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Abstract—The accurate diagnostic of internal short 
circuit (ISC) is critical to the safety of lithium-ion battery 
(LIB), considering its consequence to disastrous thermal 
runaway. Motivated by this, this paper proposes a novel ISC 
diagnostic method with a high robustness to measurement 
disturbances and the capacity fading. Particularly, a multi-
state-fusion ISC diagnostic method leveraging polarization 
dynamics instead of the conventional charge depletion is 
proposed within a model-switching framework. This is well 
proven to eliminate the vulnerability of diagnostic to battery 
aging. Within this framework, the recursive total least 
squares method with variant forgetting (RTLS-VF) is 
exploited, for the first time, to mitigate the adverse effect of 
measurement disturbances, which contributes to an 
unbiased estimation of the ISC resistance. The proposed 
method is validated both theoretically and experimentally 
for high diagnostic accuracy as well as the strong 
robustness to battery degradation and disturbance. 

Index Terms—Lithium-ion battery, internal short circuit, 
fault diagnosis, recursive total least squares, state estimate 

I. INTRODUCTION

 

ITHIUM-ion batteries (LIBs) have been widely used in 
electric vehicles (EVs) attributed to the advantages of high 

power density and long cycling life [1]. However, recently 
reported fire accidents have attracted public attention over the 
battery safety problems. The internal short circuit (ISC) is a 
direct cause of safety hazards of LIBs [2]. Hence, the early-
stage ISC diagnostic is of vital importance for the safety 
management of LIB [3-5]. 

The ISC diagnostic is a thriving area of research incubating 
many protocols, classified primarily into four categories 
including the thermal diagnostic, ancillary circuit measurement, 
statistical analysis and the model-based approach. In particular, 
thermal diagnostic lays the foundation on the monitoring of 
abnormal heating caused by ISC [6], by using specific devices 

like infra-red imager [7]. Although the direct detection is 
reliable, the detectable abnormality of heat generation usually 
means that the thermal runaway has already been initiated. The 
ancillary circuit methods detect the ISC with special circuit 
topology in the battery pack [8], and are featured with fast 
diagnostic. The potential challenge stems from the extra 
complexity brought to the readily-complicated battery pack.  

The statistical approach aims to extract special features from 
measurements to timely figure out the abnormal cell [9-12]. The 
micro-short circuit (MSC) was diagnosed in [10] based on the 
uniform charging cell voltage hypothesis and the variations of 
remaining charge among cells. A voltage fault diagnostic 
method was proposed for LIB pack via parameter identification 
and local outlier detection [11]. A model-free method was 
proposed in [12] for LIB multi-fault diagnostic including the 
ISC. Such methods are free from the modeling endeavor by 
directly analyzing the available measurements. However, 
elevated uncertainties arise from the multi-cell comparison and 
the requirement of fully charging.  

Depending on the specific model in use, the model-based 
approaches are divided further into pack model- and cell model-
based ones. The short circuit fault was diagnosed online based 
on a mean-difference pack model (MDM) in [13, 14]. This 
approach is further extended by incorporating the accurate 
MDM parameter identification [15]. To evaluate the severity 
of ISC quantitatively, a MDM-based MSC detection method is 
proposed by identifying the state of charge (SOC) variation via 
the extended Kalman filter (EKF) in [16]. A cell difference 
model (CDM)-based MSC diagnostic method combining low-
pass filters is proposed in [17] based on the open circuit voltage 
(OCV) deviation. These pack model-based methods show 
expected performance, but uncertainties may arise in practice 
due to the reliance on the “healthiness” of rest cells and the 
precise description of both mean cell and the inconsistency. 

Alternatively, cell model-based approaches [18-21] utilizes 
the measurement of single cells, thus are unaffected by rest cells 
in the pack. In [18], the ISC was diagnosed by online 
monitoring the parameter change of an equivalent circuit model 
(ECM) built for the faculty cell. An ISC diagnostic method is 
proposed in [19] based on SOC estimation and detection of 
abnormal charge depletion. In spite of the online feasibility, the 
limited robustness of open-loop architecture potentially 
declines the ISC detection. An ECM-based hybrid filter is 
proposed in [21] to identify the model parameters and estimate 
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the ISC resistance simultaneously. It should be noted that most 
of the quantitative diagnostic methods leverage the abnormal 
SOC depletion to infer the ISC. The diagnostic hence boils 
down to the joint estimation of battery states, more particularly, 
the SOC and parameters of interests. To this end, the model-
based SOC estimation has been a vast area of investigation in 
the past decades showing satisfactory accuracy and robustness 
[22-24]. Moreover, the parameter identification of LIB is also 
extensively explored, giving rise to solutions like the population 
-based [25], regression-based [26-28], and filtering-based 
techniques [29, 30]. The relevant studies underlie the feasibility 
of the cell model-based diagnostic methods. 

Two major drawbacks are embodied in the aforementioned 
diagnostic methods. First, the LIB capacity fade also leads to an 
abnormal SOC depletion which risks invaliding the diagnostic. 
Second, remarkable disturbances arise from the practical data 
acquisition due to the quantization noise and the rounding error. 
The electromagnetic interference also contributes to large 
noises due to the existence of integrated power electronics and 
switching devices. Such disturbances impact the diagnostic 
adversely, which is however less explored. Aimed to bridge this 
gap, this paper proposes an aging-robust and disturbance-
immune ISC diagnostic method. The essence is to transform the 
ISC diagnosis problem into the joint estimation of LIB states 
and ISC resistance. Two primary contributions are made.  

