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o unlock the promise of 
electrified transporta-
tion and smart grids, 
emerging advanced bat-
tery management sys-
tems (BMSs) will play an 

important role in the health-aware 
monitoring, diagnosis, and control of 
lithium-ion (Li-ion) batteries (see “Ac-
ronyms Used in This Article”). Sophis-
ticated physics-based battery models 
incorporated into BMSs can offer valu-
able internal battery information to 
achieve improved operational safety, 
reliability, and efficiency and to ex-
tend the battery lifetimes. However, 
because they are developed from 
fundamental electrochemical and 
thermodynamic principles, rigorous 
physics-based models are saddled 

with exceedingly high cognitive and 
computational complexity for practi-
cal applications.

This article reviews physics-based 
Li-ion battery model prevailing or-
der reduction techniques to facilitate 
the development of next-generation 
BMSs. We analyze and comparatively 
characterize these procedures, main-
ly from the perspectives of model fi-
delity, computational efficiency, and 
application scope. By representing 
many effective and flexible reduced-
order models (ROMs) as equivalent 
circuits, designers and practitioners 
who do not have electrochemical 
expertise but know circuit theory 
can gain insights into multiphysical 
dynamics as well as their coupling 
effects inside batteries. In addition, 
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recommendations are made for select-
ing appropriate physics-based models 
for various applications in battery 
management. Finally, the prospect of 
physical model-enabled BMSs is dis-
cussed, including potential challenges 
and future research directions.

Introduction to Li-Ion Batteries 
and BMSs

Physics Behind Li-Ion Batteries
A typical Li-ion battery cell consists 
of many sandwich-like, thin layer 
structures, as depicted in Figure 1. It 
contains a porous positive electrode, 
a porous negative electrode, and a 
separator in between. The positive 
electrode contains various metal ox-
ides or a mix of them, while the nega-
tive one is mostly graphite-based. In 
both, lithium species are assumed 
to be stored in the lattice sites of the 
solid phase particles. The separator 
is an electronic insulator that allows 
lithium ions to pass. The electrodes 
and the separator are immersed in a 
concentrated solution of charged lithi-
um ions named the electrolyte [1].

During charging, the lithium spe-
cies in the solid phase of the positive 
electrode diffuse to the surface of the 

metal oxide particles, then react and 
transfer (de-intercalate) to the elec-
trolyte as positively charged lithium 
ions. In the electrolyte, charged lith-
ium ions travel toward the negative 
electrode by means of diffusion and 
migration. On the surface of the nega-
tive electrode, lithium ions react and 
intercalate into graphite particles. At 
the same time, the insulated separa-
tor forces electrons to flow in the op-
posite direction through the external 
electrical circuit connecting the cur-
rent collector to a source. This de-
intercalation/intercalation process is 
reversely applied when discharging to 
a load.

Apart from the intercalation/de-in-
tercalation process, various side reac-
tions occur in a cell, and most of them 
are detrimental to battery health. The 
major impact side reactions have on 
battery performance relates to lost 
storage capacity and increasing inter-
nal resistance, mainly caused by the 
growth of solid-electrolyte interphase 
(SEI) film and the deposition of metal-
lic lithium, known colloquially as lithi-
um plating. Side reactions occur most 
significantly at the separator/negative 

electrode interface [2], and they con-
sume the active materials in the elec-
trodes in an irreversible way, leading 
to reductions in cyclable lithium spe-
cies and charge/discharge rate capac-
ity through time.

Vision of Advanced BMSs
It is essential for a BMS to accurately 
monitor internal battery states so 
that judicious operational strategies 
and reliable fault diagnosis can be 
performed [3]. Managing a Li-ion bat-
tery can slow cell aging, prevent cell 
failures, and avoid catastrophic fires/
explosions due to unintentional over-
charging/overdischarging, overtem-
perature, external and internal cell 
short circuits, and other stressed 
operating states. Indicators such as 
the state of charge (SOC) and state of 
health (SOH) are widely used in BMS 
algorithms to determine energy stor-
age levels and battery degradation 
[4]. These states can also be used to 
derive information such as a bat-
tery’s remaining useful energy and 
power capacity subject to operating 
limits placed on the terminal voltage, 
maximum current rate, and allowable 
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FIGURE 1 – The sandwich-like structure of a typical Li-ion battery cell during the charging process.

ACRONYMS USED IN THIS 
ARTICLE
BMS: battery management system
DAE: differential algebraic equation
ECM: equivalent circuit model
ESPM: extended single particle model
EV:  electric vehicle
FDM: finite-difference method
FVM: finite-volume method
MOR: model order reduction
HEV: hybrid EV
P2D: pseudo-2D
PDE: partial differential equation
PDAE:  partial dif ferential-algebraic  

equation
ROM: reduced-order model
SEI: solid-electrolyte interphase
SOC: state of charge
SOH: state of health
SPM: single particle model
ODE: ordinary differential equation
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temperature range [5], [6]. In this way, 
battery capacity can be optimized 
to meet power control and energy 
management objectives [7], [8]. In 
addition, a BMS tracks variations in 
battery parameters through time, de-
tects degradation, maintains cell bal-
ancing, and takes countermeasures to 
restrain the development of faults and 
prevent catastrophic failures so that 
battery life can be maximized [9].

However, none of the internal 
states and parameters can be directly 
measured: the battery terminal volt-
age, current, and surface tempera-
ture are the only quantities that are 
directly calculable through prevailing 
sensor technologies. Therefore, a suit-
able mathematical battery cell repre-
sentation is often required in the de-
sign of model-based state/parameter 
estimators and control strategies [10], 
[11]. A battery model must be able to 
reproduce cell dynamics, with due 
consideration given to cell degrada-
tion, thermal effects, and parameter 
variations as environmental and op-
erating conditions change. Also, a 
battery model should be sufficiently 
accurate to reflect nonlinearity and 
operating constraints, while computa-
tional efficiency and numerical stabil-
ity should be guaranteed for real-time 
implementation to achieve control 
objectives [12].

