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H I G H L I G H T S  

• Hierarchy I method is a least squares-based moving horizon estimator. 
• Hierarchy II method is a total least squares-based moving horizon estimator. 
• Hierarchy III method is an input-free moving horizon estimator. 
• Hierarchy II method is highly robust to the corruption of sensing noises. 
• Hierarchy III method realizes accurate estimation without needing current sensor.  
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A B S T R A C T   

Accurate current measurement is indispensable for the management of lithium-ion battery (LIB), especially for 
the state-of-charge (SOC) estimation. However, accurate current sensing is challenging in electric vehicles (EVs) 
due to the electromagnetic interference. Moreover, the currents across the parallel branches of battery pack are 
even unmeasurable due to the absence of current sensor. Motivated by this, this paper proposes a hierarchical 
soft measurement framework for the load current and SOC addressing different degrees of current sensor un-
certainty. Rooted from a common least squares (LS)-based state optimization problem, a total least square (TLS)- 
based modification is proposed and solved to compensate for the measurement disturbances, and in accordance 
to estimate the SOC more accurately. One step further, an input-free optimization method is proposed to co- 
estimate the SOC and load current without using the current measurements. Simulation and experimental re-
sults suggest that the proposed hierarchical framework can realize high-fidelity co-estimation of the SOC and 
load current, especially in the adverse scenarios of both strong noise corruption and current sensor malfunction/ 
missing. The encouraging results open new paradigms for both the high-robustness current-free SOC estimation 
and the hardware-free soft current measurement of LIB.   

1. Introduction 

With the rapid development, the lithium-ion battery (LIB) has earned 
its popularity in power storage, electric vehicles (EVs), and portable 
electronics, attributed to its unique advantages of high energy/power 
density, long life span, and weak memory effects. As the performance of 
LIB system is principally determined by the weakest cells, the state-of- 
charge (SOC) that indicates the remaining charge of a cell is a critical 

state need to be monitored by the battery management system (BMS) to 
maintain the safe operation of LIB system [1–3]. 

SOC estimation has been widely explored in the past years, and the 
associated methods can be broadly divided into four categories, i.e., 
open circuit voltage (OCV) method, coulomb counting (CC) method, 
artificial intelligence method, and model-based method [4–6]. Except 
for the OCV method, it is well recognized that the rest approaches all 
depend directly on the accurate measurement of load current of battery. 
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Unfortunately, accurate current sensing could be quite challenging in 
practical EV applications. In the state-of-the-art techniques, the hall- 
effect current sensor and the shunt resistor current sensor are two 
major choices widely adopted for the BMS of EV [7]. Nevertheless, these 
techniques suffer from two recognized drawbacks for practical use. First, 
the current measurements contain remarkable errors due to the heavy 
electromagnetic interference and dynamic temperature condition within 
the EV environment. Second, the currents across parallel branches of the 
pack are not uniformly distributed due to cell inconsistency. It is not 
practical to install a physical current sensor for each parallel branch 
concerning the high cost. Such limitations have raised practical concerns 
and expectations for the BMS design, i.e., how to ensure the fidelity of 
SOC estimation with low-quality/noise-corruptive current measure-
ment, or even without current sensors. 

For the circumstance of low-quality current measurements, the 
exploration of novel current sensing techniques, e.g., on-chip tempera-
ture compensation and dynamic error-correction [8], can restore the 
measurement quality effectively. However, the installation of the 
complicatedly-structured sensor on each cell is not cost-friendly. Alter-
natively, the model-based SOC estimators have been most studied 
attribute to the high robust performance against disturbances. Accord-
ing to the specific model in use, such methods can be further categorized 
into electrochemical model-based [9–11] and equivalent circuit model 
(ECM)-based estimators [12]. On the premise of well-validated models, 
real-time SOC observers have been explored progressively, like Kalman 
Filter (KF) family [13–16], particle filter [17–19], H-infinity filter 
[20,21], sliding-mode observer [22], proportional integral-based 
observer [23], etc. Recent progresses have also transformed the SOC 
estimation into solving an optimization problem, which formulates the 
well-recognized moving horizon estimator (MHE) [24–26]. 

In spite of the successful use of existing model-based observers, their 
performance in practical scenarios can be deteriorated due to the diffi-
culty in obtaining measurements with sufficient quality under special 
environmental constraints. Within this scope, low-quality sensing- 
induced biases of SOC estimation have been studied for most commonly- 
used EKF and least squares (LS) method in [27]. It is found that the 
sensor errors contribute to persistent estimation biases, and this 
contribution is in comparable magnitude to the model uncertainty. To 
remedy the impact of sensing noises, the wavelet transform has been 
employed to de-noise the corrupted measurements and thus to improve 
the accuracy of SOC estimation [28,29]. However, the low-frequency 
drifting errors are not likely to be eliminated by the filtering ap-
proaches. Moreover, the non-optimized filtering also risks distorting the 
original measurements if the parameters of filter are not tuned meticu-
lously. Considering the current measurement offset (CMO), the two- 
stage recursive least squares algorithm has been exploited to deal with 
the interference of CMO on parameter identification and SOC estimation 
effectively [30]. 

