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Abstract—This article proposes an adaptive state of health
(SOH) estimation method for lithium-ion batteries using machine
learning. Practical problems with feature extraction, cell inconsis-
tency, and online implementability are specifically solved using a
proposed individualized estimation scheme blending offline model
migration with online ensemble learning. First, based on the data
of pseudo-open-circuit voltage measured over the battery lifes-
pan, a systematic comparison of different incremental capacity
features is conducted to identify a suitable SOH indicator. Next,
a pool of candidate models, composed of slope-bias correction
(SBC) and radial basis function neural networks (RBFNNs), are
trained offline. For online operation, the prediction errors due
to cell inconsistency in the target new cell are then mitigated
by a proposed modified random forest regression (mRFR) based
ensemble learning process with high adaptability. The results
show that compared to prevailing methods, the proposed SBC-
RBFNN-mRFR-based scheme can achieve considerably improved
SOH estimation accuracy (15%) with only a small amount of
early-age data and online measurements are needed for practical
operation. Furthermore, the applicability of the proposed SBC-
RBFNN-mRFR algorithms to real-world operation is validated
using measured data from electric vehicles, and it is shown that
a 38% improvement in estimation accuracy can be achieved.

Index Terms—Lithium-ion batteries, state of health estimation,
incremental capacity analysis, modified random forest regression,
online machine learning

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries have been reckoned as
the backbone of electric vehicles (EVs) and key compo-

nents of modern grid systems due to their salient merits of
high energy and power densities, low self-discharge rate, and
ever-declining costs in recent years [1]. However, the energy
storage capacity and power capability of Li-ion batteries can
gradually reduce caused by various aging mechanisms, leading
to limited service life and degraded system performance over
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time [2]. To ensure the safe, reliable, and efficient use of Li-
ion batteries, the indicator of battery health, namely the state
of health (SOH), must be precisely monitored and predicted,
which forms a fundamental functionality of Li-ion battery
management systems (BMSs) [3].

The SOH is a figure of merit defined by comparing an
aged battery parameter to its pristine value at the begin-
ning of life, commonly using battery capacity or internal
resistance [4]. Many battery SOH estimation algorithms have
been developed in the literature, and these algorithms can
be generally classified into physics-based methods [5], [6],
empirical methods [7], [8], and data-driven methods [9], [10].
Physics-based methods describe battery electrochemical and
thermal dynamics that closely relate to battery aging based
on partial differential equations (PDEs) for SOH estimation,
but it requires high computation for online implementation.
Empirical-based methods depict battery dynamics by employ-
ing phenomenological equivalent circuit models and monitor
the capacity and/or internal resistance for battery SOH estima-
tion, or using static functions to characterize the degradation
trends. However, the accuracy of these methods can only
be guaranteed under the similar operating conditions under
which the models are developed. The weak extrapolability of
these empirical models leads to the requirement of extensive
experimental tests in order to cover full operating ranges for
practical use. In the past five years, the data-driven methods
have received rapidly growing research attention, because
their model-free and easy-to-implement natures are in favor
of real-world applications in view of recent advances in big
data and artificial intelligence [11]–[13]. Among many data-
driven techniques, incremental capacity analysis (ICA) is one
of the most extensively investigated methods. In ICA, the
incremental capacity (IC) curves are generated based on the
capacity–voltage relationship obtained from constant-current
charging/discharging, i.e.,

ICt =
dQt
dVt

=
∆Qt
∆Vt

=
Qk −Qk−1
Vk − Vk−1

(1)

where Q and V denote the measured battery capacity and volt-
age, respectively, t is time, and subscripts k−1 and k represent
two consecutive discrete time instants. The movement of the
IC curve is closely related to the phase transitions and phase
equilibria during the lithiation and de-lithiation processes
inside the Li-ion cells [14]. Thus, features of interest (FOIs)
can be reasonably extracted from the IC curves to reveal the
hidden relationships between the direct measurements to SOH
[15]. The extracted FOIs are used next as the input of a
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predictive model for developing a SOH estimation algorithm.
Most FOIs are constructed by investigating the positions

and amplitudes of the points of interest (POIs) on the IC
curve. For instance, Li et al. compared the estimation accuracy
of the IC features generated from different POIs [16]. The
main POIs that have been identified as qualified for battery
SOH estimation are the peak and valley points, especially
in high-voltage regions [17], [18], and it usually requires the
battery to cycle under a full charging/discharging protocol in
the lifelong operation. Unfortunately, such a cycling process
is rarely experienced in real-world applications, and in many
cases, these POIs are inappropriate to be used for full life-
cycle prediction. For example, the peak points on the IC curves
may decrease and vanish towards the battery’s end of life. As
a result, the effectiveness of the SOH estimation algorithms
based on these features would be significantly reduced for
aged batteries. To address this problem, Li et al. focused on
the datasets with a selected state of charge (SOC) range during
actual charging processes and a model was proposed to adopt
multipoint features as the model inputs [19]. Indeed, by se-
lecting several points distributed in a region with a drastically
changed IC curve, the risk of losing a single point feature as
the battery ages can be lowered. Nevertheless, both features
extracted from a single point and multiple points are prone to
measurement noises. In contrast, using area features of the IC
curves can effectively reduce the sensitivity to these noises and
mitigate the influence of applied filtering algorithms, thereby
achieving high accuracy for battery SOH estimation [20].
The theoretical backgrounds for all the IC features mentioned
above have been explored in the literature, and it shows that
features are associated with certain electrochemical reactions
and degradation mechanisms inside batteries [21]–[23].

Indeed, the works mentioned above with different FOIs are
valuable and have actively contributed to the advancements
in Li-ion battery health management. Nevertheless, since the
existing methods based on different FOIs were validated with
a specific dataset for battery cells with different types of
chemistry and specifications, for practical applications, it is
unclear how different features can affect the estimation results
unless a systematic comparison is conducted in advance. Since
the datasets previously used have been collected from different
sources that often differ from each other in experimental
settings, it is not only unfair but also unreasonable to conclude
one is superior to another directly. A comprehensive com-
parative study of the IC features before model development
can potentially remove the need of a labor-intensive feature
selection process, but unfortunately, there is a lack of such a
study in the existing works.

Most of the algorithms based on IC features are investigated
and validated at the battery cell level. A common problem
found in the above-mentioned SOH estimation algorithms
is that the effects of cell inconsistency are overlooked. In
fact, cell inconsistency is inevitable due to manufacturing
tolerance: even the same type of batteries from the same
manufacturing batch will exhibit different characteristics. The
inconsistency can be magnified with the cell being used due
to unbalanced aging trajectories caused by thermal, electrical,
and mechanical nonuniformity in the battery packs. Hence, the

suitability for extrapolating the predictive model derived by
fitting the data from one cell or one pack to other individuals
is not guaranteed.