Current Status of and Challenges to 
Conventional BMSs
Due to their mathematical simplic-
ity, ease of implementation, and 
low-cost computation requirements, 
phenomenological equivalent circuit 

models (ECMs) have been the most 
commonly used tools in the devel-
opment of BMS algorithms [11], [13]. 
In an ECM, battery electrochemical 
dynamic behaviors are emulated by 
an electrical circuit consisting of ba-
sic components, such as capacitors, 
resistors, inductors, and controlled 
voltage/current sources. From the lit-
erature, a widely adopted ECM with 
n parallel RC branches is illustrated 
in Figure 2. Each circuit parameter, 
e.g., , , , , , ,R C R C Rn0 0 1 1 f  and Cn, is ex-
pressed as a function of battery SOC 
and temperature, and the identifica-
tion of these functions requires a sub-
stantial number of offline tests and 
real-time tracking. Low-order, empiri-
cally based ECMs are affordable and 
well-suited to model batteries in ap-
plications that exhibit weak operat-
ing dynamics, e.g., supplying portable 
electronic devices, overnight electric 
vehicle (EV) charging, and renewable 
energy generation smoothing.

However, extrapolation beyond ob-
served data is problematic for ECMs. 
BMSs for emerging applications, such 
as extremely fast EV charging, need to 
be designed for higher current rates, 
increased dynamic load requirements, 
and harsher operating environments. 
Under these circumstances, the model 
order, function complexity, and work-
load for tests to identify parameters 
have to be drastically increased to 
achieve high model accuracy. [14]. Fur-
thermore, as circuit components do 
not bear direct relationships to elec-
trochemical processes occurring in a 
battery, empirically based ECMs tend 
to convey limited information about 

physically meaningful time-varying 
parameters, degradation mechanisms, 
and internal safety constraints. The 
estimation of battery performance be-
comes erroneous if evolving dynamic 
characteristics due to battery deg-
radation are not properly taken into 
consideration. Furthermore, for the 
full exploitation of battery capability, 
ECMs are difficult to adapt to control 
algorithms with a predictive model 
due to a lack of insight into how future 
behaviors will be affected and about 
aging and safety levels [15]. In view of 
these reasons, commercial Li-ion bat-
tery systems are usually conservative-
ly designed to facilitate the high uncer-
tainty in predicting battery states and 
model parameters, increasing their 
size, weight, and cost.

First-Principle Model
To overcome problems with con-
ventional ECMs and fully exploit the 
potential of Li-ion batteries, it is ben-
eficial for a sophisticated health- and 
safety-aware battery management 
strategy to adopt physics-based mod-
els derived from fundamental electro-
chemical principles [14]. Based on the 
interpretation presented in the “Phys-
ics Behind Li-Ion Batteries” section, 
Doyle et al. introduced a basic multi-
scale modeling framework for Li-ion 
batteries that is commonly referred 
to as the pseudo-2D (P2D) model or 
Doyle–Fuller–Newman model [16]–[18]. 
It consists of a set of partial differen-
tial algebraic equations (PDAEs) that 
describe the behaviors of several spa-
tiotemporal variables, including the Li-
ion concentration cs and potential sU  
in the solid phase of the electrode as 
well as the Li-ion concentration ce  and 
potential eU  in the electrolyte.

To uncover the common mathe-
matical structure, the dynamic equa-
tions of the P2D model with 1D geome-
try can be generalized to the following 
partial differential equation (PDE) de-
scribing conservation laws:

( , ) ( , )
,M t

u z t
z z z z

u z t1
m
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2
2

2
2

2
2
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subject to the boundary conditions at 
z z1=  and :z z2=

+
−  Qmax

R1 Rn
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Iapp (t )

Vbat(t )SOC(t )

 SOH = Qmax/Qmax0 
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FIGURE 2 – A typical ECM of Li-ion batteries used in conventional BMSs. :Vbat  terminal voltage; 
:Iapp  applied current; :Qmax  battery capacity; :Qmax0  battery capacity of a fresh cell; :h  coulom-

bic efficiency; :VOC  open circuit voltage expressed as a nonlinear function fOCV $^ h of the SOC.
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and the initial condition at t 0=  if :M 0!

 ( , ) ,u z u0 0=  

where u(z, t) represents a state vari-
able of interest in the space [ , ]z z z1 2!  
and at time [ , ),t 0 3!  M is a coefficient 
that represents the ability to store a 
certain form of energy, d  is a coeffi-
cient signifying the rate of transport, 
p  is the source term, u0  is the initial 
value, VB 1  and VB 2  are two bound-
ary values, { , }0 1!a  is a coefficient to 
determine the types of boundary con-
ditions, and m indicates the types of 
coordinates associated with the PDE.

As shown in Figure 1, when ,m 0=  (1) 
describes the transport and conduction 
phenomena along the horizontal direc-
tion of a cell on the macroscale ,z x=^ h  
while the dynamics along the remaining 
two dimensions perpendicular to x are 
ignored. For ,m 2=  (1) describes the 
transport of the lithium species along 
the pseudospherical dimension z r=^ h 
on the microscale. Note that the case of 
m 1=  describes the dynamics in a cy-
lindrical coordinate, and it is not used 
in the original P2D model.

Table 1 summarizes the symbols 
defined for different governing equa-
tions in the P2D model, where the 
superscripts “+”, “–”, and “sep” repre-
sent the positive electrode, negative 
electrode, and separator domains, re-
spectively. For the ease of notation, we 
use ,!! + -" , and , ,sepj ! + -" , 
to indicate quantities in different do-
mains. The symbols in Table 1 and the 

generalized PDE (1) define the specific 
governing equations (2)–(5) for the 
P2D model. Specifically, jn

!  is the pore 
wall molar flux between the solid phase 
and electrolyte, L j  is the width of a do-
main, e

jf  is the volume fraction of the 
electrolyte, ta

0  is the transference num-
ber, F is the Faraday constant, A is the 
cross-sectional area of the electrode, 
and cs0

!  and ce0  are the initial concen-
trations of the solid phase and electro-
lyte, respectively. Parameters such as 
the solid phase and electrolyte diffu-
sivities (D ,s eff

!  and )D ,e
j

eff  as well as the 
solid phase and electrolyte conductivi-
ties ( effv!  and )j

effl  are usually concen-
tration- and temperature-dependent. 
In addition, as indicated in Figure 1, Rp