In practical applications, more adverse conditions can occur where 
the current measurement is absolutely unavailable. A typical scenario is 
the occurrence of current sensor failure, while routine management 
tasks such as SOC estimation have to be ensured. Moreover, the refined 
LIB management requires the current flowing across each parallel- 
connected branch, which is typically not measurable due to the lack of 
physical sensors. To this end, few works that focus on the LIB manage-
ment without using current sensor have been reported in the literature. 
Two current estimators based on a Thevenin model and a simple RC 
model are respectively proposed in [31,32]. The essence is to design a 
filter based on the transfer function of the battery model. In spite of the 
simplicity, the intrinsic open-loop mechanism inevitably results in low 
robustness to modeling and measurements uncertainty. A current un-
known SOC estimation method is proposed by voltage filtering based on 
an ECM [33]. However, a primary model is utilized and the frequent 
relaxations are ignored, which potentially declines the estimation ac-
curacy. To remedy such deficiencies, a closed-loop unknown input 
observer is proposed to estimate the SOC and input current concurrently 

based on a second-order RC model [34]. However, it is difficult to meet 
all the pre-conditions at the same time in practical applications. 

To bridge the above research gap, this paper develops a hierarchical 
soft measurement framework for the SOC and load current, oriented for 
different degrees of current sensor uncertainty. In particular, the cor-
responding SOC estimation tasks are transformed into three optimiza-
tion problems which are solved in a real-time manner with the MHE. 
Three primary contributions are made. 

First, a hierarchical algorithmic framework is proposed, for the first 
time, to realize the accurate soft measurement of battery SOC and load 
current. The universal framework provides a series of estimators ac-
counting for different degrees of current sensor uncertainties, i.e., ac-
curate current measurement, heavily-corrupted current measurement, 
and no current measurement. 

Second, the method from Hierarchy II can ensure high robustness 
against the disturbances on current measurements, including both 
drifting errors and stochastic noises. The accuracy of SOC estimate is 
improved largely compared to conventional methods in the heavy noise- 
corrupted condition. 

Third, the method from Hierarchy III gives a solution for high- 
fidelity co-estimation of the input current and SOC without using the 
current sensor. This challenges the entrenched mindset that precise 
current measurements are imperative for accurate SOC estimation. 

The remainder of the paper is organized as follows. The LIB modeling 
and parameterization are presented in Section 2. The proposed hierar-
chical soft-measurement framework is elaborated in Section 3. Simula-
tion and experimental results are discussed in Sections 4 and 5, while the 
primary conclusions are drawn in Section 6. 

2. Battery modelling 

The high-fidelity objective modeling is the prerequisite for any 
model-based estimator or controller. A thorough exposition of the 
control-oriented models for the LIB can be found in [35]. A well- 
compromised model with sufficient simplicity yet simulating the 
dominant electrical dynamics of LIB is generally favorable for the 
formulated problem. To this end, the first-order RC model shown in 
Fig. 1 (a) is used in this paper, where the voltage source is used to 
simulate the SOC-dependent OCV, Rs is the ohmic resistance, the parallel 
connected Rp and Cp are polarization impedances describing the polar-
ization effects of the LIB. 

According to Kirchhoff’s circuit laws and capacitor equation, the 
mathematical expression of the first-order RC model is expressed as: 

Cp
dVp(t)
dt

= IL(t) −
Vp(t)
Rp

(1a)  

Vt(t) = VOC(t) + IL(t)Rs + Vp(t) (1.b)  

dz(t)
dt

=
ηIL(t)

3600Cn
(1c)  

where IL denotes the load current, z the battery SOC, Cn the nominal 
capacity (in Ah), Vp and Vt the polarization and terminal voltage, the 
OCV (VOC) is a function of SOC: 

VOC = f (z) =
∑m

i=0
cizi (2)  

where ci are the coefficients, and m is the polynomial order. 
The SOC-OCV test is performed and the commonly-used pulse- 

relaxation approach is used for calibrating Eq. (2) [36]. The curve-fitted 
SOC-OCV correlation is plotted against the experimental values in Fig. 1 
(b), while the fitted coefficients are summarized in Table. 1. 

Define the system input and output as IL and yk = Vt,k, the state as xk 
= [Vp,k zk]T, the standard discrete-time state-space model can be 
determined from Eqs. (1.a)–(1.c) by: 
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xk = Axk− 1 +BIL,k− 1 +wk (3a)  

yk = f (zk)+Vp,k +RsIL,k + vk (3b)  

where wk and vk are respectively the zero mean and Gaussian process 
and measurement disturbances, whose covariances are Qk and Rk, 
respectively. VOC is substituted by the relation between OCV and SOC f 
(zk) to interrelate the states with the system output. The reference 
matrices are given by: 

A =

[
e−

Δt
RpCp 0

0 1

]

,B =

[(
1 − e−

Δt
RpCp

)
Rp Δt

Cn

]
T (4) 

The model parameters of the first-order RC model, i.e., Rs, Rp and Cp, 
are also SOC-dependent. Therefore, a hybrid pulse test is performed to 
calibrate these impedance parameters beforehand. Particularly, hybrid 
pulse sequences with charge/discharge pulses (10 s for each) and resting 
periods among them (40 s) are imposed on the LIB, and the impedance 
parameters of interest are offline identified with the obtained cur-
rent–voltage responses. As the calibration method is a common one 

studied for years, the details are not elaborated herein but can be 
referred to the existing works [37]. 