The model migration method, originally proposed for mod-
eling similar injection molding processes by Lu et al. [24],
can be an effective tool to deal with the problems caused
by unavoidable cell-to-cell variations. In the model migration
method, a base model is first developed from a sufficiently
large amount of data, and the developed base model is then
migrated as a new model to describe a similar process where
only a limited amount of new data are available, and this
concept has been introduced into the battery management com-
munity recently. For example, to predict the aging trajectory
and remaining useful life, the Bayesian Monte Carlo method
[25] and artificial neural networks (ANN) [26] were used to
estimate the migration parameters for the new model online. It
should be noted that, in [25] and [26], batteries were cycling
under a periodic current profile in a well-controlled laboratory
environment, where experienced cycles were well-defined. The
cycle number, which correlates closely with the SOH, can be
used as model input to predict future battery aging behaviors.
Unfortunately, in real-world EV and smart grid applications,
the operating profiles of different battery cells or the same
battery among different cycles can be very different. Therefore,
it is difficult to give an appropriate and universal definition for
the cycles over the battery lifespan for practical use.

In view of the above, involving the cell inconsistency and
abandoning the features like cycle number are considered not
just beneficial but usually imperative in many circumstances.
This motivates us to develop a combined offline-online SOH
estimation scheme with high adaptability to cell inconsis-
tency and low requirements on operational data based on
model migration and machine learning. Specifically, suitable
IC features are first selected and extracted to provide the
information for training a pool of predictive models fused with
slope-bias correction (SBC) and radial basis function neural
networks (RBFNNs). A comparative study of the three most
commonly used FOIs is carried out, and it is found that the
peak value in the high-voltage region of IC curves is the most
effective feature to indicate battery SOH. This feature is used
as the input of the proposed SBC-RBFNN models, where
highly nonlinear relationships of the corrected parameters
in the SBC method are identified by RBFNNs. To handle
the cell inconsistency between the candidate offline models
and the new target cell, a modified random forest regression
(mRFR) based online ensemble learning is developed for the
first time to realize individualized estimation by incorporating
the adaptively generated weighting into the offline SBC-
RBFNN models. The applicability and the effectiveness of
our proposed SBC-RBFNN-mRFR-based method are validated
through comparative studies with several state-of-the-art SOH
estimation techniques using the data collected from laboratory
tests. Finally, the potential to apply the proposed blended
offline/online machine learning framework to real-world cases
is exhibited, where the input features can be generally selected
using system-level measurements during EV operation. An
overview of the proposed method is depicted in Fig. 1.
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Fig. 1. Overview of the proposed method.

II. DATASET DESCRIPTION AND DATA PREPROCESSING

A. Description of Dataset

The Oxford Battery Degradation Dataset is first used in
this work. The dataset contains measurements of battery aging
data from eight commercial Kokam pouch cells of 740-mAh
nominal capacity, with a graphite-based negative electrode and
a lithium cobalt oxide/lithium nickel cobalt oxide positive
electrode [27]. The cells were tested in a thermal chamber
at 40 ◦C and repeatedly exposed to a 1C or C/25 constant-
current-constant-voltage charging profile, followed by a driv-
ing cycle discharging profile obtained from the Urban Artemis
profile. Here, the 1C current rate is defined as the current
through a battery divided by the theoretical current draw under
which the battery would deliver its nominal rated capacity in
1 h. Characterization measurements with a sampling frequency
of 1 Hz were taken every 100 driving cycles. More detailed
descriptions of this dataset can be found in [10], [27], and
we denote the dataset as the laboratory dataset. Furthermore,
a real-world dataset containing various operating information
of EVs will be used for testing the proposed algorithm in
Section V-C, where the description of the dataset will be
provided.

B. Data Preprocessing

The terminal voltage of a Li-ion battery cell is a sum
of the OCV, hysteresis voltage, and overpotentials due to
polarization and the internal (ohmic) resistance, all affected
by cell temperature. Usually, when the current rates applied
to the battery are very low, both the hysteresis voltage and
the polarization overpotentials are negligible [28], [29], and
the effect of temperature change due to self-heating can also
be ignored [30]. Hence, the voltage data measured under very
low current rates in the laboratory dataset usually contain the
most pertinent knowledge of the OCV, and we denote them as
the pseudo-open-circuit voltage (pseudo-OCV) data, e.g., the
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Fig. 2. (a) Comparison of internal resistance versus SOC relationships at
different cycle numbers. (b) Comparison of original and corrected OCV curves
at different cycle numbers.

C/25 constant current in the characterization processes in the
Oxford Battery Degradation Dataset.

Although close to the true OCV data, the pseudo-OCV
data are disturbed by measurement errors and affected by
the inconsistent variation of the internal resistance. Directly
using the pseudo-OCV data for feature extraction can thus
lead to inaccurate SOH estimation results, and it is beneficial
to approximate the true OCV curves before conducting feature
extraction. To explain this, considering under the condition of
low current rates, the terminal voltage during charging and
discharging can be expressed as

Vch = OCVch + IchR (2)

Vdc = OCVdc − IdcR (3)

where the symbols V , I , and R represent the terminal voltage
(pseudo-OCV), the current magnitude, and the internal resis-
tance, respectively, and the subscripts ch and dc denote the
charging and discharging processes, respectively.

Since in this dataset the batteries were fully charged and
fully discharged in each characterization, the SOC and the
SOH can be defined and calculated by

SOCt = Qt/Qn (4)

SOHn = Qn/Q0 (5)

where Qt represents the Coulomb-counting capacity at time t
of the nth characterization, Qn denotes the charging capacity
of the nth characterization, and Q0 is the cell capacity at the
beginning of life.

Considering the consecutive charging/discharging process
with the same current rate and ambient temperature, at the
same SOC level SOCch = SOCdc, we have OCVch =
OCVdc. Applying this condition to (2) and (3) yields the
expression of the internal resistance

R =
Vch − Vdc
Ich + Idc

=
Vch − Vdc

2I
(6)

where Ich = Idc = I .
Next, according to (2), the true OCV can be approximated

by the following corrected OCV, i.e.,

OCVcorrected = Vch − IchR. (7)

Based on (6), an example of calculated internal resistances
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versus SOC relationships at different cycles are obtained and
shown in Fig. 2(a). Based on (7), an example of corrected OCV
curves versus cell capacity relationships at different cycles are
obtained and plotted along with the corresponding pseudo-
OCV in Fig. 2(b).

It should be noted that directly using the corrected-OCV to
calculate the IC curves may have some numerical problems
due to the presence of measurement noises from voltage and
current sensors. For example, during the charging process,
the denominators in (1) should all be positive according to
the characteristics of the battery. However, when the mea-
sured voltages vary disorderly due to measurement noises,
the denominators can become zero or go negative, leading to
erroneous numerical results. To tackle this problem, we follow
the method proposed in [12], [16] by sequentially applying the
support vector regression and the Gaussian window filter, so
that the impact of the measurement noises can be effectively
removed. With these techniques, the filtered IC curves are
obtained using all the cycling data of the eight cells in the
laboratory dataset, and these filtered IC curves will be used
next for a comparative study. An example with nine IC curves
at different cycle numbers of a cell is shown in Fig. 3.