First, a theoretically-proven ISC diagnostic method is 
proposed by discounting the capacity dependence. The model 
switching architecture guarantees a compromise of the steady-
state accuracy and start-up convergence, which can be tough 
due to the co-estimation of cross-interfaced variables. Second, 
the recursive total least squares method with variant forgetting 
(RTLS-VF) is proposed to compensate for the effect of noise-
corruptive data acquisition. This virtually contributes to a noise-
immune and unbiased estimate of the ISC resistance. 

This work is the first one we are aware of that scrutinizes the 
impact of aging and disturbances to ISC diagnostic as well as 
the associated methods for overcoming such adverse effect, 
with a potential for transforming its practical use in real-time 
embedded battery management systems. 

The remainder of this paper is organized as follows. The 
model-based ISC diagnostic is detailed in section II. The RTLS-
VF for ISC resistance estimate is elaborated in Section III. 
Simulation and experimental results are discussed in Section IV 
and V. Primary conclusions are drawn in Section VI. 
 

II. MODEL-BASED ISC DIAGNOSTIC  
 

A. Modelling 

A battery model with high fidelity yet sufficient simplicity 
underlies the model-based diagnosis methods. As shown in Fig. 
1 (a), the used first-order normal cell model consists the SOC-
dependent OCV, ohmic resistance (R0), and a RC branch 
simulating the polarization effects. Such impedance parameters 
can be calibrated easily with the pulse-relaxation method. 

 
Fig. 1 ECMs: (a) normal cell model, and (b) faulty cell model with ISC. 

 
The dynamics of normal cell model is described by: 
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where t is the time, IL the load current, z the SOC, η the 
coulombic efficiency, Q0 the nominal capacity, Up and Ut 
respectively the polarization and terminal voltage, and UOC the 
OCV expressed as a function of battery SOC: 

  
0

n i
OC ii

U f z c z


    (2) 

where n is the polynomial order, ci is the polynomial coefficient 
determined by polynomial fitting the SOC-OCV testing 
data.The extracted coefficients of SOC-OCV function are 
summarized in Table I. 

 
TABLE I 

POLYNOMIAL COEFFICIENTS OF SOC-OCV FUNCTION 
Coefficients c0 c1 c2 c3 c4 
Value 3.301 2.176 -6.353 8.839 -3.805 

 

On this premise, the ISC cell can be modeled electrically by 
adding a current by-pass with a specific ISC resistance, as 
shown in Fig. 1 (b), where Ii is the electrochemical current, IISC 
is the current passing the ISC resistance. The dynamics of faulty 
cell is derived by replacing IL in (1) with Ii = IL − Ut / RISC: 
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B. Multi-state-fusion ISC Diagnostic 

Commonly-used ISC diagnostic methods based on abnormal 
charge depletion are sensitive to the capacity fading of LIB. To 
remedy this deficiency, a multi-state-fusion ISC diagnostic 
method is proposed without using the capacity to enhance the 
robustness to battery degradation.  

As can be seen in Fig. 1 (b), assuming that UOC and Up are 
already known or estimated accurately, the unmeasurable 
electrochemical current can be derived by: 
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I k

R

 
  (4) 

The ISC current is hence given by:  
      ISC L iI k I k I k    (5) 

The quantitative diagnostic of ISC severity boils down to 
determining the exact value of the ISC resistance. To this end, 
a regression problem can be formulated by: 
    ISCh k R k  (6) 

where h(k) = Ut(k), φ(k) = IISC(k). 
It is explicit that the ISC resistant can be identified by solving 

the regression model (6). This can be achieved by a broad 
variety of optimization methods like the most commonly-used 
least squares (LS) algorithm. However, the measurement noises 
on current and voltage as well as the numerical error give rise 
to a large risk of biased identification. This will be a major 
endeavor of this work, and will left for detailing in Section III. 

Referring to (4)-(6), it is evident that Ut can be measured 
directly, and UOC is SOC-dependent. Therefore, a state observer 
is formulated to estimate SOC and Up. The state of interest, 
input and output are defined as: x(k) = [Up(k) z(k)]T, u(k) = [IL(k) 
Ut(k)]T, y(k) = Ut(k). Referring to the faulty cell model (3), The 
discrete-time state-space model can be expressed as: 
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where 
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where  = RISC (k − 1) / (RISC (k − 1) + R0), t is the time interval, 
w(k) is the process noise with covariance matrix w, while v(k) 
is the measurement noise of y(k) with covariance matrix v.  

 

C. Model Switching Framework 

Noted that the RISC is estimated at each iteration and, in return 
feedback to the faulty cell model, to ensure the accuracy of the 
battery modeling and state estimation. However, the concurrent 
estimation of RISC, SOC, and Up can incur remarkable cross 
interference which may impair the convergence. In this regard, 
a model switching framework is built by incorporating a normal 
cell model and a faulty cell model to improve the convergence 
property while keep a high steady-state diagnostic accuracy. 
Specifically, the normal cell model is used at the beginning of 
the diagnostic. Once the accumulated ampere-hour throughput 
exceeds a certain threshold assuring the convergence of RISC 
estimations, the faulty cell model with the estimated RISC is used 
to improve the accuracy of the state estimation. The faulty cell 
model will be updated at the beginning of each iteration with 
the estimations at previous iteration. 

