2588

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 69, NO. 3, MARCH 2022 %

Deep Deterministic Policy Gradient-DRL
Enabled Multiphysics-Constrained Fast
Charging of Lithium-lon Battery

Zhongbao Wei
Yang Li

Abstraci—Fast charging is an enabling technique for
the large-scale penetration of electric vehicles. This arti-
cle proposes a knowledge-based, multiphysics-constrained
fast charging strategy for lithium-ion battery (LIB), with a
consciousnhess of the thermal safety and degradation. A
universal algorithmic framework combining model-based
state observer and a deep reinforcement learning (DRL)-
based optimizer is proposed, for the first time, to provide
a LIB fast charging solution. Within the DRL framework, a
multiobjective optimization problem is formulated by penal-
izing the over-temperature and degradation. An improved
environmental perceptive deep deterministic policy gradi-
ent (DDPG) algorithm with priority experience replay is ex-
ploited to tradeoff smartly the charging rapidity and the
compliance of physical constraints. The proposed DDPG-
DRL strategy is compared experimentally with the rule-
based strategies and the state-of-the-art model predictive
controller to validate its superiority in terms of charging ra-
pidity, enforcement of LIB thermal safety and life extension,
as well as the computational tractability.

Index Terms—Battery health, deep deterministic policy
gradient (DDPG), fast charging, lithium-ion battery (LIB),
thermal safety.

[. INTRODUCTION

ITHIUM-ION batteries (LIBs) have gained rapid popular-
I J ity in electrified transportation due to their appealing fea-
tures of high gravimetric and volumetric densities. Associated
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with the fast and foreseeable growth of electric vehicles (EVs)
and LIB utilization, the past years have witnessed substantial
research on battery management system (BMS), such as state es-
timation [1], [2], health prognostic [3], [4], and fault diagnostics
[5], [6]. Charging of LIBs is recognized as a vital technology of
future prosperity of EVs. However, the pursuit of utmost charg-
ing speed risks the violation of critical physical limits companied
by the unexpected thermal/stress buildup and side reactions.
Direct consequences of this include efficiency reduction, quick
depletion, and even safety hazards in the most severe case.

Charging control has been a vast area of intensive studies,
incubating a myriad of methods that can be categorized broadly
into two groups. The first group is characterized with heuristic
rule-based strategies which are model-free and widely adopted
in real applications. Famous candidates include the constant-
current constant-voltage (CCCV) charging protocol [7] and
a variety of variants, such as the multistage constant current
(MCC) [8], multistage CCCV [9], and boost charging [10].
In spite of the low complexity, such methods are empirical
without sufficient insight into the battery dynamics and physical
constraints. Hence, such protocols are far away from optimality
with respect to the charging speed and the enforcement of battery
safety or longevity. This has motivated the exploration of the
second group of methods, i.e., model-based strategies.

Model-based charging has the merit of more guaranteed
optimality and higher robustness. The modeling techniques
for LIB, which underlies this type of strategies, include the
electrochemical model (EM) [11] and equivalent circuit model
(ECM) [12]. Based on a coupled electro-thermal (CET) model,
an optimized MCC strategy was proposed in [13], where the
thermal and polarization effects were well confined. In [14],
the CCCV strategy was optimized using a similar CET model
and a multiobjective evolutionary approach. Within the same
framework, the aging model was further incorporated to enable
the health awareness [15]. Such methods plan the charging
trajectory before the practical adoption via offline optimization,
thus they are named as trajectory generator in this article. It is
feasible to embed the trajectory generator into the BMSs, where
the user can select different charge patterns.

Unlike the aforementioned trajectory generator, model-based
online controllers optimize the charging behavior in real
time, and theoretically, they are most robust to the external
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disturbances. In particular, EMs were frequently used to describe
the complex dynamics inside the LIB, enabling health-conscious
fast charging control by either open-loop optimization [16],
or online approaches such as proportional-integral-derivative
control [17], nonlinear programming [18], or model predictive
control (MPC) [19]-[21]. However, the intractable computation
of nonlinear partial differential equations is a potential barrier
for their real-world applications. To mitigate this challenge,
a reduced-order EM was proposed to determine the limiting
current of LIB in [22], which is insightful to the realization of
fast charging control.

Compared to EMs, ECMs enjoy better computational
tractability, thus have been used for charge optimization comb-
ing the objectives of fastness, limited temperature buildup,
and health retention [23], [24]. Within similar frameworks, the
user-involved optimal charging was further achieved in [25]
by enabling the objective specification. Recently, a hierarchical
architecture combining ECM-based offline trajectory generator
with online path tracking controller has been proposed, which
allows a cost-effective charge control of both battery cells and
packs [26], [27]. Most recently, an ECM-based explicit MPC
controller was proposed for LIB fast charging, to reduce the
complexity rooted in the constrained optimization [28].

The model-based charging strategies have two major draw-
backs. First, they are sensitive to the accuracy of the battery
model, while an intrinsic paradox is that an improved accuracy
always compromises the computational tractability. Second,
even by using reduced-order models accounting only for the
lumped dynamics, the computation is still expensive due to
the need of nonlinear optimization. A fast charging approach
with the merits of both multiobjective optimality and online
tractability is thereby highly desired.