III. COMPARISON OF IC FEATURES

In this section, a comparison of the three most adopted
types of IC features in the literature, including singe point
features, multipoint features, and area features, is performed
using the preprocessed IC data described in Section II-B.
For each type of feature, a predictive model y = h(x) is
first established using the data from one of the eight cells
in the laboratory dataset, to describe the relationship between
the selected feature(s) (denoted by x) and the battery SOH
(denoted by y). The rest cells form the testing group to evaluate
the accuracy of the methods based on different features. Such
a process was repeated several times by randomly selecting a
cell to construct the predictive model.

To evaluate the accuracy of the model, the root-mean-square
error (RMSE) is used as the criterion, defined as

RMSE =

√√√√ 1

M

M∑
k=1

(h(xk)− yk)
2 (8)

where k and M denote the index and the total number of data
samples, respectively.

A. Single Point Features

As mentioned earlier, the peak and valley points on the IC
curves represent the phase equilibria and phase transitions of
the battery, and they contain the most apparent features of IC
curves [31]. In this work, three peak points (A, B, and C)
and one valley point (D), indicated in Fig. 3, are selected as
the POIs, since their features are easy to extract as battery
SOH indicators. For each of these points, the horizontal axis
is related to the phase status, while the vertical axis denotes
the transformed occasion of the battery phase. Based on the
comparison and analysis in Appendix, the peak point C has
been found to be qualified for battery health indication.
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Fig. 4. Multipoint features: Eleven feature points (marked by circles) on the
IC curves at different cycle numbers.

B. Multipoint Features

The IC peak or valley based on a single point may vanish
before the battery reaches the end of life, e.g., 80% of SOH.
In this situation, multipoint features can be used to deal with
the problem [19]. To illustrate, the IC curves at three cycle
numbers in Fig. 3 are plotted again in Fig. 4. It is observed
from Fig. 4 that these IC curves have the most drastic changes
when the voltage varies from 3.70 V to 3.90 V. Hence, eleven
evenly spaced points are chosen for investigation in this region
in this work, as suggested by [19]. Unlike the single point
feature discussed in Section III-A, it is difficult to obtain the
relationship between SOH and multipoint features intuitively,
and thus the Pearson correlation analysis is carried out to
identify the correlation between the IC values of these points
and the battery SOH. Detailed analysis and results are given
in Appendix. It is found that the average predictive RMSEs of
the model based on the multipoint features are slightly larger
than the result based on single point features.
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Fig. 5. Area feature obtained from the IC curve with a voltage interval of
200 mV.

TABLE I
COMPARISON OF RMSES BASED ON METHODS WITH DIFFERENT IC

FEATURES

Single point
feature

Multipoint
feature

Area feature
(20 mV)

Average RMSE 0.00804 0.01335 0.00805

C. Area Feature

Area features, physically representing the charg-
ing/discharging capacity of the cell, can be obtained by
integrating the IC curve preferably over the voltage interval
with drastic changes in IC values. As an example, Fig. 5
shows how the area is obtained when the voltage interval
is 200 mV, centered at the peak point, for extracting the IC
area feature. According to the analysis and result given in
Appendix, there is a declining trend in the RMSE as the
voltage interval becomes narrower.

We notice that since the IC value of the midpoint of the
interval can be considered the charging capacity with a voltage
interval close to zero, it can be inferred that the IC value of
peak point C should be superior to all the area features in the
present investigation. This is confirmed in Table I, where the
average predictive RMSEs based on the above three IC feature
selection methods are compared based on the investigated
datasets using the narrowest interval of 20 mV. The results
also show that the single point feature achieves the highest
predictive accuracy among these three types of features, and
the RMSE of the area feature is very close to that of the single
point feature. Hence, the IC value of the highest peak point
in the high-voltage region will be adopted in this study.

IV. DEVELOPMENT OF CELL-INCONSISTENCY-CONSCIOUS
BATTERY SOH ESTIMATION METHOD

Directly using a single point feature for SOH estimation,
however, can lead to significant estimation errors when cell
inconsistency is non-trivial. To illustrate, Fig. 6 plots the
relationships between the IC value of the peak point C and
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SOH for two battery cells in the laboratory dataset. Although
these two cells were cycled under the same condition, their
IC profiles with respect to SOH are unsurprisingly different,
and the level of difference varies over time. Specifically, as
the IC value reduces, there is an initial decrease trend in the
SOH difference between the two cells, while such a difference
increases as the IC value further reduces. This means that
a large estimation error can be introduced if the predictive
model trained using a cell is directly applied to another
by ignoring the inherent cell-to-cell inconsistency. Particular
attention needs to be paid to the period close to the end of
life of the batteries, where an accurate SOH estimation is
extremely important to avoid battery failures. This problem
will also be amplified in real-world situations where a higher
level of cell inconsistency often exists.

Therefore, mitigating the impacts of model differences on
the predictive results is a key task for achieving accurate
and reliable battery SOH estimation. We propose to solve
this problem in two steps using a scheme combining offline
and online machine learning. First, an offline approach based
on SBC-RBFNN is proposed to effectively train N individ-
ual models with high variability. Next, the N SBC-RBFNN
models are properly blended in an efficient ensemble learning
framework for online adaptive estimation. The two steps will
be detailed in the following two subsections, respectively. The
efficacy of the proposed framework will be verified in Section
V by comparing it with several prevailing data-driven methods
using the laboratory data, and its applicability to real-world
operation will also be examined.

A. Development of Offline Models Based on SBC-RBFNN

The individual candidate models to be developed should
cover the entire space of the possible cell variation and be
simple to train. Since model migration can properly balance
the individuality and similarity in generating these models,
it is well-suited for our present investigation. Several model
migration methods have been proposed in the literature to reli-
ably deal with the predictive performance of similar processes



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION 6

Fig. 7. Structure of the proposed offline SBC-RBFNN model.

Fig. 8. Flowchart of the offline model training process.

and save experimental resources. Amongst them, the SBC is
considered to be one of the most effective approaches yet
simple to implement [24]–[26]. In the SBC, the inconsistency
between the base model f(·) and the new model is completely
parameterized by the input slope W [1] and bias b[1] as well
as the output slope W [2] and bias b[2]. The general equation
g(x) for the SBC model is given by

g(x) = W [2]f(W [1]x+ b[1]) + b[2]. (9)

One of the core contributions of this work, i.e., the proposed
three-layer SBC-RBFNN framework, is schematized in Fig. 7,
where Layer 1 and Layer 2 are described by the SBC model
(9), and an RBFNN model is connected to the output of
the SBC structure for its excellent capability to capture the
underlying nonlinear relationship. In an RBFNN, the activation
function can map the input feature to a high dimensional space
and transform the nonlinear relationship into a linear one.
This can make the complicated connection between inputs and
outputs easily observed and distinguishable [32], [33] and it
is thus well-suited to the problem at hand.

