a a a aa aR R C
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 + − +−
=  + +− 

 (10) 

C. State Estimation 
In the first-order RC ECM as presented in Section II-A, the 

state variables include the SOC and the polarization voltage U1, 
denoted by the state vector 1[SOC, ]x U=  . Since the states are 
not measurable, a state estimator is needed by using the 
developed model and incorporating the information from 
voltage measurement y = Ut. Among numerous state estimation 
methods, the UKF-based state estimator uses a statistical 
method based on the unscented transform to avoid the 
linearization errors in the EKF. As the UKF exhibits better 
performance on state estimation for nonlinear systems [31], 
[32], it is adopted in this paper to achieve high accuracy in state 
estimation, and the algorithm is described in Table II. Along 
with the FRLS-based parameter identification method, the 
FRLS-UKF co-estimation method can be used to jointly 

monitor the time-varying parameters and states online, and 
these estimates serve as core information for the peak power 
estimation in the following section.  

III. RHC-BASED PEAK POWER ESTIMATION 
In this work, an RHC-based method is proposed to predict 

the VRB peak power. RHC, also known as model predictive 
control, is a widely used control strategy where the control 
action is optimally determined by predicting the future 
behaviors of the system with the capability to consider 
operating constraints [33]. The design procedure of the RHC-
based peak power prediction method is described in this section.  

A. Predictive Model 
First, the OCV can be calculated recursively by using the 

first-order Taylor series polynomial to approximate the OCV vs. 
SOC relationship, i.e. [33], 

ocv, 1 ocv, ocv 1(SOC )(SOC SOC )k k k k kE E f+ +′≈ + −   (22) 
where ocv ( )f ′ ⋅  represents the derivative function of ocv ( )f ⋅ .  

According to (1), the SOC can be expressed as, 
1SOC SOC /k k k NI T Cη+ = −       (23) 

Substituting (23) into (22), we have 
ocv, 1 ocv, ( / ) (SOC )k k N k kE E T C f Iη+ ′= −        (24) 

Hence, the VRB model (1)−(3) presented in Section II-A can 
be discretized using the exponential integrator and augmented 
as an LTV state-space form  

1 1 1 1/ /
1

ocv

1 0 0 /
0 0 1
0 0 1 (SOC ) /

N
T R C T R C

k k k

k N

BA

T C
e e u

f T C
χ χ

η

− −
+

−   
   = + −   
   ′−   

 

 

 (25) 

[ ]


00 1 1 ( )k k k

DC

y R uχ= − + −






           (26) 

where 1 ocv[SOC, , ]U Eχ =   is the augmented state vector, 

,k t ky U=  is the voltage output, and k ku I=  is the single input. 
Equations (25) and (26) will be used next as the predictive 
model in a proposed RHC-based peak power estimator. 
B.  Constrained Optimization Problem for VRB Peak Power 
Estimation 

The objective for peak power estimation is to calculate the 
maximum accumulated power over a future time horizon M. 
Such an estimation problem can be formulated into an optimal 
control problem, in which the control objective is to find an 
input sequence 1[ , , ]M

k k Mu I I+ +=


  to achieve the maximum 
charging or discharging power.  

Several factors limit the peak power of VRBs. First, the 
battery current is limited by the ratings of cables, fuses, power 
converters, etc. Here, we assume the current should be limited 
between Imin and Imax. Note that Imin will be set the zero for 
calculating the discharging peaker power, while Imax shall be set 
to zero for the charging peal power. Next, to avoid overcharge 
and over-discharge, the VRB should also operate within safe 
ranges of SOC and voltage, denoted by [SOCmin, SOCmax] and 
[Ut,min, Ut,max], respectively. In this regard, a constrained 
optimization problem can be formulated at time instant k: Given 

TABLE II 
UKF-BASED VRB STATE ESTIMATION 

1. Initialize UKF state, covariance, and measurement noise, and model: 

0 0ˆ E( )x x+ = , 0 0 0 0 0ˆ ˆE[( )( ) ]P x x x x+ + += − −   
2. Generate 2n + 1 sigma points: 