With respect to the normal cell state observation, the state, 
input and output are defined alternatively by: x1(k) = [Up(k) 
z(k)]T, u1(k) = IL(k), y1(k) = Ut(k). With the built normal cell 
model, the state-space expression is given by: 
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where  
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With the established discrete-time state-space model, SOC 
and Up are estimated using the EKF in this paper.  

 

D. Theoretical proof of aging robustness 

The multi-state-fusion framework is expected to mitigate the 
capacity deviation-induced uncertainty. A theoretical proof of 
this is presented herein. We make a practical assumption that 
the capacity drops from the nominal Q0 to Qr during the aging, 
while the method is unaware of this. At a given time step, the 
priori update of SOC and error covariance are given by: 
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where P̂  is the SOC error variance, Q is the process noise 
variance, and the superscript – denotes the priori update. The 
posteriori SOC estimate is updated via the error feedback: 

  , ,
ˆˆ ˆk k k t k t kz z L V V     (10) 

The Kalman gain Lk in (30) is calculated as: 
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where R is the measurement noise variance. Meanwhile, P̂  is 
updated as  

  ˆ ˆˆ1k k k kP L P    (12) 

In (11) and (12), k̂  is the derivative of UOC with respect to 

ˆkz , i.e., 
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The recursive expression of zk can be obtained by combining 
(9) and (10) as: 
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where the superscript * denotes the true value. 
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It is explicit from (7-8) that the polarization voltage is not 

affected by the capacity error, so that *
, ,

ˆ
p k p kV V , and the 

voltage error is given by: 
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, ,

ˆ ˆt k t k k kV V f z f z     (16) 

The following approximation holds as ˆ kz  is typically not 

too far away from *
kz  [31]: 

   

   

, 1 , 1* *
-1 1

0

, 1 , 1*
-1 1

0

1 , 1
0

ˆ ˆ

ˆ

1 1

L k L k
k k k k

r

L k L k
k k k k

r

k k k L k
r

I t I t
f z f z f z f z

Q Q

I t I t
f z f z

Q Q

z I t
Q Q

 

 

  


 


 

    
          

   
 

   

 
     

 

 

  (17) 
Then the SOC estimate can be derived by substituting (17) 

into (14): 
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whilst the true SOC is given by: 
 * *
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By subtracting (18) from (19), the recursive expression of 
the estimation error (Δzk = zk

* - ẑk) can be obtained as: 
      1 , 1 01 1 1 1k k k k k k L k rz L z L I t Q Q           (20) 

With an SOC guess error Δz0, the solution of Δzk is: 
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Noted that the OCV is piece-wise linear for typical LIBs. The 
OCV slope of the NMC battery is close to a constant τ = 0.65 
mV/1% SOC within the operating range of 10–100 % SOC [31]. 
In this case, it is proved that the feedback gain L converges to 
the range of 0 < L < 1/τ. L is very closed to 1/τ if R is small 
enough. Therefore, as k → ∞, the estimation error is: 
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Thus, the absolute estimation error of SOC is given by: 
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 The true value and the estimates of IISC can be expressed via 
(5) and (6) as:  
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Hence, the RISC estimation error can be obtained as: 
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By substituting (23) into (25), the relationship between the 
RISC estimation error and the capacity error can be expressed as: 
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Recall that the feedback gain L converges to the range of 0 < 
L < 1/τ, and L approximates to 1/τ if R is tuned to be 
sufficiently small. Hence, it is validated that the RISC estimation 
error theoretically converges to 0 via effective EKF tuning. This 
completes the proof of aging robustness.  
 

III. DISTURBANCE-IMMUNE ISC RESISTANCE ESTIMATION 

The quantitative diagnostic of ISC needs an accurate solution 
of (6). The widely-used LS is proved to be biased due to the 
noise corruption in this section. A RTLS-VF-based noise-
immune method is elaborated to mitigate the noise effect. 
 

A. Error-in-Variables Analysis 

The LS assumes that noises corrupt only the system output, 
which is not necessarily in accordance with the reality as the 
input IISC(k) is also subject to disturbances due to the estimation 
error and noises on current measurement. With the presence of 
noises, the input and output observation of (6) are: 

            ,k k k h k h k h k       (27) 

where h(k) and φ(k)　 are the disturbances on h(k) and 
φ(k)respectively. Both h and φ are assumed to be zero mean, 
normally distributed random variables with variances of δu

2 and 
δi

2, respectively. The noise corruption recasts (6) a typical error-
in-variable (EIV) system which challenges the suitability of LS 
method for an unbiased solution.  

Definition: The auto- and cross-covariance matrices of two 
arbitrary vectors (m and n) are defined by (28.a), and the auto- 
and cross-covariance functions of two arbitrary scalar 
stochastic processes (r and d) are defined by (29.b). 

 ,E E       
T T

m mnmm mn   (28.a) 

    ,        r rdE rr E rd    (29.b) 

where E[•] is the expected value operator. 
The well-known LS solution of (6) is given by:  

    11LS
ISC h hh

R          


        (30) 

With the participation of noises, instead, the compensated 
unbiased solution is given by: 

    1* 1
ISC h hh

R          


         (31) 

Being aware that y = 0, and applying the matrix inversion 
lemma to (30) yields: 

   11 1 1 1 1LS
ISC hR           

    


     
 (32) 

Combining (31) and (32), the LS bias is finalized by: 

   11 1 1 *bias
ISC ISCR R    

  
     (33) 

Herein the LS validates to be asymptotically biased once 
both the system input and output are disturbed with noises.  
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B. TLS Fundamental 