!  
represents the radius of the assumed 
spherical particle in the solid phase, 
and a R3s s pf=! ! !  denotes the specific 
electrode area, where sf

!  is the volume 
fraction of the solid phase. In (5), in-
stead of using electrolyte potential e

jU  
to describe the charge transport as in 
the original P2D model, a new potential 
term e

jUl  is defined based on (6) so that 
the corresponding PDE can be written 
in the generalized form (1) [19]:

( , )x t ( , )

( , )
,ln

x t

F
R Tt

c
c x t2

( , )

e
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e
j

g a

e

e
j

U x t
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0

e
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-

:l

c cm m
6 7 8444444 444444  

(6)

where Rg  and T are the universal gas 
constant and the cell temperature, 
respectively. The term Ue

j  is an over-
potential due to the deviation of the 
electrolyte concentration from its ini-
tial value ,ce0  and we denote this non-
linear relationship as ( ) .U f ce

j
E e

j=

Next, the Butler–Volmer equation 
is used to describe the intercalation 
reaction kinetics during charging and 
discharging. It establishes a nonlinear 
coupling relationship between the 
ionic molar flux jn

!  and the charge 
transfer overpotential cth

!  in the cor-
responding electrode:

( , ) ( , )
( , )

,sinhj x t i x t F R T
F x t2

2
ct

n
g

0
h

=! !
!

e o= G
  (7)

( , ) ( , ) ( , ) ( , )

( , ) ( , ),

x t x t x t U x t

Fr x t j x t
ct sss e

f n

h U U= - -

-

! ! ! !

! !  
 (8)

where the reaction current density i0
!  is 

expressed as a nonlinear function of ;css
!  

,c re f
! !  represents the area-specific film 

resistance of the SEI layer; and Uss
!  is the 

open circuit potential of the electrode. 
The notation of the Li-ion concentra-
tion at the surface of the solid particle 

( , ) ( , , ),c x t c x r R t Uss sss p= =! ! ! !:  can be 
expressed as a nonlinear function of ;css

!  
i.e., ( ) .U f css OCP ss=! ! !  This function is de-
termined by the thermodynamic char-
acteristics of the active materials used 
in the electrode. Finally, the battery ter-
minal voltage and SOC are obtained by
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where Rcol  is the lumped resistance of 
the current collectors and c ,maxs

-  is the 
theoretic maximum concentration in 
the negative electrode. Please refer to 

TABLE 1 – A SUMMARY OF SYMBOLS IN THE P2D MODEL BASED ON THE GENERALIZED PDE (1).

DESCIPTION u(z, t) z m M d p a z1 z2 BV1 BV2 u0 EQUATION

Mass transport (solid phase) ( , , )c x r ts
+ r 2 1 D ,s eff

+ 0 0 0 Rp
+  0 jn-

+ cs0
+ (2a)

( , , )c x r ts
- r 2 1 D ,s eff

- 0 0 0 Rp
-  0 jn-

- cs0
- (2b)

Mass transport (electrolyte) ( , )c x te
+ x 0 ef

+ D ,e eff
+ t a ja

0
s n
+ + 0 0+ L+ 0

( , )
D x

c t0
,eff

sep
sep sep

e
e

2
2

ce0 (3a)

( , )c x te
- x 0 ef

- D ,e eff
- at ja

0
s n
- - 0 0– L– 0 D x

c t,L
,e eff

sep sep
esep

2
2 ^ h

ce0 (3b)

,c x tsep
e ^ h x 0 e

sepf De,eff
sep 0 1 0sep Lsep c ,L te

+ +^ h c L t,e
- -^ h ce0 (3c)

Charge transport (solid phase) ,x tsU+ ^ h x 0 0 effv+ Fa js n
+ + 0 0+ L+ l Aapp- 0 — (4a)

,x tsU- ^ h x 0 0 effv- Fa js n
- - 0 0– L– l Aapp 0 — (4b)

Charge transport (electrolyte) x t,eU +l ^ h x 0 0 effl
+ Fa js n- + + 0 0+ L+ 0 l Aapp- — (5a)

x, teU -l ^ h x 0 0 effl
- Fa js n- - - 0 0– L– 0 l Aapp — (5b)

x, tsep
eUl ^ h x 0 0 eff

sep
l 0 0 0sep Lsep l Aapp- /I Aapp- — (5c)
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[14], [19], and [20] for more detailed de-
scriptions of the P2D model.

The P2D model described by (1)–
(10) is very general, and modifications 
can be made to accommodate Li-ion 
batteries with different chemistries, 
such as lithium cobalt oxide [21], 
lithium iron phosphate [22], lithium 
manganese oxide [17], lithium nickel 
cobalt aluminum oxide [23], and lithi-
um nickel manganese cobalt oxide [2], 
[24]. Besides the intercalation/de-inter-
calation process described in (1)–(10), 
different side reaction models can be 
incorporated into the P2D framework 
to predict aging phenomena, such as 
increasing resistance due to SEI film 
growth and strain-induced cracking of 
solid particles, decreasing electrolyte 
volume fractions, and fading capacity 
due to SEI film growth and lithium plat-
ing, and relevant parameters can be 
used to define the SOH of a cell [25]. For 
example, the driving force of lithium 
plating, the side reaction potential, can 
be modeled by an equation similar to 
(8) [2], whereas it is inherently difficult 
for conventional ECMs to distinguish 
and capture localized aging character-
istics. Therefore, the P2D model and its 
extension to corporate aging dynamics 
are favorable to the development of 

advanced BMSs, potentially leading to 
extended battery life.

Model Order Reduction 
Techniques
Model order reduction (MOR) ap-
proaches can be adopted to obtain 
simplified first-principle Li-ion battery 
models. The rapid pace of advance-
ment in microprocessor technology 
has enabled the implementation of 
high-fidelity ROMs of Li-ion batteries 
that have a system order greater than 
100 [24], and the representations have 
the potential to be incorporated into 
real-time embedded systems as “digi-
tal twins” [26]. However, model orders 
not much higher than that of prevail-
ing ECMs with two to five states [27] 
are the most desirable in the design 
of many BMS functionalities, such as 
online state estimation [28], available 
power prediction [29], parameter es-
timation [30], cell balancing [31], and 
fault diagnosis [32]. The development 
of optimal battery control, such as fast 
charging for EVs, energy management 
for hybrid EVs (HEVs), and power flow 
control for grid-connected battery en-
ergy storage systems, also requires a 
low-order system to balance the tri-
lemma of high charging/discharging 

rates, long battery life, and ensured 
safety since the complexity of most of 
those algorithms increases dramati-
cally as the model order increases 
[33]. An advanced BMS with physics-
based ROMs is depicted in Figure 3.