3. Hierarchical estimation framework 

In practical applications, current sensors can be contaminated by 
unignorable noises in heavy electromagnetic environments. Even worse, 
the current is unmeasurable in the parallel branches of the battery pack 
due to the difficulty of sensor installation. Regarding these two harsh 

conditions, this section goes further to elaborate a hierarchical co- 
estimation framework for SOC and input current based on the ECM 
presented in Section 2. In the proposed hierarchical framework, three 
constrained optimization problems are formulated, the solutions of 
which provide a series of estimation methods accounting for different 
degrees of current sensor uncertainties, i.e., accurate current measure-
ment, heavily-corrupted current measurement, and no current 
measurement. 

3.1. Hierarchy I: Conventional least squares-based problem formulation 

To ease describing the proposed hierarchical algorithmic framework, 
a conventional optimization-based SOC estimation method is put for-
ward in this section, as Hierarchy I of the proposed framework. Based on 
the general probability theory, it is well-recognized that the optimal 
estimation of internal states is a function of the conditional state prob-
ability density with knowledge of {yi}k i = 0 and system measurements, 
i.e., {x̂i}

k
i=0 = F

[
ρ
(
x0, ..., xk

⃒
⃒y0, ..., yk

) ]
. According to the Bayesian rule, 

this state estimation problem can be reformulated as a maximization 
task: 

{x̂ i}ki=0 = argmaxρ(x0, ..., xk|y0, ..., yk ) (5) 

By combining the maximization problem of Eq. (5) with the state- 
space function of the ECM in Eqs. (3.a-b), a full information optimiza-
tion for the battery states is given by [38]:  

where x0 is the initial system state, P0 is the initial state covariance used 
to penalize the deviation of the initial state estimate. Explicitly, the 
computational endeavor to solve the formulated optimization problem 
builds up rapidly with the enlargement of data length. This has moti-
vated the exploration of the moving horizon framework which is 
believed to appeal to real-time embedded applications. 

Suppose that a moving time horizon owning a fixed length of n is 
defined, then the k-th sampling can be divided into [0, …, tk-n] and [tk- 

Fig. 1. First-order equivalent circuit model in use: (a) model structure, (b) SOC-OCV correlation.  

J
(
{x̂i}ki=0

)
= argmin‖x0 − x̂0‖

2
P0
+

∑k

i=0

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + RsIL,i

) ⃦
⃦2

R+
∑k− 1

i=0

⃦
⃦x̂i+1 − Ax̂i − BIL,i

⃦
⃦2
Q (6)   

Table 1 
Coefficients of the SOC-OCV function.  

Parameters c0 c1 c2 c3 c4 

Value  3.301  2.176  − 6.353  8.839  − 3.805  
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n+1, …, tk]. Bearing this in mind, the full information optimization 
problem of Eq. (6) can be reconstructed as:   

It is shown that the first three terms of Eq. (7) are meant to convey 
the historical information before the present time horizon, i.e., [0, …, tk- 

n]. The first three terms are used to represent the arrival cost [39]. In 
accordance with this, the concerned state estimation problem at time tk 
can be expressed as the following nonlinear optimization problem [24]:  

where xk− n+1 is the priori state estimate at the first of the time horizon, 
which is calculated by the (k − n)-th optimal estimate of states and the 
(k − n + 1)-th system measurements. The first term represents the de-
viation of the initial state from the priori state estimate, and is called the 
arrival cost. The second term is the penalty accounting for the deviation 
between the measured and estimated terminal voltage calculated by the 
estimated SOC and Vp via the Eq. (3.b), and the third term is used to 
penalize the mismatch between the optimized estimated state and the 
propagated state via Eq. (3.a). 

As the errors on the system input are not considered, the SOC esti-
mation method based on Eq. (8) is called LS-MHE for simplicity. It is 
expected that the LS-MHE can give optimized estimation if the current 
measurements are free from errors. It is also worth noting that the LS- 
MHE has already been studied in the literature thus is not an innova-
tion of this work. However, LS-MHE forms Hierarchy I of the proposed 
overall framework, since it lays the foundation for the methods in Hi-
erarchy II and III, which are major contributions of this endeavor. 