In Fig. 7, the numbers of nodes of the three layers in
the SBC-RBFNN are denoted by l, m, and n, respectively.
The IC values of peak point C are the inputs of the base
model (Layer 1), corrected by the SBC function (Layer 2).
The outputs of Layer 2 can be written as a vector g(x) = z =
[z1, z2, · · · , zm]> ∈ Rm, which acts as the input vector of the

RBF layer (Layer 3). As the model output, the SOH values
are predicted by the RBFNN model, in which the Gaussian
function is used as the transfer function, i.e.,

κ(z, zcj) = exp

(
− ‖ z − zcj ‖2

2σ2
j

)
(10)

where κ(·, ·) represents the kernel function, j ∈ {1, 2, · · · , n}
is the index of the node in the RBF layer, and zcj and σj
are the RBF center vector and the standard deviation of the
Gaussian function of the jth node, respectively. The RBFNN
function can thus be written as

y =

n∑
j=1

w
[3]
j · κ(z, zcj) + b[3] (11)

where we denote W [3] = [w
[3]
1 , w

[3]
2 , · · ·, w[3]

n ]> and b[3] as the
weights and bias of the RBF layer, respectively.

The offline SBC-RBFNN model structure is obtained by
combining (9)–(11), denoted by y = h(x). To obtain the
parameters for one individual model, including the weights
W [1], W [2], and W [3], the biases b[1], b[2], and b[3], as well as
the center vector [zc1, zc2, · · · , zcn], the datasets are randomly
split into the base model group, training group, and testing
group, and they are used for base model generation, SBC-
RBFNN model training, and model verification, respectively.
The RMSE between the model and the expected output,
calculated by (8), is used as the loss function in the train-
ing process. Once the predictive model is established, the
remaining laboratory datasets of battery cells are used to verify
and test the model accuracy. Fig. 8 presents the flowchart
of the entire modeling, training, and verification process. For
demonstrative purposes, in the figure, one of the eight cells is
randomly chosen to generate the base model, and two other
cells are selected to train the SBC-RBFNN model, and the
remaining five cells in the laboratory datasets are used as
the test group to verify the trained model. Such a process
is repeated by N times with the data groups obtained by
randomly splitting the datasets.
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Fig. 9. Flowchart of the online ensemble learning process.

B. Online Model Adaptation Using Modified Random Forest
Regression

In the previous subsection, the N SBC-RBFNN models
offline trained from historical data are expected to provide
sufficient information to cover the most representative aging
behaviors of all individual cells, and they form a pool of
candidate models for individualized estimation. In order to
estimate the SOH for a new target cell, of which only limited
early-age data and online measurements are available, it is
essential to develop an algorithm to exploit these N offline
models for online use. A general and simple strategy is to
find a proper blending scheme by weighted averaging, i.e.,

h̄k =

N∑
i=1

wihi(xk) (12)

where xk and h̄k represent the blended model input and
model output at time instant k, respectively, hi(·) is the ith
offline SBC-RBFNN model established based on the method
described in Section IV-A, and our objective is to find proper
weights {w1, w2, · · · , wN} for online operation.

We notice that for offline applications, a similar task usually
can be readily addressed by using the random forest regression
(RFR), a well-developed ensemble learning method [34]. In
the RFR, a set of decision trees are planted and the prediction
results from all individual trees are averaged to obtain the
aggregated prediction output [35]. The RFR is superior to the
methods based on a single decision tree since the overfitting
issue can be overcome without trading away the accuracy
of the prediction [36]. However, since the RFR method is
conventionally designed for offline applications, the output of
the RFR model is obtained simply by averaging the individual
models trained from a large amount of offline data using
ensemble voting. In other words, the same and fixed weight
wi is placed to each of the offline contributing models. Nev-
ertheless, during online use for battery SOH estimation with
high cell inconsistency, it is counterintuitive and injudicious to
trust some offline models that behave very differently from the
considered cell. Such a method is also inappropriate for the
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Fig. 10. Offline model predictive results of No. 6 cell in Case 1: (a) SOH.
(b) SOH estimation error.

present study since for online estimation usually only limited
data are available.

Here, to solve the problem for improving estimation accu-
racy in the presence of limited online data, a modified RFR
(mRFR) based online ensemble learning algorithm is proposed
to adaptively generate and adjust the weights wi of each
offline model, with the structure illustrated in Fig. 9. A similar
“bootstrap” technique in the conventional RFR is adopted to
randomly sample from the dataset with replacement, resulting
in N different and uncorrelated decision trees, namely the
offline models. The way to plant trees is different from the
conventional RFR and has been described in Section IV-A.
Once the N offline SBC-RBFNN models with corresponding
model parameters have been determined, based on the real-
time measurements that can reflect the user’s real-world be-
haviors, the weights wi are next generated and updated online
according to the following steps:

First, for ith candidate offline model,, its RMSE over a
selected time horizon P in one online adaptive event is
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Fig. 11. Comparison of average REPs between different offline models based
on the laboratory dataset.

calculated:

RMSEi =

√√√√ 1

P

P∑
p=1

(
hi(xp)− h′p

)2
(13)

where hi(xp) and h′p are the estimated output from the ith
model and the true output data (i.e., true SOH), respectively,
both obtained at time step p. To calibrate the true SOH in terms
of the battery capacity, a full discharge and charge process is
needed. This can be readily triggered in experimental studies,
but rarely occurs for real-world EV battery systems, which
is also the reason to estimate SOH. A practical scenario
is to generate SOH measurements when EVs do regular
maintenance in the service center, which can be every six
months or 10,000 km, for instance. In that case, the online
adaption is then activated in a much slower timescale than the
offline models.

Next, we consider the importance of each model inversely
proportional to its calculated RMSE, and the weighting factor
for the ith model is given by

ri =

∑N
i=1RMSEi
RMSEi

(14)

Finally, normalizing ri yields the weight for the ith offline
model, i.e.,

wi =
ri∑N
i=1 ri

(15)

with which the estimated SOH can be obtained based on (12).
When the sampling time interval of p is larger than that of
k, the weights wi will be held constant until the next SOH
measurement comes at p+ 1.

The length of the horizon P in (13) affects the performance
of the proposed mRFR ensemble learning method for battery
SOH estimation. In this work, we propose two strategies
(weight update rules) to determine P so that the weights
wi can be adaptively updated based on the user’s behaviors.
The first strategy is to adjust the weights according to the
first several estimation errors from the offline models. This
method is inspired by the pre-market qualification test of real-

world EVs, from which the early-stage datasets of true battery
SOH can be obtained. The second strategy is established by
considering that each EV will have regular maintenance in the
service center once a stipulated amount of mileage is reached.

The introduced randomness in selecting the offline models
can minimize the risk that all individual models constant-
ly overestimate or underestimate battery SOH in the same
direction. In the conventional RFR, a very large number
of trees and deep layers within each tree are often needed
to achieve high modeling accuracy but at the expense of
demanding computational power and a long training period.
In the proposed mRFR, all the trees are planted by the model-
migration-aided RBFNN to map the IC peak to SOH. In
practice, different and representative trees can be meticulously
selected from the pool, thereby significantly mitigating the
computational burden for online SOH estimation. In addition,
the designed online adaptive estimator is able to assimilate the
ever-changing user’s behaviors and operating environments,
and has the potential to provide high-fidelity SOH information.