Unlike the LS to minimize the Euclidean norm of estimation 
error vector, the total least squares (TLS) algorithm minimizes 
simultaneously the perturbations on system input and output so 
that the unbiased regressive solution can be found [32, 33]. In 
accordance with this, (6) is transformed to: 

    
 

    
 

ISC

h k k

h k h k R k k



     
 

 
   (34) 

In particular, the TLS is solved by finding the minimum 
perturbation matrices i.e., H(k)and (k)and the RISC 
estimate that satisfy: 

           ˆ
ISCk k R k k k  h H φ    (35) 

where  

       
       

, 1 ,..., 1

, 1 ,..., 1

k h k h k h

k k k  

   
   

  

   

h

φ
 

If the unit weighting is used, the TLS boils down to solve the 
following minimization problem: 
    

ˆ , ,

ˆ arg min
ISC

ISC FR
R k k

 
  

H
H


  (36) 

where ||ꞏ||F denotes the Frobenius norm.  
Define q = [RISC, -1]T, then RISC(k) is equal to the TLS 

estimate provided that qk is the eigenvector corresponding to the 
smallest eigenvalue of the following covariance matrix [34]: 

      
   
   

h

h h

Σ k Σ k
k E k k

Σ k Σ k

 
        

 

 

φ φT
φ

φ

φ φ   (37) 

where ( ) ( ) ( )k k h k   


T
 . 

The least eigenvalue problem can be solved by the singular 
value decomposition (SVD), but its cubic complexity discounts 
the potential for online application. It is hence desired to find 
an efficient recursive version of the TLS, in seeking to ease its 
application in the low-cost embedded system. 
 

C. Numerical Solution of TLS  

Theorem 1: The solution given by (38) is a TLS solution to 

the EIV problem defined by (6). This solution is asymptotically 
unbiased even if the system inputs and outputs are both 
corrupted by noises. 

 
 

   
arg min ,

with  ,

g

g





φq

T T
φ φ

q q

q q q q Dq



 
  (38) 

where D = diag (1, β-1/2) with β δu
2 / δi

2. 
Proof: Equation (38) is realized if: 

  ( ), ( ) ( ) 0g k k k  φ q q   

which can be further transferred to the following equality that 
the TLS solution follows: 
 ( ) ( ) ( )k k kφΣ q Dq   (39) 

where  ( ), ( )g k k  φ q . It is hence validated that the given 

solution complies to the TLS requirement. Moreover, (39) can 
be expressed alternatively as: 

 
2

2

0

0 1 1

TLS TLS
h i ISC ISC

uh h

Σ Σ R R

Σ Σ






                           

φ φ

φ

D
 

 

  (40) 

Assume the solution is equal to the unbiased estimate of RISC, 

i.e., * 1TLS
ISC ISC hR R     , substituting this to (40) confirms the 

equality with ρ = δi
2. In other words, ,  1TLS

ISCR  
T

 is a 

generalized eigenvector with corresponding eigenvalue Λmin = 

δi
2. The asymptotic unbiased feature of TLS

ISCR  is hence validated. 

Recall that q = [RISC, 1]T, (38) can be rewritten as: 

 
     

   
   2 2

, 1 , 1
,

, 1 , 1

      2

ISC ISC
ISC

ISC ISC

ISC ISC ISCh h

R R
g R

R R

R R R 

 


 

     

T

φ
φ T

φ

D




 

  (41) 

The minimization problem (41) is solved using the gradient 
search method in this paper. Particularly, RISC is updated by: 

        ˆ ˆ 1ISC ISCR k R k k k       (42) 

where kis an adaptive gain which can be calculated by: 

       , 0ISCg k R k k  φ   (43) 

 
Fig. 2 Scheme of the proposed ISC diagnostic method. 
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Combining (41)-(43) gives the following quadratic equation 

which can be easily solved: 
    2

1 2 3 0c k c k c     (44) 

where  

   

          

 
   
      

3

1

2

2

2

3

2

ˆ2 2 1

ˆ 1
2

ˆ 1

h

ISCh h

ISCh h

ISCh

c k k

c k k R k k k

R k k
c k

k k R k





 



 

    

  


  



   

  
 
    



 

  









 (45) 

The covariance terms in (45) are updated recursively, giving 
rise to an efficient recursive TLS (RTLS) method. A general 
propagation law applicable to all terms is given by: 

 
     

   
11

1 11 1

1 1 ( ) ( )

1

k k

kk

k j k k ki j i

k k k k 

    


   

   

   

T
mn mn m n 

 (46) 

where  is the forgetting factor (0.95 <  < 1). It is worth noting 
that  is tied to the conflicting objective of tracking alertness 
and stability [35]. A variant forgetting (VF) rule is used herein: 

      22
min min1 2 kk         (47) 

where        ˆ
ISCk h k R k k    . The overall framework of 

the proposed ISC diagnostic method is shown in Fig. 2.  
 

IV. SIMULATION RESULTS 

Simulations are carried out to evaluate different methods in 
this section. The use of ideal battery model ensures that the 
methods are evaluated from the theoretical prospective without 
the disturbances from model uncertainties. 