3.2. Hierarchy II: Total least squares-based problem formulation 

The formulation of Eq. (8) gives a universal solution for the state 
estimation problem with accurate current measurements. However, as 
the current sensor is vulnerable to electromagnetic interference (EMI), 
precise current measurements are not always available in practical 
application, in contrast, the current measurements are usually contam-
inated by stochastic noises and drifting errors. In this regard, consid-
ering the current measurement errors, by introducing an extended 
vector ρ = [xT IL]T, the total least squares (TLS)-based constrained 
optimization problem is formulated as: 

{ρ̂}k− 1
k− n = arg min

{̂ρ}
k− 1
i=k− n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖x̂k− n+1 − xk− n‖2
Pk− n+1

+
∑k

i=k− n+1

⃦
⃦
⃦ImL,i − Î L,i

⃦
⃦
⃦

2

M

+
∑k

i=k− n+1

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + Rs Î L,i

) ⃦
⃦2

R

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9a)  

s.t. 0 < z < 1 (9b)  

x̂k = Ax̂k− 1 +B Î L,k− 1 (9c)  

yk = f (zk)+Vp,k +Rs Î L,k (9d)  

{ρ̂}k− 1
k− n =

[
ρ̂T
k− n ρ̂T

k− n+1 ... ρ̂T
k− 1

]
(9e)  

{x̂}k− 1
i=k− n =

[
x̂T
k− n x̂T

k− n+1 ... x̂T
k− 1

]
(9f)  

where Im
L,i denotes the measured load current, 

∑k
i=k− n+1

⃦
⃦
⃦Im

L,i − ÎL,i

⃦
⃦
⃦

2

M 
is 

the input error term which is added into the objective function to form a 
TLS-based problem, M indicates the confidence on the current mea-
surements, xk− n+1 is updated with the estimate of input current at k − n 
+ 1. The SOC estimation method based on Eqs. (9. a - f) is called the TLS- 
MHE method for simplicity. 

Unlike the problem formulation in Eq. (8), the proposed TLS-MHE 
method treats the system input as a decision variable to be estimated 
together with states of interest, using the state-space model as a 
constraint. Another primary difference is that the state error cost has 
been excluded referring to Eq. (8). This is reasonable with the assump-
tion that the noise covariance Q is a zero matrix [40]. Hence, the state 
sequence is reconstructed via the process model once the initial state is 
optimized, which virtually decreases the solution time. By appropriately 
selecting the confidence factor M, the TLS-MHE method is supposed to 
accurately estimate the SOC and correct the load current measurements 
simultaneously. It is explicit that compared to the LS-MHE, the TLS-MHE 
has lower dependence on accurate current measurements, and is more 
robust to the disturbance on battery current. Therefore, the TLS-MHE 
method is expected to be favorable under the practical in-vehicle con-
dition where the current measurements contain heavy noises. 

3.3. Hierarchy III: Current-free constrained problem formulation 

The aforementioned TLS-based method surmounts the challenge of 

J
(
{x̂i}ki=0

)
= argmin‖x0 − x̂0‖

2
P0
+
∑k− n

i=0

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + RsIL,i

) ⃦
⃦2

R +
∑k− n

i=0

⃦
⃦x̂i+1 − Ax̂i − BIL,i

⃦
⃦2
Q

+
∑k

i=k− n+1

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + RsIL,i

) ⃦
⃦2

R +
∑k− 1

i=k− n+1

⃦
⃦x̂ i+1 − Ax̂i − BIL,i

⃦
⃦2
Q

(7)   

J
(
{x̂i}ki=0

)
= argmin‖xk− n+1 − xk− n+1‖

2
Pk− n+1

+
∑k

i=k− n+1

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + RsIL,i

) ⃦
⃦2

R

+
∑k− 1

i=k− n+1

⃦
⃦x̂i+1 − Ax̂ i − BIL,i

⃦
⃦2
Q

(8)   
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SOC estimation with low-quality current measurements. However, in 
the current sensor-less scenario like the parallel topology in a battery 
pack, the current across each parallel branch is unmeasurable. In this 
circumstance, the input current is expected to be estimated simulta-
neously with the states of interest via matching the voltage measure-
ments with the aid of the state-space model. In particular, a modified 
input-free optimization problem is formulated by: 

{ρ̂}k− 1
k− n = arg min

{̂ρ}
k− 1
i=k− n

⎧
⎪⎪⎨

⎪⎪⎩

‖x̂k− n+1 − xk− n‖2
Pk− n+1

+
∑k

i=k− n+1

⃦
⃦yi −

(
f (ẑi) + V̂ p,i + Rs Î L,i

) ⃦
⃦2

R

⎫
⎪⎪⎬

⎪⎪⎭

(10) 

It is worth noting that the constraints of Eq. (10) are consistent with 
those of the TLS-based method in Section 3.2. The main difference from 
the TLS-based method is the absence of input error term in the objective 
function, since the unavailability of current information is an underlying 
assumption herein. Note that the estimation at each time point relies 
only on the latest n terminal voltage measurements, while the historical 
measurements are readily contained in the arrival cost. By solving the 
finite-horizon optimization problem formulated in Eq. (10), both the 
states of interest and the input current can be estimated concurrently. As 

the estimation based on Eq. (10) no longer utilizes the current mea-
surement, it is called current-free MHE for simplicity. Compared to the 
methods from Hierarchy I and II, the current-free MHE promises a 
unique advantage of estimation without a current sensor. This property 
appeals to some special scenarios like current sensor failure or the need 
for monitoring cells in the parallel branches of the pack. 

3.4. Universal framework of the hierarchical methodology 

The efficient solution of constrained optimization problems defined 
in Sections 3.1–3.3 eventually gives rise to a series of estimation 
methods accounting for different degrees of current sensor un-
certainties. In this paper, the sequential quadratic programming (SQP) 
method is employed to solve the involved optimization problems and 
thus provide the optimal estimates of SOC and input current at each 
iteration. For the sake of simplicity, the algorithmic procedure of the 
SQP is not detailed in this paper but can be found in [41]. 