V. RESULTS AND DISCUSSION

To validate the proposed combined offline-online battery
SOH estimation algorithm based on SBC-RBFNN and mRFR,
in this section, comparative studies with several prevailing
approaches are provided.

A. Verification of the Offline Model

For the proposed offline SBC-RBFNN model, first, a cubic
polynomial is found to be a good candidate to describe the
base model in this study by trial and error. Backpropagation
is chosen for the training of the SBC-RBFNN, where the
gradient descent method is used to solve the fitting problem
and the learning rate is set as 0.01 based on extensive training
and testing. The maximum number of iterations for training
is set to 1000 and the stop criterion is that the RMSE for the
training set drops below 0.0001. The numbers of nodes in the
three hidden layers are set to l = 5, m = 5, and n = 25,
respectively, determined by trial-and-error. It is worth noting
that the number of RBF layer nodes n is set much smaller than
the size of training samples to avoid the problems of overfitting
and poor generalization [37], [38]. Limiting the complexity of
the network by reducing the number of possible centers has
the added advantage of producing parsimonious networks [39].

Three benchmark algorithms are designed to verify the
stability and effectiveness of the proposed offline model and
they are described as follows.

Benchmark 1 directly uses the base model generated from
one cell or vehicle dataset to estimate the battery SOH of
others. Such a method is widely used in previous research
works such as [16], [22].

Benchmark 2 is a Leaky Rectified Linear Unit (LReLU)
based RBFNN model. Due to its capability to deal with
the negative part of datasets, the LReLU is superior to the
traditional ReLU function widely used in ANN [40], [41]. The
structure and the configuration of the LReLU-RBFNN model
are similar to that of the SBC-RBFNN model as depicted in
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Fig. 7. The only difference is that the activation function in
Layer 1 is replaced by the LReLU function, given as

yk =

{
xk, if xk ≥ 0
xk

αk
, if xk < 0

(16)

where αk ∈ (1,+∞) is a fixed parameter. The major dif-
ference between the proposed SBC-RBFNN and the LReLU-
RBFNN is that the latter lacks prior knowledge about the
research subject while such information is available for the
proposed SBC-RBFNN by model migration.

Benchmark 3 is an SBC-ANN model proposed in [26],
which is used to verify the superiority of the RBFNN. The
training method, learning rate, and nodes in Layer 1 and
Layer 2 of the SBC-ANN are both set the same as the SBC-
RBFNN for a fair comparison.

The laboratory datasets are used to examine the perfor-
mance of the proposed model following the methodology in
Section IV-A. Table II presents the verification results for all
four dataset combinations, where the predictive RMSEs are
calculated by (8). In Table II, it is clearly shown that the
predictive accuracy can be significantly improved by using
model migration: The SBC-RBFNN model can better rebuild
the nonlinear relationships with a smaller predictive error com-
pared to the SBC-ANN model. Furthermore, although trained
by more datasets, the LReLU-RBFNN model still generates
more significant predictive errors than the proposed SBC-
RBFNN model. In fact, the LReLU-RBFNN even performs
worse than the SBC-ANN model in terms of the average
RMSE. This result exhibits the importance of the experience
and information buried in the base model. The graphical
results in Fig. 10 also show the superiority of the SBC-
RBFNN model, especially in the region below 90% SOH,
which indicates that the proposed method is more reliable than
the two prevailing methods under comparison.

The relative error percentage (REP) is next used to signify
the influences of estimated errors on the overall process of
battery aging. The REP for the ith model, Eri, is defined by

Eri =
Ei
Si
× 100% (17)

where Ei and Si represent the predictive RMSE and the range
of the SOH for the ith cell, respectively. Comparisons of the
calculated REPs are illustrated in Fig. 11 in terms of the
average relative errors over the battery lifetime. It can be seen
from Fig. 11 that by using the SBC-RBFNN method, the pre-
dictive accuracy is 32% higher than the direct estimated results
using the base model, while the latter is the most commonly
used method in the literature. In addition, by incorporating the
model migration, we observe an improvement of about 19%
and 14% in the predictive accuracy, compared to using the
LReLU-RBFNN and the ANN-based methods, respectively.

B. Verification of the Online Adaptive Method Based on
Modified Random Forest Regression

The performance of the mRFR-based online adaptive
method for individualized battery SOH estimation will be
examined in this subsection. The core step of the proposed
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Fig. 12. IC Values of peak points versus accumulated mileages of seven
selected electrified buses in the real-world dataset.

method is the weight generation (13)–(15), where the ensemble
weights wi are determined by the predictive errors of each
offline model. Two offline models are trained individually
using the datasets of two cells. Datasets of another three cells
are extracted to produce the base model for the benchmark
method, and the offline SBC-RBFNN models for ensemble
learning to realize a fair comparison. The two weight update
rules as described in Section IV-B are examined. In the first
rule, the predictive RMSEs of the first five data are chosen to
generate wi. In the second rule, two kinds of updating intervals
are chosen. The estimated results using the offline SBC-
RBFNN will be used as the benchmark in this subsection. The
benchmark method is configured according to the suggestion
given in [26], where the first 30% and 50% of the data are
used to train the individual prediction model. The predictive
accuracy is tested using the remaining data in the dataset.

The numerical results are compared in Table III based on
the laboratory datasets, where REPA is the average REP of
the test cells calculated by (17). Considering that the data
sizes for each of the eight cells are different, the training data
percentage of the online ensemble learning method for each
case is provided in the table. It shows that in order to improve
the predictive accuracy in terms of the average RMSE, the
size of the training dataset has to be increased for the offline
SBC-RBFNN model. In contrast, increasing the data size for
training is not necessary for our proposed ensemble learning
method: Only a small amount of data are needed to achieve
about 90% improvement in the estimation accuracy compared
to using the offline SBC-RBFNN model trained by the first
30% of data. Compared to the offline model trained with the
first 50% of data, the percentage of the improvement on the
performance is still high up to 80%. It is worth noting that the
estimation accuracy using the two weight generation methods
is very close, and both methods are very effective. In this
case, with the high quality of the laboratory dataset, only a
few measurements at the early operating stage are needed to
determine the individual battery aging pattern.
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TABLE II
RMSES OF PREDICTED SOH WITH DIFFERENT OFFLINE MODELS BASED ON THE LABORATORY DATASET

Base Model Training Cells Model Type Test Cells Average

Case 1 No.1 No.4 No.5 No.6 No.7

No.2 Base Model 0.00498 0.00583 0.00620 0.00650 0.01215 0.00713
No.2, No.3 and No.8 LReLU-RBFNN 0.00583 0.00458 0.00379 0.00399 0.00921 0.00548