Extensive efforts have been made 
to develop MOR techniques in applied 
mathematics. However, for the control-
oriented MOR of Li-ion batteries, intu-
ition-based techniques reported in the 
literature are also very effective since 
they avoid complex numerical recal-
culations of ROM parameters that are 
necessitated by battery degradation 
and nonlinearity. These ROMs can be 
implemented in real-time control algo-
rithms [10]. The main control-oriented 
MOR techniques applied to the P2D 
model will be discussed in four catego-
ries in the following. A large number 
of the methods can be visualized and 
explained by reformulating the ROMs 
into physically meaningful equivalent 
circuits [19], [34], [35] so that better 
understanding and more insight can be 
provided for readers with a background 
in electrical and electronic engineering.

Spatial Discretization
The most straightforward and math-
ematically mature method to simplify 
a PDAE system is to employ discreti-
zation in the spatial coordinate (z = x 
or r) to obtain a continuous-time DAE 
system. The DAEs are discretized 
in the time domain for online imple-
mentation. This strategy is usually 
referred to as the method of lines. Fi-
nite-difference methods (FDMs) [36] 
and finite-volume methods (FVMs) 
[37] are the most direct approaches in 
this category to simplify the equations 
(3)–(5) that govern macroscale vari-
ables. For the solid-phase diffusion 
equation (2) established in the pseu-
dospherical coordinate, the method of 
lines can also be used via FDMs [38], 
FVMs [39], the control volume method 
[40], and so on. In FVMs and the con-
trol volume method, the law of mass 
conservation has been specifically 
guaranteed so that no drift effect oc-
curs during long operations.

By applying spatial discretization 
to (1), a general coupled circuit net-
work that exhibits the distributed 
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parameter nature of the P2D model can 
be obtained using an electrical analo-
gy, as in Figure 4, where a subscript i is 
attached to indicate the variable at the 
ith mesh node or control volume, while 
the superscript to indicate the domain 
is dropped. This transmission-line-like 
general circuit representation consists 
of a subcircuit for the charge transport 
process, as shown in Figure 4(a), a sub-
circuit for the mass transport process 
in the electrolyte, as detailed in Figure 
4(b), and a set of subcircuits for the 
mass transport in the solid phase of 
the electrodes, as described in Figure 
4(c). These subcircuits interact with 
one another via the coupling compo-
nents depicted in Figure 4(d). Note 
that battery degradation is closely re-
lated to the voltage , ,s i e iU U-  and re-
sistance R ,iR  on the vertical branches 
in Figure 4(a). Here, R ,iR  consists of 
the local SEI resistance R ,iSEI  [which 
is proportional to rf in (8)] and the 
intercalation-related charge transfer 
resistance defined as / ,R I, , ,i i n ict cth=:  
where I Fa j x, , ,n i s i n i iD=  is the branch 

current and xiD  represents the dis-
crete space interval in the x direction. 
During battery operation, various side 
reactions occur, which causes per-
formance to deteriorate due to the in-
creasing resistance R ,iSEI  and loss of 
cyclable lithium. Side reaction rates 
are mainly affected by the magnitude 
of the value of ., ,s i e iU U-  Therefore, 
accurate modeling of degradation be-
haviors, such as those associated with 
R ,iSEI  and ,, ,s i e iU U-  is beneficial for 
battery health monitoring, diagnosis, 
and optimal control.

Spatial discretization methods 
can preserve most model properties 
within a wide range of operating con-
ditions, and model extensions can 
be readily achieved to consider the 
nonuniformity of the double-layer ca-
pacitance [34], mechanical stress [41], 
heat accumulation and transfer [21], 
aging behaviors [2], [34], and so forth 
on different time scales. The ability 
to retain slow dynamics during the 
relaxation process is another distin-
guishing feature of these approaches; 

i.e., after the current Iapp  is removed, 
the capacitor voltages in Figure 4(b) 
and (c) will be gradually equilibrat-
ed through a chain of interactions 
among subcircuits. Clearly, the com-
plexity and accuracy of these ROMs 
are determined by the number and 
positions of the mesh points/control 
volumes of interest. Uneven nodes 
can be used to increase model fidel-
ity [40]. Using FVMs, the simulation 
results in Figure 5(a) show that only 
a small number of discretized points 
is required under operating condi-
tions with low current rates. However, 
as the current increases, from Figure 
5(b), it can be seen that more nodes 
are needed to reproduce the inflated 
(or compounded) distributed effects 
and characteristics due to the satu-
ration of concentrations. This would 
be difficult for model-based control 
system design and online implemen-
tation. MORs for large-scale inter-
connected circuit networks have po-
tential to further reduce the order of 
discretized battery models [42].
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FIGURE 4 – A general distributed-parameter equivalent circuit for a P2D model obtained by spatial discretization. (a) The subcircuit for charge 
transport and intercalation/de-intercalation reaction kinetics. (b) The subcircuit for mass transport in the electrolyte. (c) The subcircuit in the ith 
section (node) in the macroscale for mass transport in the solid phase of the electrode. (d) The macroscale coupling between the charge and mass 
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Function Approximation
The second category of methods ap-
proximates spatiotemporal variables 
by a finite weighted sum of assumed 
functions in the form of

 ( , ) ( ) ( ) .u z t t f zk k
k

N

0
. a

=

/  (11)

The objective is to find the time-
varying coefficients ( )tka  for se-
lected trial functions (or basis func-
tions) ( )f zk  so that the residual 

( , ) ( , ) ( ) ( )R z t u z t t f zk kk
N

0aR= - =  has 
certain properties that enable one 
to minimize approximation errors. 
Trial functions are usually selected as 
constant, power, sinusoidal, logarithm, 
polynomial, or a combination the five, 
and they are generally chosen to en-
sure that boundary conditions are au-
tomatically satisfied. They are some-
times referred to as projection-based 
methods, where trial functions and 
weights can be obtained via optimiza-
tion, e.g., by minimizing the Euclidean 
norm error in the frequency domain 
[43] and via applying eigenfunction/
singular value decomposition to a 
data ensemble obtained from the full-
order model [39].