The proposed hierarchical framework is shown schematically in 
Fig. 2. It can be seen that one can always find a solution in response to 
different levels of current sensor uncertainty. In particular, the con-
ventional LS-MHE represents “Hierarchy I”, which is preferable for use 

Fig. 2. Schematic diagram of the proposed hierarchical estimation framework.  

Fig. 3. Profiles of load current, terminal voltage and SOC for simulation study: (a) FUDS current, and (b) terminal voltage and reference SOC.  
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under a favorable condition that the LIB current can be measured very 
precisely. 

In “Hierarchy II”, the TLS-MHE is employed to estimate the SOC and 
correct the current measurements concurrently. It is worth noting that 
the current measurements are subjected to heavy noises and drifting 
errors due to the dynamic working condition and electromagnetic 
interference of in-vehicle environment. Affected by these uncertainties, 
the existing estimation methods are easily deteriorated in the estimation 
accuracy. In contrast, this method mitigates the reliance on highly- 
precise measurement, and thus appeals to a deteriorated condition 
that the current and voltage measurements of LIB are low-quality with 
large disturbances. 

In “Hierarchy”, the proposed current-free MHE eliminates 
completely the dependence on the current measurements by co- 
estimating the SOC and load current using only the voltage measure-
ments. This indicates its suitability for use under the most deteriorative 
scenario, where the current of LIB is not measurable due to either sensor 
breakdown or the difficulty of large-scale sensor installation. 

4. Simulation validation 

The performance of the proposed framework in comparison with 
existing ones in the literature is evaluated with simulations in this sec-
tion. The merit of simulation is rooted in the full elimination of model 

uncertainty, which enables evaluating the algorithms from a purely 
theoretical perspective. 

4.1. Data acquisition 

During the simulation, the federal urban drive schedule (FUDS) is 
loaded to excite the battery model, while the load current, terminal 
voltage and SOC are sampled at 1 Hz and plotted in Fig. 3. The methods 
are performed with the acquired data to evaluate the effectiveness. The 
widely-used EKF-based state estimator is also executed and compared 
with the proposed methods to evaluate the performance of different 
methods. Since the precise initial SOC is unavailable practical applica-
tions, the SOC is initialized erroneously as 60% in this work, while the 
true initial SOC is 87.5%. 

4.2. Simulation results 

Random noises with a standard deviation of 0.5 A (10% when 
normalized by the range of the FUDS current) and 2 mV, as well as 
drifting errors of 0.5 A and 2 mV are added to the noise-free current and 
voltage measurements to simulate the scenario with heavy EMI. Note 
that the voltage disturbances are much smaller because the commercial 
voltage sensors of BMS can generally ensure a much higher precision 
than the current measurement. The estimation results by using the 
proposed framework, including the LS-MHE (Hierarchy I), TLS-MHE 
(Hierarchy II), and current-free MHE (Hierarchy) are plotted in Fig. 4. 
Meanwhile, the estimation results given by the widely-used EKF are also 
plotted against the ones from the hierarchical framework for a 
straightforward comparison. The corresponding MAEs and RMSEs of 
state estimation after the algorithms converge to within ± 5% error 
bound are summarized in Table 2. 

As shown in Fig. 4 (a-b) and Table 2, the SOC estimates with EKF and 
LS-MHE are comparable, and both of them suffer from a major error 
build-up due to the addition of large measurement errors. The estima-
tion errors of these two methods keep around 4% in the first 4000 s and 
reach the maximum of 14 % at around 7000 s. The low robustness of LS- 

Fig. 4. State estimation results of simulation study: (a) estimates of SOC, (b) SOC estimation error, (c) estimates of polarization voltage, (d) estimation error of 
polarization voltage. 

Table 2 
Comparative estimation performance of different methods obtained from 
simulation I.  

Methods SOC (%) Vp (mV) Input current (A) 

MAE RMSE MAE RMSE MAE RMSE 

EKF  5.43  6.11  9.9  10.1 N.A. N.A. 
LS-MHE  5.99  6.69  9.1  10.9 N.A N.A 
TLS-MHE  1.49  2.03  3.9  5.7 0.215 0.298 
Current-free MHE  0.61  0.97  3.3  4.9 0.072 0.135  
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MHE (Hierarchy I) can be explained by the optimization problem 
formulation in Eq. (8), which assumes a disturbance-free system input 
(load current measurement). In reality however, this deviation from 
such assumption virtually leads to a deteriorative performance of LS- 
MHE. Even worse, the regional flat SOC-OCV curve within the SOC 
range of 20–50% causes a quasi-unobservable condition and thus a 
growing vulnerability to perturbations. As the disturbances imposed on 
the current and voltage data are eventually transferred into the esti-
mated OCV, the enlarged SOC mismatch is hence within expectation for 
these two methods. 