1

1 1 1

1 1

0

( ( ) ) 1

( ( ) ) 1 2

ˆ

ˆ

ˆ

k

i
k k k i

k k i

i

n P i n

n P n i n

x

x x

x

λ

λ

+
−

+ +
− − −

+ +
− −

=

= + + ≤ ≤

− + + ≤ ≤







             (15) 

where λ represents a scaling parameter and n = 2 is the model order. 
3. Update the prior state estimates of the 2n + 1 sigma points: 

1ˆ ˆ( , )i i
k k k kx F x u w−= +                        (16) 

where F(∙) represents the discretized state transition equation based on (1) 
and (2). (0, )kw    represents the process uncertainty with zero mean 

and the covariance of  . 
4. Compute the mean and covariance of state vector: 

                   
2

0

ˆ ˆ
n

i i
k m k

i
x w x−

=

=∑                                                    (17) 

     
2

0
ˆ ˆ( )( )k k k

n
i i i
c k k

i
wP x x x x− − −

=
= − − +∑                          (18) 

where wm
i and wc

i are weighting factors.  
5. Update the terminal voltage  

,
2

, ,
0

ˆ ˆ( , )

ˆ ˆ

i i
t k k k k

n
i i

t k m t k
i

U H x u v

U w U−

=

 = +



=


∑
           (19) 

where H(∙) represents the output equation (3). (0, )kv    represents the 
measurement noise with zero mean and covariance of  . 
6. Calculate the measurement covariance and cross-covariance of state and 
measurement 

2

, , ,
0

2

, , , , ,
0

ˆ ˆˆ ˆ( )( )

ˆ ˆ ˆ ˆ( )( )

n
i i i
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i

n
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i
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− −

=
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=


= − −


 = − − +

∑

∑



 

           (20) 

7. Calculate the Kalman gain, the posterior state variables, and the 
posterior state covariance matrix. 

                                        

1
, ,

, ,

,

ˆˆ ˆ ( )
k xy k yy k

k k k t k t k

k k k yy k k

K P P

x x K U U

P P K P K

−
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=
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          (21) 
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the model parameters and the estimated augmented state vector 
ˆk kχ χ= , find the current sequence * * *

1[ , ]M
k k Mu I I+ +=



 , so 
that 

( )
1 1

max max     min
MM M

M M

k i k i k i k i
uu u i i

J u y u y+ + + +
= =

 
= ⇒ − 

 
∑ ∑

 

 (27) 

s.t. {1,2, , }i M∀ ∈   

1 1k i k i k i
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A Bu
y C Du
χ χ

χ
+ + − + −

+ + +

 = +


= +

 

 

        (28) 

min max

,min ,max

min maxSOC SOC

k i

t k i t

k i

I u I
U y U

z

+

+

+

≤ ≤
 ≤ ≤
 ≤ ≤

        (29) 

where J represents the cost of the objective function and z 
represents the SOC for brevity. 

Since the predictive model (25) and (26) is linear time-
varying, such a constrained optimization problem (27)−(29) can 
be transformed into a quadratic programming (QP) problem 
[33]. The procedure will be described as follows. 

First, the predicted augmented state vectors over the 
prediction horizon M can be calculated sequentially as, 

1

2
2 1

1
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

  

     (30) 

which can be rewritten in a matrix form, i.e., 
+M M

kp Quχ χ=
             (31) 

where 

1
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The predicted terminal voltage vector over the prediction 

horizon M can also be obtained sequentially as, 
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Similarly, (32) can be rewritten in matrix form as, 
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With (31) and (33), the objective function in (27) can be 
converted to  
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     (34) 

By combining (33) with the voltage constraint in (29), we 
obtain, 

max

min( )

M
M k

M
k

G y f
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G y f
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 − 
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


    (34) 

where max
MMy ∈

  and min
MMy ∈

 contains the upper voltage 
limit ,maxtU and the lower voltage limit ,mintU , respectively.  