Many of these approaches are 
known as spectral methods, where 
the integral of the weighted residual 
across the domain [ , ]z z1 2  of z should 
vanish; i.e.,

 
( )

{ , , , },

, )R(w z z t dz

k N

0

0 1

k
z

z

1

2

f!

=#
 

(12)

where the weights ( )w zk  are called 
test functions. In Galerkin methods 
[44], the test functions equal the trial 
functions ( ) .f zk  Cosine functions [44], 
Chebyshev polynomials [45], and Leg-
endre polynomials [46], [47] are usu-
ally chosen as trial and test functions 
in spectral methods due to their good 
characteristics for nonperiodic signal 
reconstruction. In orthogonal collo-
cation methods and pseudospectral 
methods [45], [48], [49], the test func-
tions are the Dirac delta functions 
defined at specific locations (name-
ly, the collocation points). Spectral 
methods’ accuracy can be improved 
by increasing approximation order 
N but at the expense of drastically 
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FIGURE 5 – A comparison of the spatial distributions of the solid-phase surface concentration 
( ),css
!  electrolyte concentration ( ),ce

j  and pore wall molar flux ( ),jn
!  simulated using different 

models during a constant-current (CC), constant-voltage (CV) charging process. The CC stage 
has (a) a low current rate and (b) a high current rate. Red indicates the early CC stage, blue 
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show an enhanced SPM.
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increased complexity in analytically 
deriving ROMs.

With the consideration of con-
straints such as the boundary condi-
tions, conservation of mass, and geo-
metrical properties of the solution, 
heuristic methods can also be used 
to select trial functions to simplify the 
determination of the coefficients. Only 
a small set of trial functions needs to 
be used, so the resulting model can 
be explicitly expressed as functions 
of battery parameters. For example, 
in approximating the solid-phase con-
centration PDE (2), the solid-phase 
concentration cs

!  can be assumed as 
a polynomial function of the radial po-
sition r with only even degree terms. 
The coefficients ( )tka  in (11) are ob-
tained as functions of several physi-
cally meaningful quantities, such as 
the volume-averaged concentration 
c ,avgs
!  and the volume-averaged con-

centration flux as well as the surface 
concentration .css

!  This leads to a two- 
or three-parameter polynomial profile 
approximation [50], which can be il-
lustrated using the equivalent circuits 
in Figure 6(a) and (b). This method is 
valid when the effective diffusion coef-
ficient D ,effs

!  of the solid phase is either 
a constant or a function of the solid-
phase concentration [51], and it per-
forms well under constant, long, low-
to-medium current rate applications.

However, there can be significant 
approximation errors under high cur-
rent rate and high-frequency applica-
tions, such as fast EV charging [52], 
HEV pulse operations [53], and the 
provision of fast frequency response 
for grid systems [54]. Higher-order 
approximations are needed to more 
accurately describe the increased 
spatial nonuniformity in the solid par-
ticles. The polynomial profile concept 
has also been applied to the mac-
roscale approximation of the electro-
lyte concentration and potential [55], 
molar flux, solid-phase concentra-
tion, and conductivity of electrolytes 
[21]. However, on the macroscale, the 
polynomial profile assumption can 
fail during dynamic operation at high 
rates and at the end of the charge/
discharge process. For example, in 
fast charging, the local solid-phase 

concentration near the separator and 
the local electrolyte concentration 
tend to saturate close to their physi-
cal and safety limits, and low-order 
approximation is unlikely to precisely 
describe the situation. High-order ap-
proximation is necessary, although 
the derivation of the coefficients can 
be much more complicated.

Frequency Domain Approximation
Transfer functions are essentially 
control-oriented and can be readily re-
alized in state–space forms for linear 
control system design. For the MORs 
techniques in this category, the main 
objective is to find a rational transfer 
function between the input current Iapp  
and the local variable of interest, such 
as concentrations and overpotentials. 
Since (1) represents an infinite-order 
system, the transfer function between 
any state u and the input (the source 
p  or a boundary value; see Table 1) is 
transcendental. For example, the ana-
lytical result for the solid-phase diffu-
sion equation (2) can be obtained by 
applying a Laplace transform to (1), 
with the consideration of its boundary 
conditions; i.e., [27]

( , )
( , )

/ /
/

.
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^

h
h

 (13)

However, as the equations in the 
P2D model are highly nonlinear and 
tightly coupled, additional steps are 
needed to identify the relationship be-
tween the current Iapp  and the local mo-
lar flux jn [which is proportional to the 
branch current I ,n i  in Figure 4(a)]. As-
sumptions are usually made to decou-
ple the submodels, e.g., by  assuming 
a spatially uniform molar flux distri-
bution ( ( , ) ( )/( ))j x t I t Fa L Aappn s!=! ! !  
in the electrode and considering 
constant electrolyte concentrations 
( ( , ) )c x t ce

j
e0=  [27].

MOR methods are applied to tran-
scendental transfer functions to find 
rational transfer functions as required. 
Among various MOR approaches, the 
eigenfunction technique analytically 
calculates all the periodic roots of the 

transcendental transfer function, and 
the resulting infinite series is trun-
cated to obtain a ROM [56]. Similarly, 
in the residue grouping method, all 
periodic poles and zeros will be calcu-
lated and truncated; the poles will be 
first grouped and approximated with 
new ones by minimizing a frequency 
response cost function via nonlinear 
optimization techniques [27]. Com-
pared to the eigenfunction method, 
residue grouping can offer improved 
frequency response accuracy in a 
wide range. However, it is less imple-
mentable for real-time systems, as it is 
computationally inefficient and sensi-
tive to initial guesses and there are no 
guaranteed convergence and global 
optimality.