In contrast, it is shown that the estimation errors of TLS-MHE (Hi-
erarchy II) are much lower and always kept within the ±4% error bound. 
The superior performance of TLS-MHE is attributed to its full consider-
ation of the disturbances on both current and voltage measurement, as 
suggested by Eq. (9), and the “error-in-variable” optimization mecha-
nism can well compensate for such disturbances to ensure an unbiased 
estimation. Moreover, the TLS-MHE converges into the 4% error bounds 
rapidly in the first tens of seconds. The observed fast convergence is 
attributed to the input error penalty in objective function Eq. (9), where 
the estimation is guided efficiently towards the “correct direction” with 
the low-quality current measurements, but does not fully trust the 
measurements. With respect to the current-free MHE (Hierarchy), its 
estimate of SOC converges into the 4% error bounds gradually in nearly 
1000 s and keeps tracking of the benchmarked SOC trajectory closely. 
The relatively slow convergence of the current-free MHE can be 
explained from two perspective. On the one hand, as the input current is 
added into the decision variables, the elevated degree of freedom of the 
current-free MHE make the optimization more complex. On the other 
hand, the weight of the arrival cost in the objective function grows 
significantly as the input error term is removed, which limits the 

Fig. 5. Estimated input current of simulation study: (a) input current estimates, 
(b) partial zoom-in figure. 

Fig. 6. Data from experiments: (a) input current, and (b) terminal voltage and benchmarked SOC under FUDS, (c) input current, and (d) terminal voltage and 
benchmarked SOC under DST. 
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propagation step size of the SOC estimates at each iteration. As shown in 
Table 2, the steady-state estimation deviation is even lower than the 
TLS-MHE, which can be explained by the fact that the method is inde-
pendent of the current measurement, so that the errors cannot be 
transferred to the state estimation. 

The estimation of polarization voltage, which is cross-linked with the 
SOC estimation, can serve as an important support for the aforemen-
tioned discussions. As can be seen in Fig. 4 (c-d), the results are 

consistent with those of SOC estimation for all the four involved 
methods. Therefore, this is not expanded for discussion for the briefness. 

It is worth noting that both the TLS-MHE and the current-free MHE 
can achieve input current estimation, although the former needs a rough 
measurement as the basis. The estimation results of the input current by 
using the two methods are shown in Fig. 5, while the statistical in-
dicators are summarized in the last columns of Table 2. It is observed 
that both the estimates agree with the ground truth closely. The scrutiny 

Fig. 7. Modelling results: (a) predicted terminal voltages against measurements and (b) modelling error under FUDS, (c) predicted terminal voltages against 
measurements and (d) modelling error under DST. 

Fig. 8. SOC estimation results under ignorable noise corruption: (a-b) SOC estimates under FUDS, (c-d) SOC estimates under DST.  
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of estimation errors, as shown in Fig. 5 (b, c), reveals that the two 
methods mitigate most of the noises and offset imposed on the current 
measurements. By comparison, the current-free MHE gives rise to an 
even more accurate steady-state estimation of the input current, even 
though it absolutely eliminates the need for current sensing. 

A potential limitation of the current-free MHE is the slower 
convergence during the start-up stage compared to the TLS-MHE, as 
supported by Fig. 4 (a-b) and Fig. 5 (c). In spite of this, the current-free 
MHE outperforms the methods in other hierarchies from the viewpoint 
that, it is applicable with expected performance without the need for 
current sensor installation. This unique merit appeals for wider appli-
cations including some special scenarios, such as the case of current 
sensor failure or the need for monitoring cells in the parallel branches of 
the pack. 

5. Experimental validation and discussion 

5.1. Experimental details 

The algorithms are evaluated experimentally using both the FUDS 
and the DST condition in this section. Arbin battery testing system is 
used to load the dynamic current profiles to the LIB in use. The ranges of 
the current and voltage sensors inside the test bench are 10 A and 5 V, 
while the measurement error limits are both within 0.05%. The acquired 
high-accuracy experimental data including the load current and termi-
nal voltage are collected at 1 Hz and used to obtain the benchmarked 

SOC trajectory, which is used to evaluate the performance of different 
methods. Particularly, the reference SOC trajectory is determined by 
combining the accurate SOC pre-setting and CC-based calibration. The 
measurements and the benchmarked SOC trajectory are shown in Fig. 6. 

5.2. Validation of modelling accuracy 

The modeled terminal voltages are plotted against the measured 
values in Fig. 7. It is shown that the modeled terminal voltages approach 
their measurements very tightly. The modeling errors have been 
confined to the 50 mV error bound for both of the two validating con-
ditions, except for a visually observable error build-up at the ending 
stage of the FUDS condition. This is caused by the high nonlinearity of 
LIB dynamics at the low SOC region (typically lower than 15%), which 
can be hardly described by the first-order RC model employed in this 
paper. Fortunately, such deep charge depletion is hardly met in practice 
as a consequence of the intention to protect the battery. It is hence 
validated the parameterized model is highly authentic to describe the 
LIB electrical dynamics, offering a solid basis for the model-based state 
and input current co-estimation. 

5.3. Experimental validation with ignorable noise corruption 

Measurements with high-precision sensors under well-protected 
laboratory conditions are used for method validation herein. With 
high-fidelity measurements, the TLS-MHE is approximately equivalent 
to the LS-MHE. Hence, only the LS-MHE, current-free MHE, and the 
widely-used EKF are included for comparison in this section. 