No.2 No.3 and No.8
SBC-ANN 0.00807 0.00527 0.00387 0.00474 0.00759 0.00591
SBC-RBFNN 0.00716 0.00421 0.00293 0.00374 0.00727 0.00506

Case 2 No.1 No.2 No.5 No.7 No.8

No.4 Base Model 0.00820 0.00985 0.00421 0.00906 0.00734 0.00773
No.3, No.4 and No.6 LReLU-RBFNN 0.00938 0.01017 0.00372 0.00896 0.00797 0.00804

No.4 No.3 and No.6
SBC-ANN 0.00611 0.00870 0.00380 0.00897 0.00801 0.00712
SBC-RBFNN 0.00613 0.00785 0.00322 0.00889 0.00697 0.00661

Case 3 No.3 No.4 No.5 No.6 No.8

No.1 Base Model 0.00493 0.00576 0.00633 0.00670 0.00972 0.00669
No.1, No.2 and No.7 LReLU-RBFNN 0.00692 0.00606 0.00293 0.00396 0.00828 0.00563

No.1 No.2 and No.7
SBC-ANN 0.00690 0.00649 0.00539 0.00574 0.00640 0.00618
SBC-RBFNN 0.00559 0.00471 0.00305 0.00368 0.00762 0.00493

Case 4 No.2 No.3 No.4 No.5 No.6

No.7 Base model 0.01458 0.01098 0.00897 0.00631 0.00712 0.00959
No.7, No.1 and No.8 LReLU-RBFNN 0.01453 0.00935 0.00558 0.00321 0.00412 0.00736

No.7 No.1 and No.8
SBC-ANN 0.00834 0.00508 0.00527 0.00422 0.00498 0.00558
SBC-RBFNN 0.00797 0.00470 0.00422 0.00330 0.00393 0.00482

C. Testing with Real-World EV Dataset

To verify the effectiveness of the proposed SBC-RBFNN-
mRFR algorithm for real-world operation, a very large
database from the Open Lab of the National Big Data Alliance
of New Energy Vehicle of China was used in our study. The
whole database contains information such as the position,
accumulated mileage, states of drivetrain, and operating infor-
mation of the battery systems of the EVs in China, recorded
with a sampling interval of 10 s. Based on the information
about position and temperature, seven EVs were identified as
electrified city buses and selected as the data sources for our
investigation. The dataset used for model training, testing, and
verification can be the accumulated mileage, battery voltage,
battery current, temperature, etc., and specifications and data
preprocessing methods are detailed in [12].

Thanks to the relatively fixed and stable operational en-
vironment, electrified city buses usually have similar driving
and charging patterns, especially when they are running on
the same route. Consequently, their batteries should share
very similar aging behaviors. Nevertheless, according to the
IC value versus accumulated mileage relationship shown in
Fig. 12 (see Ref. [12] in detail), there are obvious differences
between the IC values of the analyzed buses. It can be seen
that the difference between the IC value versus accumulated
mileage curves in Fig. 12 is most likely the consequence of
the inherent battery inconsistencies.

Note that the main purpose of this subsection is to examine
the applicability and generality of the proposed model struc-
ture as shown in Fig. 7 to Fig. 9. Since the true SOH infor-
mation is usually not known from the real-world dataset, for
demonstrative purposes, the input and the output are replaced
by the accumulated mileage and the IC value, respectively.

For the real-world operations, a similar training and testing
configuration to the case of laboratory test for online oper-
ation, and the results using different algorithms are shown
in Table IV. The datasets of the seven electrical city buses
are randomly divided into three groups: One is to generate
the base model, three are used to train three offline models,
and the remaining three form the test group to evaluate the
predictive performance of different online adaptive methods.
All the above dataset combinations are generated randomly,
and three different combinations of the dataset groups for
training and testing are used to verify the performance of the
online adaptive model. To illustrate, Fig. 13 shows the results
of vehicle No. 6 in Case 1. Fig. 13(a) shows the process of
ensemble integration. The data points of online weight update
rules are also marked in Fig. 13(a) by circles with different
colors, and it shows that ensemble learning can effectively
enhance the predictive performance than only using one of
the offline models.

The estimated IC values versus accumulated mileage rela-
tionships with different online adaptive methods are shown in
Fig. 13(b). Here, the green and the red curves represent two
well-established online adaptive methods in the literature, in
which the offline model are trained by the first 30% and first
50% of the data, respectively. The results clearly show that
by using these two methods, there are significant deviations
from the ground truth, while the proposed ensemble-learning-
based method has shown excellent predictive performance. In
particular, with the proposed ensemble learning method based
on the first weight generation strategy, 43%, 40%, and 58%
predictive improvements can be achieved for the three models
using only five recorded datasets, whereas the first 50% of
the data have to be used for the SBC-RBFNN model training.
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TABLE III
RMSES OF PREDICTED SOH WITH DIFFERENT ONLINE ADAPTIVE METHODS BASED ON THE LABORATORY DATASET

Methods Base Model Offline Model Online Adaptive Test Cells Average REPA

Case 1 No.1 No.4 No.5 No.6 No.7

SBC-RBFNN
No.2, No.3
and No.8

First 30% of the data 0.02608 0.03323 0.04294 0.06725 0.04321 0.04255 21.03%
First 50% of the data 0.02084 0.01701 0.01905 0.03417 0.02843 0.02390 11.81%

mRFR No.2 No.3 and No.8
First 5 data (9%) 0.00548 0.00451 0.00292 0.00393 0.00685 0.00474 2.34%
Every 10 cycles (10%) 0.00596 0.00422 0.00281 0.00383 0.00744 0.00485 2.39%
Every 5 cycles (20%) 0.00582 0.00406 0.00282 0.00371 0.00736 0.00475 2.35%

Case 2 No.1 No.2 No.5 No.7 No.8

SBC-RBFNN
No.3, No.4
and No.6

First 30% of the data 0.06054 0.04565 0.04184 0.06345 0.07366 0.05703 27.02%
First 50% of the data 0.03307 0.03211 0.02489 0.02871 0.04746 0.03325 15.75%

mRFR No.4 No.3 and No.6
First 5 data (7%) 0.00412 0.00455 0.00358 0.00814 0.00601 0.00528 2.50%
Every 10 cycles (11%) 0.00564 0.00544 0.00352 0.00815 0.00574 0.00570 2.70%
Every 5 cycles (22%) 0.00446 0.00530 0.00341 0.00802 0.00567 0.00537 2.54%

Case 3 No.3 No.4 No.5 No.6 No.8

SBC-RBFNN
No.1, No.2
and No.7

First 30% of the data 0.04937 0.04338 0.04704 0.03540 0.04041 0.04312 20.93%
First 50% of the data 0.02983 0.02306 0.01173 0.02419 0.03261 0.02428 11.79%

mRFR No.1 No.2 and No.7
First 5 data (9%) 0.00474 0.00539 0.00311 0.00420 0.00564 0.00462 2.24%
Every 10 cycles (10%) 0.00473 0.00380 0.00305 0.00401 0.00489 0.00409 1.99%
Every 5 cycles (20%) 0.00446 0.00350 0.00292 0.00351 0.00425 0.00373 1.81%