Next, the SOC sequence Mz  over the prediction horizon M 
can be expressed as,  

( )M M
kz H p Quχ= +

              (35) 
where [ ]1 1 1diag( , , )

M

H e e e= 
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 and [ ]1 1 0 0e = ,  

By substituting (35) into the third inequality of (29), the 
constraint on SOC can be expressed as, 
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min( )

M
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where max
MMz ∈  and min

MMz ∈ contains the upper SOC limit 

maxSOC and the lower SOC limit minSOC , respectively.  
Based on (34) and (36), the inequality constraints in (29) can 

be expressed as   
max
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where L is M-dimensional identity matrix, and max
MMu ∈



 and 

min
MMu ∈



 are the upper and lower limits of sequential 
constraints for currents, respectively. 

With the matrices W, V, A, and vector b in (34) and (37), one 
can consider the optimization problem as a standard QP 
problem and solve it with a well-developed QP solver. In this 
work, we use the function quadprog in MATLAB with the 
interior-reflective Newton method for solving this QP problem 
sequentially. Once the optimal current sequence *Mu  is 
obtained, the VRB terminal voltage sequence 

* * *
, 1 ,[ , ]M

t k t k My U U+ +=


  can be estimated by (33). 

Multiplying *Mu  by *My  yields the peak power sequence, 

denoted by dis* dis* dis*
1 2, ,...,k k k MP P P+ + +    for discharging and 

chg* chg* chg*
1 2, ,...,k k k MP P P+ + +    for charging. The instantaneous peak 

power at time instant k is calculated by, 
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dis dis* dis* dis*
peak, 1 2
chg chg* chg* chg*

peak, 1 2

min( , ,..., )
max( , ,..., )

k k k k M

k k k k M

P P P P
P P P P

+ + +

+ + +

 =
 =

     (38) 

C. Summary of Proposed Online VRB Peak Power 
Estimation Scheme 

The framework of the proposed online estimation scheme of 
VRB peak power is presented in Fig. 2. The main steps are 
summarized as follows: 

Step 1: Data Collection. The currents and voltages are 
measured. 

Step 2: Model Parameter Identification. Model parameters 
are updated using the measured voltage and current data 
according to the FRLS algorithm presented in Section II-A. 
Here, the OCV can be updated with (4) based on the prior 
estimate of the SOC, and the identified parameters (R0, R1, and 
C1) will be used in the SOC and peak power estimators. 

Step 3: State Estimation. With the updated model parameters 
R0, R1, and C1, the UKF-based state estimator adjusts the prior 
state estimate of SOC and U1 to minimize the voltage error. The 
posterior state estimate will be used for the peak power 
estimation. 

Step 4: Peak Power Estimation. With the identified model 
parameters and estimated states, the optimal current sequence 
is obtained by solving the optimal control problem (27)−(29) 

based on the RHC (34) and (37). The peak power is finally 
obtained using (38).  

IV. EXPERIMENTAL SETUP AND DESIGN 

A. Experimental Setup 
 To verify the proposed VRB peak power estimation scheme, 

a 5-kW/3-kWh VRB experimental platform was used, and a 
schematic diagram of the experimental setup is shown in Fig. 3. 
The platform includes a programmable dc power supply ITECH 
6533C, a programmable dc electronic load ITECH 8818, a host 
computer, and a VRB. The VRB stack consists of 37 series-
connected cells, and the nominal charge/discharge current is 
100 A. The nominal voltage of VRB is 50 V at SOC = 0.5. The 
lower and upper voltage limits are 40 V and 60 V, respectively. 
The host computer is used to control the power flow and 
monitor the system conditions of the power supply, the 
electronic load, and the VRB. The host computer is also used 
for data storage, processing, and visualization. The 
specifications of the experimental platform are given in Table 
III. 