In contrast, in the Padé approxi-
mation, transcendental transfer func-
tions are linearized into rational ones 
in the s domain so that the system 
order can be directly reduced by mo-
ment matching [57]. The coefficients 
of these rational polynomials consist 
of physical cell parameters and can 
be readily updated according to any 
change in operational conditions. Ac-
curacy is further improved by increas-
ing the order of the rational transfer 
functions that are used. There is a 
tradeoff between the required level 
of accuracy and the computational 
overhead, as the model order increase 
eventually imposes additional re-
quirements. Low-order Padé approxi-
mations provide sufficiently accurate 
results for stationary battery applica-
tions, and higher-order ones can be 
used for EVs [58].

A transfer function can be ex-
pressed in different impedance forms, 
depending on the realization strate-
gies to obtain a state–space model. For 
the solid-phase diffusion equation (2), 
a general equivalent circuit based on 
diagonal canonical realization is pre-
sented in Figure 6(c), where the sur-
face concentration css,i  is expressed 
as the sum of the volume-averaged 
concentration c ,avg,s i  and a series of 
concentration deviation terms. With 
the uniform molar flux assumption, 
a circuit for the electrolyte diffusion 
equation (3) can be derived, and it is 
shown in Figure 6(d). Similar to the 
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method of lines presented in the “Spa-
tial Discretization” section, continu-
ous-time ROMs obtained from residue 
grouping and Padé approximation 
need to be discretized in the time do-
main for control system implementa-
tion. In contrast, the dynamic realiza-
tion algorithm directly generates an 
optimal reduced-order, discrete-time 
state–space realization from the origi-
nal PDE by first finding the discrete-
time pulse response and then using 
the Ho–Kalman algorithm to compute 
the state–space realization [59]. Sever-
al improved linear discrete-time mod-
els based on such a realization pro-
cess are investigated and compared 
in [60], whose authors conclude that 
they all are more computationally ef-
ficient than the dynamic realization al-
gorithm while requiring less memory, 
although it is difficult to directly relate 
the model parameters to any physical 
meaning [45].

The derivation of ROMs from fre-
quency domain analysis is usually 
labor-intensive, although the resulting 
models are easy to implement. Since it 
is necessary only to evaluate the vari-
ables at specific locations of interest 
within a battery, the computational 

burden can be lower than the spatial 
discretization methods, where all lo-
cations need to be considered at the 
same time. However, as there is no 
guarantee that the transfer functions 
for different variables share the same 
poles, the order of the ROMs can be 
high to achieve model precision if a 
large number of internal variables 
needs to be simultaneously investi-
gated. Furthermore, as assumptions 
are made and linearization steps 
are taken in such small-signal meth-
ods, the fidelity of the ROMs can be 
low in extreme operating conditions 
with persistent applied current rates, 
such as fast charging. Relaxing the 
small perturbation assumptions can 
lead to much more complex modeling 
processes [61].

Simplified Physics/Spatial Lumping
In many physics-based Li-ion battery 
ROMs, assumptions are made by fully 
or partially ignoring macroscale dy-
namics effects under specific oper-
ating conditions. In electrodes, this 
leads to uniform molar flux, and such 
assumptions have been extensively 
adopted in combination with the tech-
niques in the previous categories, 

e.g., those described in the “Function 
Approximation” and “Frequency Do-
main Approximation” sections. This 
way, complex physical dynamics and 
strong coupling relationships between 
different submodels can be signifi-
cantly simplified.

The single particle model (SPM) 
assumes uniformity for all local vari-
ables in each electrode and a negli-
gible impact from the variation of the 
electrolyte concentration and poten-
tial on the terminal voltage [51]. This 
tends to be valid under relatively low 
current rates and for cells with thin 
electrodes. To illustrate, consider that 
in Figure 4(a), when the electrode is 
very thin, the injected current rate 
and thus the branch currents flowing 
through the solid-phase resistance 
R ,s i  and electrolyte resistance R ,e i  are 
low. This results in negligible differ-
ences in local potentials and currents. 
In addition, under the assumption 

,c c,e i e0=  the voltage sources U ,e i  can 
be deleted from the circuit since, ac-
cording to (6), U ,e i  is proportional to 

( / ) .ln c c,e i e0  This renders a simplified 
lumped-parameter ECM for the SPM, 
as in Figure 6(e). In the literature, it is 
shown that the maximum applicable 
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current rate is usually 1 C for a high-
power battery with thin electrodes 
and 0.5 C for a typical high-energy 
battery that has a wider electrode 
[14]. (The 1-C current rate is defined 
as the current through a battery di-
vided by the theoretical current draw 
under which the battery would deliver 
its nominal rated capacity in 1 h. It has 
the units of .)h 1-  Hence, the SPM is 
generally not recommended for high-
power applications, such as fast EV 
charging and HEV operation involving 
high power pulses [14], but it is well-
suited to many grid applications [62], 
[63] and daily EV driving, where the 
operating ranges are much narrower.

Similar to the SPM, an electrode 
averaged model was developed in [38] 
by averaging distributed variables 
in electrodes. It couples the average 
solid material concentration with the 
average values of the chemical poten-
tials, electrolyte concentration, and 
current density, as demonstrated in 
Figure 6(f). Electrolyte dynamics are 
considered sufficiently fast compared 
to the diffusion process in electrodes, 
and therefore they can be modeled as 
purely resistive in nature, as in Figure 
6(f). The electrolyte concentration is 
considered constant for electrochemi-
cal state observer design [64]. Fur-
ther improvement of the SPM and the 
electrode averaged model was made 
by adding the effect of the distributed 
electrolyte concentration and potential 
variations. For example, the enhanced, 
or extended, SPM (ESPM) [55], [65] and 
the SPM with electrolytes [66] were 
developed based on the concepts of 
spatially lumping certain quantities. 
They can be illustrated using the ECM 
in Figure 6(g), where the impact of the 
electrolyte concentration variation 
and electrolyte potential is embodied 
by lumped voltage source Ue

!  and elec-
trolyte resistance .Re

Comparison of MOR Techniques
In the literature, the MOR methods 
presented in the previous section 
have been applied to achieve various 
BMS functionalities, including state/
parameter estimation, fault diagno-
sis, and optimal control. Relation-
ships between MOR approaches are 

documented in Figure 7, and the meth-
ods’ strengths, weaknesses, and pos-
sible applications are summarized in 
Table 2. From the table, it is clear that 
spatial discretization methods are the 
most direct and widely applicable for 
obtaining accurate results, and model 
accuracy can be improved by increas-
ing the number of discretization 
nodes and control volumes. For some 
function approximations, it is possible 
to increase ROM fidelity by assuming 
a more complex basis function with 
a higher order. A spectral method 
can achieve the same accuracy as a 
discretization approach, with much 
fewer discretization nodes, typically 
with a reduction factor of ten to 100, 
provided the solution is sufficiently 
smooth in the space domain [45].