Table 3 
Estimation error of SOC under ignorable noise corruption.   

FUDS DST 

MAE RMSE MAE RMSE 

EKF  0.85%  1.26%  0.99%  1.42% 
LS-MHE  0.890%  1.31%  1.01%  1.54% 
Current-free MHE  0.781%  1.11%  1.45%  1.71%  

Fig. 9. Results of input current estimation under ignorable noise corruption: (a-c) estimation under FUDS, (d-f) estimation under DST.  

Table 4 
Errors of input current estimation under ignorable noise corruption.   

FUDS DST 

MAE 0.137 A 0.151 A 
RMSE 0.178 A 0.197 A  
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The results of the SOC estimation under FUDS and DST conditions 
are illustrated in Fig. 8, and correspondingly, the statistical results of 
estimation deviation (MAE and RMSE) in the steady-state are summa-
rized in Table. 3. It is shown that the widely-used EKF and LS-MHE 
(Hierarchy I) can estimate the SOC accurately. This is within expecta-
tion since the algorithms are implemented in an environment with 
ignorable noise corruption. By comparison, the proposed current-free 
MHE method augments the input current to the state space for co- 
estimation, which risks declining the estimation performance due to 
the elevated degrees of freedom and the incurred cross-interference 
problem. This problem indeed exists, witnessed by the slow conver-
gence at the initial stage. Once converged, however, the current-free 
MHE exhibits an equivalent accuracy compared to the benchmarked 
EKF and LS-MHE which utilize the high-quality input current 
information. 

By using the current-free MHE, the estimation results of input current 
are shown in Fig. 9 (a-c, d-f) in comparison with their benchmarks 
measured by the high-precision sensors. In correspondence to the 
convergence of SOC estimation, it takes a transition period for the 
current-free MHE method to alleviate the initialization error. After this 
stage, the input current estimates track the noise-free current mea-
surements reference closely. Despite that the maximum estimation error 
that appears at the transient change of the current is nearly 0.6 A, the 
average estimation error is within a reasonable range under both the 
FUDS and DST conditions. This can be justified by the statistical error 
information summarized in Table. 4. The estimation RMSEs are 0.151 A 
and 0.197 A under the two conditions, respectively. The normalized 
RMSEs are smaller than 4%, which stands for a high accuracy 

considering the same level of precision of Hall-effect current sensors 
which are widely used. 

Two major conclusions can be drawn from the experimental results 
in this section. First, under the scenario of ignorable or slight noise 
corruption, the LS-MHE provides sufficient estimation performance that 
similar to the EKF. There is no need to move to hierarchy II or III, which 
inevitably increases the computing complexity. Second, the current-free 
MHE method is capable of co-estimation of the battery input current 
profile and SOC with sufficient accuracy leveraging merely the voltage 
measurements. 

5.4. Experimental validation with heavy disturbance 

In this section, remarkable disturbances consistent with the simula-
tion study are imposed on the current and terminal voltage measure-
ments. The SOC estimation results of the EKF, LS-MHE, TLS-MHE, 
current-free MHE methods are plotted in Fig. 10, and the statistical er-
rors are summarized in Table. 5. 

It can be observed that the SOC estimation results by using EKF and 
LS-MHE methods are similar to the simulation study. Although all the 
methods converge stably and track the reference closely, the accuracy 
has declined compared to the case of simulation due to the existence of 
modeling uncertainties. Referring to Table. 5, the SOC estimates with 
EKF and LS-MHE show large errors thus are no longer recommended for 
use in practice. By comparison, the TLS-MHE and current-free MHE can 
remedy this deficiency. It is observed that the estimation results of these 
two methods keep high accuracy within the heavy noise-corruptive 
scenario. As discussed in Section 4.2, TLS-MHE attenuates the effect of 
disturbances by augmenting the input error penalty into the objective 
function, while the current-free MHE completely rules out the reliance 
on the noise-corrupted current information. Therefore, the disturbance- 
tolerant property of the two methods can be explained. Consistent with 
the simulation results, the current-free MHE shows a higher steady-state 
accuracy but a deteriorated converging performance. Both of them 
(Hierarchy II and III) are applicable with sufficient precision under the 
adverse but practical in-vehicle condition of heavy noise corruption. In 
the case that the current measurements are not available, the current- 
free MHE (Hierarchy III) can be used for high-fidelity SOC estimation. 

Fig. 10. SOC estimation results with heavy disturbances: estimates and errors under (a-b) FUDS, and (c-d) DST.  

Table 5 
SOC estimation errors with heavy disturbances.   

FUDS DST 

MAE RMSE MAE RMSE 

EKF  5.75%  6.52%  6.40%  7.07% 
LS-MHE  6.22%  7.05%  6.97%  7.66% 
TLS-MHE  1.59%  1.92%  1.99%  2.42% 
Current-free MHE  0.87%  1.11%  1.67%  1.95%  
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The current estimation results by using the current-free MHE and the 
TLS-MHE are plotted comparatively in Fig. 11, and the statistical errors 
are summarized in Table. 5. The reported estimation accuracies show 
certain declinations compared with the foregoing given simulation re-
sults in Table 2. This is within expectation since the introduced model 
uncertainty inevitably discounts the performance of the discussed 
model-based estimator. 