 
TABLE III 

SPECIFICATIONS OF THE VRB EXPERIMENTAL PLATFORM 
Configuration Dimension 

Power rating 5 kW 

Capacity 3 kWh 

Number of cells 37 

Stack dimension 750 mm×480 mm×300 mm 

Electrolyte volume 200 L 

Concentration of vanadium ions 1.5 mol/L 

Voltage lower/upper limits 40 V/60 V 

Maximum discharge current 100 A 

Maximum charge current −100 A 

SOC lower/upper limits 0/1 

 
Fig. 2. Framework of proposed online peak power estimation scheme for VRBs. 

Electrical 
connections

Communications 
link

The host 
computer

TCP/IP
 Transfer protocolDC electronic load

Programmable DC 
power supply

VRB

 
Fig. 3. Schematic of the VRB experimental setup. 
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B. Experimental Design for Model Verification 
 To verify the developed VRB model, a hybrid pulse current 

discharge test was designed and used. The pulse current profile 
is shown in Fig. 4(a). Since the accuracy of the peak power 
estimation is affected by model parameters, the effectiveness of 
the online parameter identification algorithm is verified first. A 
similar approach described in [19] was used to identify other 
model parameters offline based on selected experimental data, 
while for the sake of brevity, this offline parameter 
identification procedure is not elaborated in the present work. 

Next, the measured battery voltage was compared with the 
model output in Fig. 4(b), and the model error is shown in Fig. 
4(c). It can be seen that the predicted battery voltage is close to 
the experimental data: The maximum absolute error is less than 
0.1 V, and the root-mean-square error (RMSE) of the model is 
0.0165 V. These results show that the VRB model is suitable 
for the peak power estimation in the present study. 
C. Experimental  Design for Peak Power Estimation 

 Since the true peak power cannot be measured directly, it is 
calculated online based on the framework shown in Fig. 2. The 
results are benchmarked with the constant current/constant 
voltage pulses experiments [34]. In these experiments, the peak 
power is considered to be reached when either of the following 
two conditions is satisfied: 

1) One of the cell voltages reaches or exceeds the SOA limits 
(i.e., Ut,min or Ut,max) during the pulse while the current is within 
its predefined allowable region (i.e., Imin < I < Imax). 

2) The current reaches or exceeds the SOA limits (i.e., Imin or 
Imax) during the pulse while the cell voltages are all within their 
predefined allowable region (i.e., Ut,min < Ut < Ut,max). 

Accordingly, five offline experiments for peak power 
verification were designed and carried out at SOC = 0.1, 0.3, 
0.5, 0.7, and 0.9, respectively. Specifically, to test the discharge 
peak power at SOC = 0.1, the voltage of the VRB is controlled 
at the cut-off voltage Ut,min. For calculating the discharge peak 
power at SOC = 0.3, the discharge current of the VRB is set to 
the minimum current Imin. For the charge peak power at SOC = 
0.5 and SOC = 0.7, the VRB is charged with the maximum 
current Imax. Finally, for the charging peak power at SOC = 0.9, 
the voltage of the VRB is maintained at the maximum voltage 
Ut,max.  

In Fig. 5, two peak power estimation methods are compared 
with the proposed method. These are an RHC-UKF method 
with constant model parameters identified offline using the LS 

 
Fig. 5. Estimation results of VRB peak power for a time horizon of 60 s. (a) Discharging peak power constrained by the minimum voltage at SOC = 0.1. (b) 
Charging peak power constrained by the maximum current at SOC = 0.5. (c) Charging peak power constrained by the maximum voltage at SOC = 0.9. (d) 
Discharging peak power constrained by the maximum current at SOC = 0.3. (e) Charging peak power constrained by the maximum voltage at SOC = 0.7. 