As for frequency domain tech-
niques, the derivation procedures 
are considerably more complex, es-
pecially for obtaining transcendental 
transfer functions. Matching a wide 
frequency range also requires high-or-
der approximations. Since frequency 
domain methods rely heavily on the 
assumption that a system is linear, 
their accuracy cannot be enhanced 
much in situations when large signals 
are involved. However, the techniques 
can be suitable for applications in 

which a battery cycles around a spe-
cific level in the mid-SOC region, such 
as HEVs and grid frequency control. 
If the uniform assumption about spa-
tially distributed variables proves to 
be invalid, it is impossible to improve 
ROM accuracy by increasing the mod-
el orders.

The SPM is one of the most sim-
plified electrochemical model frame-
works, requiring very low computation 
and providing sufficient model accura-
cy for applications limited to low and 
medium current rates. It can be con-
sidered a special spatial discretization 
model, with only one control volume 
or node for each electrode. ESPMs en-
hance the SPM by incorporating con-
centration and potential variations in-
side a cell. As a result, the ESPM span 
of applicability is increased by provid-
ing sufficiently accurate results under 
high current rates and with a substan-
tially lower computational burden 
than the P2D model.

In a practical ROM, the MOR tech-
niques are usually blended. This is 
because a combination can poten-
tially offer improved balance between 
model accuracy and computational 
complexity. In addition, prior knowl-
edge of physical constraints and as-
sumptions, such as the shape of the 
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FIGURE 7 – Relationships between major MOR techniques for the P2D model. EM: eigenfunction 
method; RG: residue grouping; PA: Padé approximation; DRA: dynamic realization algorithm.
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solution, the conservation of the 
mass and charge, the satisfaction of 
boundary conditions, volume-average 
values, continuity, and so on, is use-
ful for developing a proper ROM for a 
specific application. Special consider-
ation for P2D ROMs should be paid to 
the Butler–Volmer equation (7), as it 
imposes an algebraic constraint. This 
adds computation difficulty in solving 
models if the ROMs are DAEs since, in 
each time step, an iterative method 
has to be used to obtain a reason-
ably accurate solution. Linearization 
is often employed to remove such an 
algebraic constraint, with an approxi-
mated charge transfer resistance ,Rct  
and this is essentially carried out in 
frequency domain methods.

As an example, Figure 8 compares 
the frequency response and time do-
main pulse current response for the 
solid-phase diffusion equation (2b) 
by using several typical MOR tech-
niques, and in the legend, numbers in 
parentheses indicate the model order. 
In Figure 8(a), the ideal frequency re-
sponse is calculated using the tran-
scendental transfer function (13), and 
it shows that most ROMs can capture 
characteristics in the low-frequency 
region and with very low-order ap-
proximation, while the system order 
has to be increased for a wider fre-
quency response range. In this exam-
ple, Padé approximation shows supe-
rior effectiveness compared to spatial 
discretization and function approxi-
mation methods: the third-order Padé 
approximation outperforms all other 
tested ROMs of the same model or-
der, and it is even more accurate than 
10th-order FVMs. However, the results 
cannot be simply extrapolated to the 
full P2D model since MOR fidelity can 
be significantly affected by other gov-
erning equations and parameters.

In the literature, the feasible op-
erating range of a ROM is usually in-
dicated by the maximum applicable 
current rate, provided certain require-
ments for model accuracy (e.g., volt-
age errors) are met. However, since 
the efficacy of a MOR technique heavi-
ly depends on the underlying assump-
tions imposed on the battery paramet-
ric values under specific operating TA
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conditions, when developing a ROM 
for BMS functions, it is less rigorous to 
select MOR techniques simply based 
on conclusions drawn from such a 
comparison of current rates. Instead, 
a general procedure to select suitable 
MOR techniques for deriving a ROM in 
BMS applications is suggested as fol-
lows:
1) Obtain prior knowledge of a bat-

tery’s characteristics, including 
the cell chemistry, the rate capa-
bility, and the parameter set of the 
physics-based model.

2) Identify the operating conditions 
and characteristics of the current 
and power profiles, e.g., the maxi-
mum magnitude and bandwidth 
(frequency range) of the current. 
For applications where a Li-ion 
battery is likely to work closer to 
its endurance limits, nonuniform 
behaviors in the electrode become 
more significant, and thus a higher-
dimensional ROM might be needed.

3) Select an infinite-order model as 
a benchmark; it can be a PDE- or 

PDAE-based one, such as the P2D, 
SPM, and ESPM models, as indi-
cated in Figure 7. Simulate the 
benchmark based on selected in-
put current profiles for specific 
applications. Obtain the computed 
results of the battery variables of 
interest (a time series or spatial 
profile), and use them to validate 
the ROM accuracy. Make assump-
tions based on simulation results.

4) Select MOR methods and apply the 
algorithms to a submodel of the 
P2D model. Perform simulation us-
ing the reduced-order submodels, 
and compare the results with those 
obtained using the benchmark.

5) Evaluate the performance of the 
ROM by comparing it with the full-
order model.
Please refer to simulation tools 

for ROM algorithm development and 
performance evaluation, with the P2D 
model serving as the benchmark. The 
tools include commercial software, 
such as MATLAB/Simulink, COMSOL 
Multiphysics, and GT-AutoLion, as 

well as open source packages, such as 
Dualfoil (Fortran) [67], fastDFN (MAT-
LAB) [68], LIONSIMBA (MATLAB) 
[20], and PyBaMM (Python) [69].