Case 4 No.2 No.3 No.4 No.5 No.6

SBC-RBFNN
No.2, No.3
and No.8

First 30% of the data 0.04932 0.05399 0.03572 0.04574 0.05480 0.04792 23.14%
First 50% of the data 0.02878 0.02459 0.02619 0.01488 0.01808 0.02250 10.86%

mRFR No.7 No.1 and No.8
First 5 data (9%) 0.00368 0.00364 0.00411 0.00525 0.00511 0.00436 2.10%
Every 10 cycles (10%) 0.00403 0.00403 0.00448 0.00509 0.00491 0.00451 2.18%
Every 5 cycles (20%) 0.00374 0.00363 0.00428 0.00500 0.00484 0.00430 2.08%

On the other hand, with the second weight generation method
(generated by every 10,000 km), 28%, 24%, and 24% predic-
tive improvements can be achieved, respectively. Thus, for an
EV in daily operation, high SOH estimation accuracy can be
achieved with only a small amount of collected data. Hence,
the results in Fig. 13 and Table IV verify the effectiveness of
our proposed online adaptive method. REPA in Table IV is the
average REP of the tested vehicles, calculated by (17) with Si
denoting the range of IC value for the ith vehicle. Note that
in Fig. 13, the increase in the IC values after the accumulated
mileage of 80,000 km is due to increased ambient temperature
[12].

The mRFR-based online adaptive method is further com-
pared with the offline method using SBC-RBFNN and the
numerical results are summarized in Table V. It shows that
the average predictive RMSE of the mRFR-based method
is smaller than the offline SBC-RBFNN models. A 15%
and a 38% improvement are realized by incorporating the
mRFR-based ensemble learning algorithm after fusing limited
real-world measurements. We would like to point out that
the divergent results between the two data sources are the
consequence of inherent inconsistency in cell characteristics:
The level of inconsistency for the cells in real-world EVs
is generally higher than that of the laboratory-used cells.
Hence, we conclude that the proposed online adaptive method
shall lead to a more significant improvement in battery SOH
estimation accuracy for practical applications compared to that
in laboratory environments.

VI. CONCLUSIONS

In this study, an online adaptive ensemble learning scheme
based on a combination of offline model training and online
weight generation has been proposed to deal with the di-
vergence problem in the battery SOH estimation caused by
inherent inconsistency between individual research objects.
The effectiveness of the IC features for battery SOH estima-
tion was discussed based on high-quality laboratory datasets.
According to a comprehensive comparative study, the height
of the IC peak in the high-voltage region was found to be the
best and selected as the feature for battery aging prediction.
Then, a pre-trained model based on a combination of the
SBC method with an RBFNN structure was developed. Four
different dataset settings were chosen to test the stability of the
SBC-RBFNN model among several existing offline training
methods. Both the results based on the laboratory and real-
world datasets showed that the proposed SBC-RBFNN model
can significantly improve the predictive accuracy. An online
adaptive scheme was next constructed by synthesizing the
offline models and an ensemble integration process using a
proposed modified random forest regression (mRFR) method.
The weights for each offline model were generated by online
measuring a few data from fixed cycle or mileage interval,
which markedly reduced the requirement of datasets compared
with the online adaptive methods in previous research. The
effectiveness of the proposed SBC-RBFNN-mRFR model is
validated using both the datasets from laboratory tests and
real-world measurements. The proposed offline online blended
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Fig. 13. (a) Two weight update rules of mRFR method for vehicle No. 6 in Case 1. (b) Comparison of the results using different online adaptive methods
for vehicle No. 6 in Case 1. The increase in the IC values after the accumulated mileage of 80,000 km is due to increased ambient temperature [12].

TABLE IV
RMSES OF PREDICTED IC-VALUES WITH DIFFERENT ONLINE ADAPTIVE METHODS BASED ON THE REAL-WORLD DATASET

Methods Base Model Offline Model Online Adaptive Test Vehicles Average REPA

Case 1 No.4 No.6 No.7

SBC-RBFNN
No.1, No.2, No.3,

and No.5
First 30% of the data 4.04963 4.73145 4.33798 4.37302 31.20%
First 50% of the data 0.96629 1.13031 1.46371 1.18677 8.47%

mRFR No.1 No.2, No.3,
and No.5

First 5 data (0.8%) 0.73058 0.58166 0.70287 0.67170 4.79%
Every 20,000 km (0.8%) 0.74749 0.37846 0.69259 0.60618 4.33%
Every 10,000 km (1.6%) 0.50626 0.37745 0.56829 0.48400 3.45%

Case 2 No.1 No.5 No.6

SBC-RBFNN
No.2, No.3, No.4,

and No.7
First 30% of the data 3.94096 3.11355 4.52841 3.86097 24.91%
First 50% of the data 1.11187 0.95490 1.33212 1.13297 7.31%

mRFR No.3 No.2, No.4,
and No.7

First 5 data (0.9%) 1.29242 0.22556 0.52426 0.68075 4.39%
Every 20,000 km (0.9%) 1.18973 0.30125 0.44315 0.64471 4.16%
Every 10,000 km (1.8%) 1.17398 0.15583 0.21898 0.51626 3.33%

Case 3 No.2 No.3 No.7

SBC-RBFNN
No.1, No.4, No.5,

and No.6
First 30% of the data 4.76323 4.87612 4.85396 4.83110 38.11%
First 50% of the data 1.97669 2.17609 1.91992 2.02423 15.97%

mRFR No.5 No.1, No.4,
and No.6

First 5 data (0.8%) 0.83303 0.85655 0.83189 0.84049 6.63%
Every 20,000 km (0.8%) 0.73653 0.78523 0.64587 0.72254 5.70%
Every 10,000 km (1.7%) 0.64041 0.65612 0.61877 0.63843 5.04%

machine learning method will be extended to consider other
factors such as temperature in our future work.

APPENDIX

For demonstration purposes, cells No. 1, 3, 7, and 8 in the
laboratory dataset were used to train the predictive model to
compare different IC features.