 

A. Data Acquisition 

The faulty cell model as shown in Fig. 1 (b) was built to 
simulate a cell with ISC fault. With the available knowledge on 
the LIB in use, R0, Rp, Cp, and Qr are defined as constants of 50 
mΩ, 20 mΩ, 1000 F, and 2.2 Ah, respectively. The federal 
urban driving schedule (FUDS) current profile was loaded to 
excite the battery model. The current, voltage and reference 
SOC are sampled at 1 Hz. The current sensor in industrial 
processes contains errors within the range of 0.1% ~ 1% [36]. 
In contrast, commercial voltage management circuits for LIB 
have a high accuracy with the error confined to less than 2 mV. 
Even for the application in practical environment, most of the 
voltage sensors can suppress the error to 5 mV [37], or even as 
low as 1 ~ 2 mV [36]. Hence, random noises with standard 
deviations of 10 mA and 4 mV are added herein to the noise-
free current and voltage signals to simulate a typical noise-
corrupted condition. 

The equivalent resistance (ER) approach with external short 
circuit to represent ISC shows the merit of high controllability 
[38]. To this end, the ISC resistance needs to be selected 
properly to simulate a practical early-stage ISC fault. The 
electro-thermal prosperities of ISC were analyzed utilizing ERs 
from 10 Ω to 100 Ω in [18]. It is found that with RISC > 20 Ω, 

the voltage and the temperature responses hardly show any 
abnormity, indicating that the direct ISC detection using voltage 
and temperature is difficult. With an ISC resistance of 10 Ω, the 
LIB temperature builds up to the safety threshold beyond which 
the self-heating will be triggered. Hence, the early-stage ISC 
diagnostic (RISC > 10 Ω) is essential. In this paper, a 25 Ω ER is 
used to represent an early-stage ISC with unobservable voltage 
and temperature abnormity, while a 10 Ω ER is used to 
represent an ISC fault approaching the threshold of severe 
thermal consequences. This also draws a direct link from the 
ISC resistance estimation to the ISC severity diagnostic. 
 

B. Simulation Results with Constant ISC Resistance 

The capacity is assumed to 11% biased from the ground truth 
to verify the robustness of proposed method to capacity fade. 
The estimates of SOC, IISC, and RISC are plotted in Fig. 3, while 
the mean absolute error (MAE) and rooted mean square error 
(RMSE) of estimation are tabulated in Table II. As can be seen 
in Fig. 3 (a) and (d), the SOC estimates for both cases converge 
from the initialization error and track the reference SOC 
trajectories closely. The capacity error shows no obvious 
impact on the SOC estimate, suggested by the minimal 
estimation error observed. This is explained by the voltage 
error-based correction which mitigates effectively the capacity 
deviation-induced state mismatch. By comparison, the IISC 
estimates shown in Fig. 3 (b) and (e) vibrate heavily around the 
benchmarks. This is a two-fold consequence contributed by 
both the disturbances on input current and the uncertainties of 
estimated states, referring to (4)-(5).  

 

 
Fig. 3 Estimation results of SOC, IISC, and RISC of 10 Ω RISC case and 
25Ω RISC case: (a) SOC estimates of 10 Ω RISC, (b) IISC estimates of 10 
Ω RISC, (c) RISC estimates of 10 Ω RISC, (d) SOC estimates of 25 Ω RISC, 
(e) IISC estimates of 25 Ω RISC, (f) RISC estimates of 25 Ω RISC 

 
TABLE II 

ESTIMATION ERROR OF SOC AND ISC RESISTANCE  
 MAE RMSE 
SOC-10 Ω 0.1213 % 0.2004 % 
RISC-10Ω 0.3094 Ω 0.3296 Ω 
SOC-25 Ω 0.1189 % 0.1901 % 
RISC-25Ω 0.4934 Ω 0.6082 Ω 
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Despite the noisy IISC estimates, it can be seen in Fig. 3 (c) 

and (f) that the RISC estimates converge to the reference value 
stably and precisely. This is because the presented EIV problem 
can be well solved by the RTLS algorithm, which is a major 
contribution of the proposed method. Again, the capacity 
deviation has no observable impact to the RISC estimation, 
which is attributed to the capacity independence of the multi-
state-fusion framework. The accurate estimation of RISC with 
different values directly validates the capability of the proposed 
method in diagnosing ISC faults with different severities. 

 

C. Simulation Results with Changed ISC Resistance 

This section goes further to validate the effectiveness of the 
proposed method under a sudden change of the RISC. For this 
purpose, the ISC resistance is defined to drop instantaneously 
from 25 Ω to 10 Ω at the halfway of simulation. The estimates 
of SOC, IISC, and RISC of this study are plotted in Fig. 4. As 
shown, the SOC estimates converge to and resemble the 
benchmarked values accurately regardless of the sudden change 
of ISC resistance. The MAE and RMSE of SOC estimation are 
as low as 0.142 % and 0.212 %. More pronouncedly, the 
proposed method succeeds to track the sudden change of ISC 
current/resistance with a rapid convergence and close steady-
state agreement. Although the IISC estimates contain high-
frequency errors due to the disturbances and state uncertainties, 
the RISC is highly authentic and much more stable. The 
statistical result suggests that the MAE and RMSE of RISC 
estimation are only 1.298 Ω and 2.180 Ω, respectively.  

 

 
Fig. 4 Estimation results of SOC, IISC, and RISC under a sudden change of 
ISC resistance: (a) SOC, (b) IISC, (c) RISC. 

 

V. EXPERIMENTAL RESULTS 
 

A. Experiment Details 

Experiments are carried on a 18650 NMC battery. The cell 
was enclosed in a Vötsch thermal chamber to keep a constant 

ambient temperature of 25 °C. The FUDS current profile was 
applied on the cell via the Arbin battery testing system, where 
the current and voltage were sampled precisely with error limits 
less than 0.05%. The ER approach is used to validate the early-
stage ISC diagnostic. For real-time performance evaluation, 
Freescale's MPC5554 was employed as an embedded micro-
controller unit (MCU). The proposed method was compiled into 
the machine code and written into the MCU, while the CAN bus 
was used to transmit the load current and terminal voltage 
measurements. The SOC estimation and ISC diagnostic were 
executed with the target MCU in real time at a time interval of 
1 second. 