Challenges and Outlook

Pack-Level, Physics-Based Models
Because of power and capacity limits, 
a large number of individual cells has 
to be connected in series and parallel 
to meet high-power and high-energy 
requirements in many practical ap-
plications. However, even new battery 
cells of the same type have inevitable 
variations in terms of their capacity, 
internal resistances, and SOC, among 
other parameters, due to imperfec-
tions in manufacturing processes. In-
consistencies may be amplified and 
propagated during subsequent battery 
operations. Therefore, battery pack 
performance cannot be determined 
simply by adding up each in-pack cell’s 
results. In fact, pack performance is 
usually limited by the weakest cell. 
When implementing battery models 
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in a BMS, appropriate parametric val-
ues of a physics-based model need to 
be selected consistent with different 
types of battery chemistry.

Sophisticated physics-based, pack-
level battery models will require high 
computational power and large memo-
ry capacities to store processed data. 
Moreover, in practice, cell inconsis-
tencies may create electrical imbal-
ances [106], and thus additional cir-
cuitry [107] and control mechanisms 
[31], [78] are required. Therefore, 
there is a strong need to develop ef-
ficient physics-based, pack-level bat-
tery models to deal with cell inconsis-
tency. Furthermore, models must be 
computationally efficient to cater to 
online applications. Pack-level, phys-
ics-based modeling poses a technical 
challenge to developing advanced 
BMSs. On the other hand, addressing 
the problem means all the benefits of 
physics-based models can be scaled 
up to fundamentally improve battery 
performance. This is considered a 
future research topics and requires 
expertise in electrochemistry, math-
ematical modeling, and computational 
science.

Long-Term Prediction of Degraded 
Performance
Although physics-based models are 
promising for predicting battery 
charging/discharging behavior and 
providing health- and safety-related 
information for control systems un-
der a wide range of operational con-
ditions, their ability to accurately 
predict a battery’s long-term aging 
trajectory and remaining life needs 
further investigation and evaluation. 
Indeed, during the past two decades, 
degradation mechanisms have been 
intensively explored; however, the 
quantification of all the aging mecha-
nisms and development of battery 
degradation models regardless of cell 
chemistries is an active research area. 
In view of recent advances in big data 
and artificial intelligence, data-driven 
modeling enabled by various machine 
learning techniques is considered a 
favorable approach [108]. In the past 
few years, a large number of data-
driven models for SOH estimation and 

remaining useful life prediction has 
emerged through artificial neural net-
works [109], Bayesian nonparametric 
algorithms [110], and support vector 
machines [111]. They work well when 
sufficient battery health data are avail-
able but may suffer from scalability 
problems due to cell-to-cell variations.

In [108], Severson et al. developed 
a comprehensive data set from 169 
commercial Li-ion battery cells cycled 
under 72 different fast-charging condi-
tions. The data were used to classify 
the cells at very early stages by us-
ing machine learning, in which prior 
knowledge of battery degradation 
mechanisms was ignored. The authors 
reported error rates of less than 10%. 
Since physics-based models can pro-
vide more interpretable information 
for feature extraction, the hybridiza-
tion of physics-based and data-driven 
modeling techniques [112], potentially 
with the incorporation of implant-
able sensing technologies [113] for 
enhanced internal state observability, 
will bring fruitful outcomes for the 
development of health-aware battery 
management strategies.

Parameterization
Parameter identification for physics-
based battery models lays a founda-
tion for accurate state estimation 
and optimal control design. Due to 
the complexity of high-order physi-
cal models and the presence of large 
sets of parameters, the task of pa-
rameter identification is challenging. 
It has been theoretically shown that 
the P2D model and many of its ROMs 
are overparameterized [114], [115], 
so it is impossible to simultaneously 
identify all the model parameters. 
Furthermore, many parameters are 
weakly identifiable from current and 
voltage measurements. In light of 
these aspects, it is necessary to con-
duct sensitivity analysis, parameter 
grouping, and optimal experimental 
designs. Parameter grouping requires 
a detailed analysis of a model’s struc-
ture and a theoretical study of identi-
fiability [114]. Clearly, the parameter-
ization problem becomes even more 
challenging when a large number of 
cells with different characteristics is 

considered in a pack configuration 
and when only pack-level measure-
ments are available.

Interestingly, for the physics-based 
equivalent circuits in Figures 4 and 
6, since circuit parameters, such as 
resistances and capacitances, are al-
ways expressed as functions of elec-
trochemical parameters, intrinsic 
grouping schemes have been estab-
lished to simplify parameter estima-
tion [35]. In addition, model param-
eters can be significantly affected by 
factors such as cell temperature and 
pack geometry. Nonuniform tempera-
ture distribution in a large battery 
pack can lead to a heterogeneity prob-
lem, which can cause inconsistent 
battery parameters across the cells 
and the pack. Overall, the parameter-
ization of a coupled electrochemical 
and thermal model for lifelong battery 
management is still an active area of 
research.

Conclusion
Physics-based models can be consid-
ered the core of sophisticated health- 
and safety-aware algorithms for next-
generation BMSs for Li-ion batteries. 
To simplify model complexity, many 
MOR approaches for electrochemi-
cal models of Li-ion batteries have 
been proposed. The techniques are 
categorized as spatial discretization, 
function approximation, frequency 
domain approximation, and simplified 
physics/spatial lumping methods. Se-
lecting the most appropriate battery 
MOR techniques to develop health- 
and safety-aware control algorithms 
is crucial to achieving enhanced bat-
tery performance and extended bat-
tery life.

A ROM needs to have the abil-
ity to incorporate aging effects, tem-
perature variations, environmental 
impacts, and operating conditions. 
Due to the highly complex physical 
dynamics inside a Li-ion battery cell 
and significantly different operating 
conditions in various applications, 
combining MOR techniques is inevi-
table for developing a state-of-the-art, 
reduced-order Li-ion battery model 
for a specific BMS functionality. De-
tailed simulations of a full-order 
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battery model are needed before the 
selection of specific MOR techniques. 
More effort has to be made to achieve 
pack-level modeling that considers 
cell inconsistency, efficient model pa-
rameterization, and long-term aging 
prediction, possibly through hybrid-
ization with data-driven techniques, 
such as machine learning.
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