Single point features: The obtained relationships between
the IC values of four POIs and battery SOH are shown in
Fig. 14(a). It can be observed that the variation trends of the
features do not follow the same pattern. Specifically, the peak
point A and the valley point D disappear when the SOH drops
to 0.9, the peak point B is almost invisible until the battery
SOH falls to 0.92, while the peak point C covers the entire
battery life with the SOH ranging from 1 to 0.8. Hence, only
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Fig. 14. Single point features. (a) IC value versus battery SOH relationship
of the four points of interest. (b) IC value and voltage versus battery SOH
relationships of the peak point C.
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TABLE V
COMPARISON OF RMSES BETWEEN OFFLINE MODELS AND ONLINE ADAPTIVE MODELS

Data resource
SBC-RBFNN (Offline Model) SBC-RBFNN (Online Adaptive Model)

Case 1 Case 2 Case 3 Case 4 Average REPA Case 1 Case 2 Case 3 Case 4 Average REPA

Laboratory 0.00506 0.00661 0.00493 0.00482 0.00536 2.56% 0.00475 0.00537 0.00373 0.0043 0.00454 2.18%
Real-world 0.70880 1.08944 0.84616 0.88147 6.26% 0.48400 0.51626 0.63843 0.54623 3.94%

TABLE VI
RMSES OF PREDICTED SOH BASED ON THE SINGLE POINT FEATURE USING DIFFERENT TRAINING CELLS

Training Cell No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 Average

No.1 0.00469 0.00685 0.00475 0.00671 0.00518 0.01348 0.01161 0.00761
No.3 0.00688 0.00496 0.00601 0.00613 0.00399 0.00956 0.00688 0.00634
No.7 0.01579 0.01172 0.01045 0.01249 0.00979 0.00789 0.00568 0.01054
No.8 0.01161 0.00828 0.00689 0.00967 0.00745 0.00539 0.00431 0.00766

TABLE VII
CORRELATION COEFFICIENTS FOR THE EIGHT CELLS BASED ON MULTIPOINT FEATURES

Cell
Point

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

No.1 -0.9499 -0.9008 0.0616 0.9876 0.9299 0.9854 0.9464 0.9064 0.8848 0.7957 0.7305
No.2 -0.9103 -0.8082 0.1849 0.9854 0.9222 0.9794 0.9567 0.9186 0.8904 0.8190 0.7652
No.3 -0.9538 -0.9124 0.0290 0.9886 0.9342 0.9824 0.9495 0.9149 0.8963 0.8331 0.7877
No.4 -0.9498 -0.9582 -0.4031 0.9826 0.9532 0.9848 0.9477 0.8893 0.8787 0.6781 0.5148
No.5 -0.8206 -0.8091 -0.4262 0.9240 0.9265 0.9658 0.9364 0.8535 0.8123 0.6293 0.5219
No.6 -0.9302 -0.9502 -0.5196 0.9766 0.9560 0.9768 0.9352 0.8548 0.8706 0.6444 0.4941
No.7 -0.9414 -0.9292 -0.0012 0.9840 0.9293 0.9713 0.9296 0.8816 0.8925 0.8270 0.8184
No.8 -0.9447 -0.8799 0.3092 0.9846 0.9209 0.9800 0.9500 0.9178 0.9014 0.8513 0.8250

Average -0.9251 -0.8935 -0.0957 0.9767 0.9340 0.9782 0.9440 0.8921 0.8784 0.7597 0.6822

TABLE VIII
RMSES OF PREDICTED SOH BASED ON THE MULTIPOINT FEATURE USING DIFFERENT TRAINING CELLS

Training Cell No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 Average

No.1 0.00972 0.00715 0.00808 0.01459 0.00692 0.01287 0.01048 0.00997
No.3 0.01870 0.01757 0.02421 0.01235 0.01745 0.01004 0.00831 0.01552
No.7 0.02659 0.02074 0.01604 0.02301 0.01125 0.01506 0.01122 0.01770
No.8 0.01574 0.01160 0.00834 0.01505 0.00557 0.00801 0.00726 0.01022

TABLE IX
RMSES OF PREDICTED SOH BASED ON AREA FEATURE USING

DIFFERENT TRAINING CELLS WITH DIFFERENT VOLTAGE INTERVALS

Training Cell 20 mV 50 mV 100 mV 150 mV 200 mV

No.1 0.00756 0.00782 0.00844 0.00916 0.00996
No.3 0.00641 0.00667 0.00817 0.00786 0.00823
No.7 0.01058 0.01094 0.01214 0.01318 0.01825
No.8 0.00765 0.00795 0.00867 0.00949 0.01136

Average 0.00805 0.00835 0.00936 0.00992 0.01195

the peak point C is qualified for battery health indication. For
comparison, the IC values and the voltages of peak point C
are plotted versus the SOH in Fig. 14(b). It is clearly shown
that the IC value bears a direct relation to the SOH, and the
corresponding mathematical description can be much simpler
than that of the voltage versus SOH relationship. Here, by
trial and error, a sixth-degree polynomial function is found

sufficiently accurate to represent the IC values versus SOH
relationship as shown in Fig. 14(b), and it will be used as
our SOH predictive model. The calculated RMSEs are given
in Table VI. It shows that the average RMSE is below 1%
when the model is trained with cell No. 1, No. 3, or No. 8,
while it is slightly over 1% when cell No. 7 is used for model
training. The accuracy is generally acceptable for battery SOH
estimation. The results also show that, although these battery
cells are of the same specification and were cycled under
the same condition, significant inconsistency was developed
in terms of the decreasing trend of the peak points on the
IC curves. For example, when cell No. 1 is used for model
training, the RMSE of cell No. 7 is about 1.5 times higher
than that of cell No. 6, indicating that there are considerable
differences between them.

Multipoint feature: Based on the calculated correlation
coefficients summarized in Table VII, the five points with the
strongest correlations (highlighted with bold font) are selected
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as battery aging features. Next, the IC values of feature points
are used as the input of an ANN model for predicting the
battery SOH. Such a method has shown to be effective in the
previous study [42], while its high accuracy is also verified
here with the calculated RMSEs given in Table VIII.

Area feature: Based on the suggestion given in [20], five
voltage intervals five voltage intervals centered at the peak
point C are selected for extracting the IC area feature. The
interval lengths are 20, 50, 100, 150, and 200 mV, respectively.
Again, a sixth-degree polynomial is chosen by trial and error
as the fitting function. Table IX lists the predictive RMSEs
of the five voltage intervals, where it can be seen that there
is a reduction in the RMSE as the voltage interval becomes
narrower.

REFERENCES

[1] A. Manthiram, “A reflection on lithium-ion battery cathode chemistry,”
Nature Commun., vol. 11, no. 1, p. 1550, 2020.

[2] Y. Li, M. Vilathgamuwa, S. S. Choi, B. Xiong, J. Tang, Y. Su, and
Y. Wang, “Design of minimum cost degradation-conscious lithium-ion
battery energy storage system to achieve renewable power dispatchabil-
ity,” Appl. Energy, vol. 260, p. 114282, 2020.

[3] S.-L. Wang, W. Tang, C. Fernandez, C.-M. Yu, C.-Y. Zou, and X.-
Q. Zhang, “A novel endurance prediction method of series connected
lithium-ion batteries based on the voltage change rate and iterative
calculation,” J. Cleaner Prod., vol. 210, pp. 43–54, Feb. 2019.

[4] A. Guha and A. Patra, “State of health estimation of lithium-ion batteries
using capacity fade and internal resistance growth models,” IEEE Trans.
Transp. Electrif., vol. 4, no. 1, pp. 135–146, 2018.

[5] Y. Li, Z. Wei, B. Xiong, and D. M. Vilathgamuwa, “Adaptive ensemble-
based electrochemical-thermal-degradation state estimation of lithium-
ion batteries,” IEEE Trans. Ind. Electron., 2021.
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