To validate the SOC estimation, CC-CV charging is applied 
to fully charge the cell, and then CC discharge is applied to pre-
set the cell at a known SOC. Being aware of the initial SOC, the 
benchmarked SOC during the subsequent experiment can be 
obtained leveraging the coulomb counting (CC) method. The 
current and terminal voltage measurements, as well as the 
reference SOCs are plotted in Fig. 5. The reference ISC current 
can be calculated directly by dividing the terminal voltage by 
the value of ER to assess the accuracy of ISC current estimation.  

To validate the robustness against capacity fading, validation 
experiments are performed on an aged cell (SOH = 89.0%), 
while the capacity of fresh cell is intentionally used for the 
proposed method throughout this paper. The model parameters 
in the experimental study were identified offline at different 
battery SOCs. The SOC-dependency of parameters, as shown 
in Fig. 6, was determined using the look-up table. The ECM 
parameter extraction has been studied widely [25-30], thus is 
not detailed herein. The impedance parameters are imposed 
with 20 % error to generate a high model uncertainty. 

 

 
Fig. 5 FUDS: (a) current, and (b) terminal voltage and SOC 

 

 
Fig. 6 Model parameters extracted at different SOCs: (a) SOC-R0; (b) 
SOC-Rp; and (c) SOC-Cp 

 

Throughout the validation, the proposed method is compared 
with two reference methods for more reasonable evaluation. 
Noted that the parameter selection and initialization condition 
are consistent for all the three methods for a fair comparison. 

Method 1, named as “SOC-based”, represents the state-of-
the-art progress in the literature. Referring to Fig. 1 (b), the ISC 
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resistance gives the faulty cell an extra path for current bypass. 
This bypassing current causes an abnormal charge depletion, 
which is used as a clue to estimate the RISC. First, the SOC is 
estimated by using EKF for a fair comparison, and then the 
electrochemical current is given by: 

       01iI k z k z k Q                    (48) 

Therefore, the ISC current is calculated by the mismatch 
between the electrochemical current and load current: 

         01ISC LI k I k z k z k Q                 (49) 

The formulated regression problem is solved by using the 
RTLS-VF method. This idea has been widely used for the ISC 
diagnostic of both single-cell [19, 21] and LIB pack [16, 17]. 

Method 2, named as “NCM-MS”, is the counterpart of the 
proposed method by replacing the switching model structure 
with the normal cell model. The comparison with this method 
further validates the necessity of model switching. 
 

B. Validation of State Estimation and ISC Diagnostic 

The model switching framework is expected to improve the 
convergence property and steady-state accuracy. A direct 
justification of this can be made by comparing the proposed 
method with the NCM-MS method, as shown in Fig. 7. The 
corresponding MAE and RMSE of estimation are summarized 
in Table III. It is shown that with a large RISC of 25 Ω, both the 
two methods converge from the initialization error and 
resemble the reference SOC trajectories closely. This is because 
a larger RISC means an earlier stage of ISC where the leakage 
current is commonly ignorable to cause a model mismatch. As 
the RISC drops to 10 Ω however, the estimation suffers from a 
major error build-up. This is reasonable as the drop of ISC 
resistance causes an enlarged current offset, which affects the 
transition dynamics of SOC and Up heavily. By comparison, the 
proposed method, utilizing the model switching framework, 
converges faster with a higher steady-state accuracy. This is 
attributed to the timely switching to faulty cell model and 
continuous compensation of the RISC-induced dynamic 
deviation. It is also noted that the impact of capacity fading to 
state estimate is ignorable thanks to the voltage feedback 
mechanism. The accurate and degradation-robust state 
estimation lays a solid foundation for the ISC diagnostic. 

The estimated ISC current is plotted in Fig. 8 (a-b). It is 
shown that all the methods converge to values close to the 
reference trajectory. Specifically, the ISC current is explicitly 
overestimated by using the SOC-based method. The SOC-
based method is expected to give an unbiased IISC estimation, 
provided that the battery capacity is known precisely. However, 
the estimation is easily biased if the method is unaware of the 
aging status of battery. Similarly, the NCM-MS method also 
converges to values substantially away from the benchmarks. 
The observed deviation can be explained by the deficiency of 
normal cell model and the associated biased state estimation, 
which has been readily discussed in Fig. 7. By comparison, the 
proposed method converges much more rapidly than the 
reference methods. Moreover, the ISC current estimates agree 
more closely with the benchmarked values. The highly 

authentic ISC current estimation lays sound foundation for the 
subsequent estimates of ISC resistance. 

 

 
Fig. 7 SOC estimation results: (a) estimation and (b) estimation error 
with 10 Ω RISC; (c) estimation and (d) estimation error with 25 Ω RISC. 
 

TABLE III 
SOC Estimation Errors 

 
Proposed method NCM-MS 
10 Ω RISC 25 Ω RISC 10 Ω RISC 25 Ω RISC 

MAE (%) 0.6170 0.3324 1.0934 0.3784 
RMSE (%) 0.6780 0.3852 1.2455 0.6041 

 
 

 
Fig. 8 Fault diagnostic results: (a) IISC estimates with 10 Ω RISC; (b) IISC 
estimates with 25 Ω RISC; (c) RISC estimates with 10 Ω RISC; (d) RISC 
estimates with 25 Ω RISC. 
 