 
Fig. 4. Model validation. (a) Applied current. (b) Measured and simulated 
voltages. (c) Model error. 
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method (denoted by RHC-LS-UKF) and the direct calculation 
method proposed in [27]. The prediction results of each method 
are benchmarked with the measurement data. The subfigures in 
Fig. 5 are lined up under SOCs of 0.1, 0.3, 0.5, 0.7, and 0.9, 
respectively. It can be observed from Fig. 5 that the results from 
the proposed method are close to the benchmark data. The 
results based on the proposed method show much smaller 
deviations from the measured data than the other two methods.  

The main reason is that the proposed method has an online 
adjustment capability to follow the trends of battery terminal 
voltage, and the prediction with a moving horizon can update 
the battery operation states in time. 

The accuracy of the proposed method is further analyzed and 
quantified by the RMSE of the peak power calculated under 
various SOCs. From Table IV, it can be seen that the proposed 
method has smaller RMSE compared to the other two methods. 
It is thus concluded that the proposed RHC-FRLS-UKF method 
exhibits high accuracy for VRB peak power estimation.  

V. RESULTS AND DISCUSSION 

A. VRB Model Validation 
 Obtaining accurate model parameters is important for peak 

power estimation. In this section, the measured current and 
voltage data from the hybrid pulse experiment were used to 
verify the FRLS-based online parameters identification. To 
initialize the parameter identification algorithm, the mean and 
covariance of the parameters need to be guessed. In this work, 
they are selected according to [20], i.e., 

[ ]

6
,0 4

0

10

0.01 0.01 0.01 0.01

P Iθ

θ

 = ×


=
  

The identified time-varying model parameters by the FRLS 
are plotted in Fig. 6. To verify the accuracy of results, we 
calculate the reference values of several selected points with a 
traditional offline method [19], indicated as the black dots in 
Fig. 6. It can be observed from Fig. 6 that the model parameters 
identified by FRLS are closed to the reference values. Thus, the 
VRB model with these online identified parameters can be 
considered accurate for peak power estimation.  

B. UKF-Based VRB SOC Estimation 
It is vital to accurately estimate the SOC since the peak power 

is affected by SOC. To evaluate the effectiveness of the UKF-
based state estimator, in the hybrid pulse current discharge 
experiment, the initial SOC guess is set to 0.9 while the actual 
initial SOC is 0.96. The SOC estimation results and the 
corresponding estimation error are presented in Fig. 7(a) and 
Fig. 7(b), respectively. It shows that the estimated SOC rapidly 

TABLE IV 
COMPARISON OF RMSES WITH DIFFERENT VRB PEAK POWER ESTIMATION METHODS 

 RHC-LS-UKF (Offline)  Direct Calculation Method [27] RHC-FRLS-UKF (Proposed) 

SOC = 0.9 (charge) 81.65 W 145.38 W 31.76 W 
SOC = 0.7 (charge) 19.15 W 28.95 W 16.51 W 
SOC = 0.5 (charge) 8.87 W 8.87 W 5.49 W 

SOC = 0.3 (discharge) 13.91 W 13.91 W 7.71 W 
SOC = 0.1 (discharge) 592.54 W 613.06 W 74.91W 

 

 
Fig. 6. Results of parameters identification: (a) R0; (b) R1; (c) C1. 
 
 

 
Fig. 7. Results of SOC estimation: (a) SOC. (b) Estimation error. 
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converges to the actual SOC within 100 s. Fig. 7(b) shows that 
the maximum absolute error is less than 0.03, and the RMSE is 
0.01. Thus, the UKF-based VRB state estimator has achieved 
high accuracy for SOC estimation.  