The overall performance of the current estimation is shown in Fig. 11 
(a, d). Again, the convergence speed of the TLS-MHE is faster than the 
current-free MHE, which is consistent with the convergence of SOC 
estimation. As shown in Fig. 11 (b, e), the estimation accuracy of the 
current-free MHE is slightly higher than the TLS-MHE method after 
convergence, especially under the DST condition. Moreover, the esti-
mation errors by using the two methods are both much smaller 
compared with the measurement noise, as illustrated in Fig. 11 (c, f), 
suggesting that the current measurement uncertainty has been mitigated 
to a large extent. Referring to Table. 6, the MAEs RMSEs of the current 
estimates are even smaller than the drifting error and the standard de-
viation of the random noises imposed on the current measurements. 

Two major findings can be summarized from the experimental re-
sults in this section. First, the LS-MHE (Hierarchy I) is heavily biased and 
thus not applicable in the adverse condition of heavy noise corruption. 
Instead, both the TLS-MHE (Hierarchy II) and the current-free MHE 
(Hierarchy III) promise disturbance-immune performance. Second, in 
the even worse condition of no available current sensor, only the 
current-free MHE (Hierarchy III) can promise an accurate estimation of 

SOC. Moreover, the highly-authentic estimation of input current re-
ported by current-free MHE also inspires the possibility to extend its 
practical use for the design of the virtual current sensor and the real-time 
current sensor fault diagnostic of the battery system. 

5.5. Discussion on the practical application 

Although the proposed method is designed to be implemented on a 
cell-level processor toward the future application of self-regulated smart 
batteries, it is also applicable to the conventional configuration of bat-
tery system. Particularly, the proposed method can be compiled into the 
BMS in advance. Considering the condition where both the voltage and 
current are measurable (e.g. in series branches), the Hierarchy II of the 
proposed method is activated, which can give an accurate SOC estima-
tion using the noise-corrupted measurements. Considering the condition 
where the current is unmeasurable (e.g. in parallel branches or with 
failed current sensors), the Hierarchy III of the proposed method is 
activated, which can realize accurate co-estimation of both the SOC and 
input current. In the future, this endeavor can potentially contribute to 
reducing the expense of battery system by discarding the physical cur-
rent sensors. 

An undesirable effect is the growing computational burden when 
estimating the SOC and input current of all cells simultaneously. There 
can be two potential solutions to mitigate this adverse effect. First, each 
battery module can be equipped with one or more slave controllers to 
separate the huge computational burden into several affordable por-
tions. Second, as depicted in BATTERY 2030 + Roadmap of Europe, 
higher degree of intelligent management is expected for the future 
battery system [42]. Within this vision, the system-level management 
can be realized in a distributed fashion by developing the self-regulated 
smart battery, which is generally devised with switches, sensors, and 
build-in cell-level processor. This endeavor will be focused on in our 
future work. 

Fig. 11. Input current estimation results with heavy disturbances: (a-c) estimates and errors under FUDS, (d-f) estimates and errors under DST.  

Table 6 
Errors of input current estimate with heavy disturbances.   

FUDS DST 

MAE RMSE MAE RMSE 

TLS-MHE 0.244 A 0.314 A 0.231 A 0.305 A 
Current-free MHE 0.135 A 0.191 A 0.161 A 0.208 A  
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6. Conclusions 

This paper proposes a hierarchical framework for the accurate soft 
measurement of battery SOC and load current. Within the proposed 
framework, three constrained optimization problems are formulated 
accounting for different degrees of current sensor uncertainties, and 
three estimation methods named LS-MHE, TLS-MHE and current-free 
MHE are developed by solving them in a real-time fashion. The pri-
mary conclusions are:  

1. Under the scenario with accurate current measurements, the LS-MHE 
(Hierarchy I) is the best candidate with high accuracy and fast 
convergence. The MAEs of SOC estimation are 0.89% and 1.09% 
respectively under the FUDS and DST conditions.  

2. Under the scenario of heavily-corrupted current measurement, both 
TLS-MHE (Hierarchy II) and current-free MHE (Hierarchy III) can 
provide accurate SOC estimate. The MAEs of SOC estimation with 
TLS-MHE (1.59% and 1.99%) and current-free MHE (0.87% and 
1.67%) validate to be much smaller than those of LS-MHE (6.22% 
and 6.97%), under the FUDS and DST conditions.  

3. Under the scenario of no current measurement, only the current-free 
MHE (Hierarchy III) is applicable for SOC estimation. The MAEs of 
the SOC estimation are as low as 0.78% and 1.45% respectively 
under FUDS and DST conditions. 

4. The current-free MHE (Hierarchy III) can be used for the soft mea-
surement of battery current. The normalized RMSEs of current esti-
mation are smaller than 4%, which is in the same level with the 
widely-used Hall-effect current sensors. This unique merit inspires 
the possibility to extend its practical use for the design of virtual 
current sensor and the real-time current sensor fault diagnostic. 
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