The ISC resistance estimation results are plotted in Fig. 8 (c-
d), while the MAE and RMSE of ISC resistance estimation are 
summarized in Fig. 9. It is observed that the RISC estimates 
converge fast from the large initialization offset and follows the 
reference values accurately by using the proposed method. The 
MAE and RMSE of RISC estimation are less than 0.5 Ω and 1 Ω, 
which is sufficiently small referring to their baseline values of 
10 Ω and 25 Ω. In contrast, the two reference methods exhibit 
large fluctuations at the start-up stage and converge after a long 
transition period of 2000 s. Moreover, the converged estimates 
deviate substantially from the reference values especially for the 
case of 25 Ω ISC resistance. The MAE and RMSE reach up to 
5 Ω, corresponding to a large mismatch of around 20%. These 
findings are in accordance with the estimation results of ISC 
current as observed in Fig. 8 (a-b).  
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Summarily, the proposed method promises a two-fold benefit. 

First, the RISC estimation based on multi-state fusion is less 
sensitive to the capacity, thus enables a higher robustness to the 
battery aging. Second, the model switching architecture 
circumvents the co-estimation of cross-interfaced variables, and 
gives an encouraging converging/steady-state performance. 
 

 
Fig. 9 MAE and RMSE of RISC estimation. 
 

C. Validation of Disturbance Immunity 

Random noises with standard deviation of 10 mA and 4 mV 
are added to the measurements to represent a noise-corrupted 
working condition. The proposed method is further compared 
with its RLS-based counterpart to give a direction illustration. 
The comparison is insightful as the LS is most progressively-
used method for solving the discussed regression problem, and 
has been used frequently for ISC diagnostic [16, 17, 19].  

The estimation results are shown in Fig. 10. As the noise 
corruption on system input and output violates the underlying 
assumption of LS principle, the RLS-based method gives rise 
to RISC estimates substantially away from the ground truth. This 
deviation, in return, feedbacks via the close-loop architecture 
and shares the responsibility of the overestimated offset of IISC 
estimation. By comparison, the estimates with the proposed 
method approach the benchmark much more tightly. This is 
attributed to the efficient compensation of noise effect, which 
eventually mitigates the estimation biases on the unknowns. It 
is also worth noting that the estimates, especially for the case of 
RLS-based counterpart, suffer from marked error build-up as 
the RISC becomes larger. The growing vulnerability to RISC is 
explained by that a large RISC equals to a small IISC, which leads 
to a low signal-noise ratio. Overall speaking however, the well-
kept estimation accuracy testifies about the strong robustness of 
proposed method to the disturbances from data acquisition. 

The MAE and RMSE of the experimental estimation results 
are tabulated in Table III. By comparing with the simulation 
results in Table I, it is easy to draw the conclusion that the 
proposed method has a deteriorative performance. This is 
within expectation as the practical experiments incur large 
uncertainties from multiple processes, like the model limitation, 
the SOC-OCV fitting error, the model parameter deviation, and 
the capacity fade. 

To further justify the noise immunity of the proposed method, 
the estimation results of ISC resistance under a sweeping range 
of noise standard deviations are plotted in Fig. 11. Particularly, 
the standard deviation of noise on terminal voltage varies from 
0 to 8 mV, while that on load current changes from 0 to 0.2 A 

proportionally. As depicted in Fig. 11, the proposed method and 
its RLS-based counterpart perform equivalently with high 
precision under the low noise scenario. With the growth of 
noise intensity, the RLS-based method suffers from a 
substantial and monotonous loss of accuracy, while the 
performance of the proposed method deteriorates quite slightly. 
Attributed to the bias elimination mechanism, the proposed 
method manifests itself with a high fidelity even if large noises 
are participated. The universal merit of high accuracy verifies 
that the previous conclusion about noise immunity is non-trivial, 
and the RTLS algorithm outperforms the widely-used RLS-
based method in terms of the immunity to disturbances. Again, 
the accurate estimation of RISC directly validates the capability 
of the proposed method in diagnosing the severity of ISC fault. 

 

 
Fig. 10 Experimental results with measurement noises: SOC estimation 
with (a) 10 Ω RISC, and (b) 25 Ω RISC; ISC current estimation with (c) 10 Ω 
RISC, and (d) 25 Ω RISC; ISC resistance estimation with (e) 10 Ω RISC, and 
(f) 25Ω RISC. 
 

TABLE IV 
MAE AND RMSE OF RISC ESTIMATION WITH MEASUREMENT NOISES 

 MAE RMSE 
10 Ω RTLS 0.3922 Ω 0.4044 Ω 
10 Ω RLS 0.6708 Ω 0.7080 Ω 
25 Ω RTLS 0.8673 Ω 0.9432 Ω 
25 Ω RLS 6.2011 Ω 6.4970 Ω 

 

 
Fig. 11 Estimation results of ISC resistance under a sweeping range of 
noise standard deviations. 
 