C. RHC-Based VRB Peak Power Estimation  
Based on the identified model parameters and estimated 

states, the RHC-based peak power estimation is examined next 
under the current profile shown in Fig. 4(a). In Fig. 8, the 
predicted discharging and charging peak powers are plotted 
with various prediction horizons ranging from 10 s to 60 s. 
From Fig. 8(a), it can be observed that the discharge peak power 
drops as the battery SOC decreases. A significant peak power 
drop is observed at the end of the operating profile, and this is 
because, at the low SOC region, the active vanadium ions 
deplete rapidly, resulting in a drastic drop in the terminal 
voltage. It is noticed that the estimated peak power with a 
prediction horizon of 10 s is higher than that with a prediction 
horizon of 60 s, indicating that the continuous peak power 
capability of the VRB reduces as the stipulated time horizon 
increases. Compared to Fig. 8(a), as the battery SOC decreases, 
the magnitude of the charge peak power shown in Fig. 8(b) 
increases rapidly and then slightly decreases after about 4000 s. 
This phenomenon can be explained as follows: At the initial 
stage, the charge peak current is constrained by the maximum 
terminal voltage, and it rises due to the increasing difference 
between the voltage constraint and the OCV as the SOC 
decreases, leading to an increasing charging peak power when 
the VRB depletes. Nevertheless, after about 4000 s, the 
charging current can reach its maximum value, and the peak 
power drops due to the decreasing voltage. 

The peak power capacity of VRBs with different prediction 
horizons is analyzed next. From Fig. 8, it is observed that both 
the estimated charging and discharging peak powers with a 
prediction horizon of 10 s are higher than those with a 
prediction horizon of 60 s. We plot a cross-section view of Fig. 
8 with these two horizons in Fig. 9(a) to show the influence of 
the time horizon more clearly. Here, the shaded area enclosed 
by the nonlinear and unsymmetrical boundaries is the SOA of 
the VRB, which is subject to various factors, as mentioned 
earlier, such as the battery SOC, current and voltage limits, and 

prediction horizon. To guarantee the safe operation of the VRB 
and to avoid overcharge/over-discharge, the operating point 
should not exceed the upper and lower limits (the dash 
boundaries as shown in the figure). 

Furthermore, how the constraints limit the charging and 
discharging peak powers of VRBs at different charging or 
discharging stages are analyzed using Fig. 9(b). When the SOC 
and terminal voltage are high at the initial stage, the VRB does 
not reach its upper voltage limit even the maximum discharge 
current is applied. Thus, the active constraint at this stage 
(during the time interval T1) is the maximum discharging 

 
Fig. 8. Peak power estimation under various prediction horizons. (a) Discharging peak power. (b) Charging peak power. 

 
Fig. 9. A specific example under different prediction horizons. (a) 
Upper/lower limits and SOA under prediction horizon of 10 s and 60 s. (b) 
Battery constraints under prediction horizon of 60 s. 
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current, indicated by the upper green line, limiting the discharge 
peak power. This constraint is active until the SOC drops to 
0.09, after which the terminal voltage will decrease 
significantly. At this stage (during the time interval T2), the 
voltage constraint indicated by the upper blue curve affects the 
discharge peak power. On the other hand, for the charging peak 
power, the voltage constraint is the limiting factor during the 
time interval T3 when the SOC > 0.51. When the SOC decreases 
and the terminal voltage drops, the maximum charging current 
limit of 100 A will be reached and play the limiting role during 
the time interval T4. 

Note that although SOCmin = 0 and SOCmax = 1 have been 
considered as the minimum and the maximum SOC levels in 
this example since the SOC range has been limited between 
0.96 and 0.1 during the experiment, the SOC constraint did not 
come into effect. 

VI. CONCLUSION 
The peak power of vanadium redox flow batteries (VRBs) 

reflects the power delivery capacity of these energy storage 
systems in a short time interval. Accurate peak power 
estimation is thus essential for the safe, reliable, and efficient 
operation of VRBs. This paper proposed a receding horizon 
control (RHC) based peak power estimation method for VRBs. 
The paper proposes a novel RHC based peak power estimation 
algorithm to achieve high accuracy in predicting the peak power 
for VRB. The estimated peak power estimation algorithm is 
verified experimentally on a 5-kW/3-kWh VRB platform. The 
simulation and experimental results demonstrate the 
effectiveness of the proposed method. 
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