A prolonged experiment is performed to validate the stability 
of the proposed method. The test battery is discharged from 95% 
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SOC to 10% SOC using the FUDS current profile, and then 
charged to 95% SOC with 1/3 C current. This process is 
repeated for eight times, giving rise to a total testing time of 60 
h. The measured current and terminal voltage are plotted in Fig. 
12 (a-b), while the estimation results of IISC and RISC are plotted 
in Fig. 12 (c-d). As can be seen, the ISC current is estimated 
accurately with the errors confined within the ± 0.04 A error 
bound. Despite the large initialization error, the RISC estimates 
converge to the benchmarked values fast and precisely. The 
estimation errors are well within the ± 0.5 Ω bounds, and the 
MAE of RISC estimation is as small as 0.3523 Ω. All these clues 
validate that the proposed method has sufficient accuracy and 
stability in diagnosing the ISC fault in a long-term manner. 
 

 
Fig. 12 Prolonged Experimental results: (a) Measured current profile, (b) 
Measured voltage profile, (c) IISC estimates, (d) RISC estimates. 

 

D. Computational Tractability 

The real-time performance of algorithm on the target MCU 
is straightforward to measure the computing complexity. After 
compiling, the target machine code size is 158 kilobytes, which 
is much less than the memory of MPC5554. The average 
calculation load rate is 25.83% for executing the proposed 
method. Therefore, the computational burden of the proposed 
method can be satisfied by the MPC5554-embeded MCU. 

The absolute CPU time per execution is straightforward to 
evaluate the computational tractability. The algorithms are 
tested on a laptop with 3.4 GHZ CPU and 32.0 G DRAMs, and 
the consumed CPU times are listed in Table V. Due to the lower 
computational complexity of RLS, the RLS-based method 
shows shorter CPU time than the former three methods utilizing 
the RTLS algorithm. By comparison, the proposed method 
needs 17.32% more time than its RLS-based counterpart. It is 
noted that the “SOC-based” method stands for the state-of-the-
art benchmark [19, 21]. Explicitly, in spite of the substantially 
improved fidelity, the proposed method has computational 
tractability comparable to the benchmarked methods. 
 

TABLE V 
COMPARATIVE RESULTS OF CPU TIME FOR DIFFERENT METHOD 

 Proposed 
method SOC-based NCM-MS RLS-based 

CPU Time 15.76μs 15.01μs 14.08μs 13.03μs 

E. Discussion 

The ISC fault is diagnosed in real time in this paper, instead 
of being predicted some steps ahead. The real-time estimated 
ISC resistance is informative to evaluate the present severity of 
ISC. It can also provide a pre-warning reference for the future 
possibility of triggering on the thermal build-up and much more 
serious thermal runaway. However, there lacks a direct method 
to predict accurately the future evolvement of ISC, which can 
be an important topic for the future work. 

The proposed method is affected by the battery temperature. 
First, the impedance parameters are linked to the temperature. 
This can be compensated by building a parameter-temperature 
dependence via look-up table or empirical equations [39]. 
Second, the SOC-OCV function is temperature dependent, 
which however can be addressed by building a multi-
dimensional map among the SOC, temperature, and OCV [40]. 
The proposed method can hence be extended easily to include 
the temperature effect in a similar manner.  

The proposed method can be theoretically generalized to 
other types of LIBs, provided that the battery dynamics can be 
modeled accurately. The widely-used LiNMC and LiFePO4 
batteries have been validated to be modeled accurately by the 
first-order RC model in use [41]. However, it is known that the 
LiFePO4 battery exhibits a flatter SOC-OCV curve [40]. This 
potentially causes a quasi-observable condition that may 
decline the SOC estimation accuracy. Considering that the SOC 
is a critical intermediate variable, it is expected that the 
proposed method, albeit applicable, will suffer from a drop of 
accuracy inevitably on the LiFePO4 battery. 

The proposed method is aimed ultimately to be embedded in 
a cell-level processor to enable developing the self-regulated 
smart battery. Particularly, each cell within the pack is devised 
with a cell processor for monitoring and controlling. In this way, 
the system management can be realized in a distributed fashion. 
The self-organized smart battery system can offer large 
superiorities of high modularity, high scalability, and enhanced 
fault tolerance. This emerging technique is also depicted in 
BATTERY 2030+ Roadmap of Europe.  

It is worth noting that the proposed method is also applicable 
to the widely-used battery management system, where the cell 
current and voltage are sent to the master or slave controller for 
monitoring and control. A challenge is the improved computing 
burden for diagnosing many cells simultaneously. There can be 
two solutions to mitigate this challenge. First, a slave controller 
can be devised for each battery module, so that the computing 
burden can be distributed to several affordable portions for 
localized diagnostic. Second, an extra screening can be added 
before using the cell voltage abnormality. The hierarchical 
scheme can largely lower down the computing burden.  

 

VI. CONCLUSION 

This paper proposes an aging-robust and disturbance-immune 
ISC diagnostic method for the LIB. The method incorporates a 
multi-state-fusion ISC resistance estimator and a RTLS-VF-
based bias compensator within a universal model-switching 
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framework. Simulations and experiments have been performed 
for validation in terms of the diagnostic accuracy, as well as the 
robustness to battery aging and noise corruption. The primary 
conclusions are summarized as follows: 

(1) The ISC diagnostic is robust to the battery aging. The ISC 
resistance is estimated accurately with the MAE confined to 0.5 
Ω and 1 Ω for the case of 10 Ω and 25 Ω ISC resistance.  

(2) The high diagnostic accuracy is rooted in the precise state 
estimate. It is validated that the SOC and ISC current have been 
estimated authentically with error of 0.617% and 0.3324%. 

(3) The proposed method outperforms the state-of-the-art 
techniques in the noise immunity. The MAE of ISC resistance 
estimation is constrained to 1 Ω when strong noises with 
standard deviation of 0.1 A and 4 mV corrupt the measurements. 
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