Reinforcement learning (RL) is an efficient machine learn-
ing approach used for solving a broad range of optimization
problems. Unlike the supervised/unsupervised learning, RL al-
gorithms give memorable feedback on the cost function and
search for the optimal solution automatically [29]. Attributed to
the end-to-end characteristic, a high potential can be expected for
the RL to be used on optimal charging control. The model-free
feature is also favorable for ruling out the model sensitivity
problem of model-based methods. RL-related studies have been
disclosed in the field of charging plan of plug-in electric cars
[30], vehicle charging station management [31], and the energy
storage arbitrage [32]. Nonetheless, RL-based EV charging op-
timization is still in infancy. The exploitation of RL in LIB fast
charging with thermal and aging consciousness has never been
attempted beforehand.

This article bridges the aforementioned gaps and proposes
a novel knowledge-based, multiphysics-constrained fast charge
strategy for LIBs. The strategy consists of an observer for state
of charge (SoC) and internal temperature joint estimation, and
a deep RL (DRL) controller for thermal- and health-aware fast
charging. Four primary contributions are made.

First, the DRL is introduced for the first time to solve the
LIB fast charging problem. A universal algorithmic framework
incorporating the model-based state observer and the learning-
based optimizer is proposed.

—

o

Coolant Convection

Temperature dependent parameter;

Fig. 1.

Electro-thermal model of A123 LiFePO, cylindrical battery.

Second, a multiconstrained least costly objective is formu-
lated by augmenting penalties for the over-temperature and
degradation to allow accounting for the thermal safety and life
fading of LIB during the charging control.

Third, an environmental perceptive, fast-converging deep
deterministic policy gradient (DDPG) algorithm, with priority
experience replay, is exploited to improve the performance of
multiobjective optimization in the formulated framework.

Lastly, unlike most of fast charging works that use real-time
simulation for validation, real-world long-term experiments are
performed to validate the proposed strategy more faithfully.

The contributions eventually give rise to a smart, thermal-
and health-aware fast charging strategy. To the best of our
knowledge, this is the first attempt to use machine learning
techniques for the fast charging of LIB.

The rest of this article is organized as follows. An electro-
thermal-aging model of LIB is presented in Section II. Section III
details the proposed DDPG-DRL strategy. Results are discussed
in Section IV. Section V concludes the article.

II. BATTERY MODELING
A. Electro-Thermal Modeling for LIB

A CET model is established, as shown in Fig. |, to pre-
dict the electrical and thermal dynamics of the investigated
A123 LiFePOy4 cylindrical battery. The model comprises a
second-order RC model and a two-state thermal model. In
terms of the electrical model, the voltage source describes the
SoC-dependent open-circuit voltage, while R is the ohmic
resistance. The two RC branches simulate polarization effects
including charge transfer, diffusion, and passivation layer effect
on electrodes. The governing equations of the second-order RC
model are given by

dSoC(t)  I(1)

dt 36000, M
dVpi(t) Vi (t) 1(t)

i Rp)Cn(t) T Cp(t) @
Wlt) V() 1)

& Bp()Cp(t) T Cpalt) )

Vi(t) = Voo (SoC, £) + Vi (£) + Vi () + Ro (1) I(£) (4)
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TABLE |
DEPENDENCE OF PRE-EXPONENTIAL FACTOR TO C-RATE

c 0.5 2 6 10
B(c) 31630 21681 12934 15512

where I is the load current, V; is the terminal voltage, C, is
the nominal capacity of the battery, and V},; and Vo are the
polarization voltage across the two RC branches.

The thermal-energy conservation principle defines

A T M) M) Ty 5
d R, R.C,  RC,  R.C.
dT,(t)  (Co—C. 1 C.-C,
i <RCOCCS 2Ru05) LW+ g, T
Hi) T
2C, ' 2R,C, ©

where T, Ty, and Ty are battery surface, internal average,
and ambient temperature, respectively, . and R,, are thermal
resistances due to the heat conduction inside the battery and
the convection at battery surface, C. and C are equivalent
thermal capacitances of the battery core and surface. H is the
heat generation rate.

Specifically, the heat is generated from three sources, i.e., the
ohmic heat, polarization heat, and the irreversible entropic heat.
The heat generation rate can be calculated by

H(t) = 1(t)[Vpi(t) + Vpa(t) + Rs(t)I(t)]
+ I(t)[Ta(t) + 273 B, (SoC, ) )

where FE, denotes the entropy change during electrochemical
reactions. Subsequently, the core temperature is given by

To(t) = 2T.(t) — T, (t). @®)

The employed model is widely explored in the literature, and
thus the values of involved model parameters are not elaborated
herein for briefness. However, more details can be referred to
[33], where the calibration environment, protocols, and results
are given systematically.

B. Aging Model of LIB

The energy-throughput-based model has been well validated
for the A123 LiFePO4 (26650) cylindrical battery in use [34],
thus is used to quantify the capacity loss herein. The throughput
model assumes the LIB can withstand a certain amount of charge
flow, equivalent to cycles of charge and discharge, before it
reaches the end-of-life.

The C-rate (c) and battery internal temperature have large
impact on the capacity fade. The Arrhenius equation-based
capacity loss is given by

R - Ah(c)® ©)

where AC), is the percentage of capacity loss, B the C-rate-
dependent pre-exponential factor which can be referred to Ta-
ble I [34], R the ideal gas constant, z the power-law factor equals

TABLE Il
ALGORITHMIC PROCEDURE OF EKF

Initialization: Xy, Py, 2\, 2,
Of (x(k =1),u(k 1))
ox ’

G, - Oh(x(k),u(k))

Definition: F, =
0x

fork=1,2, ...

Prior state update: %(k) = f(x(k—1),u(k—1))

Prior error covariance update: P, =F,P_F! +%_

Kalman gain update: K, = G, (G.BG. +%,)"

Posteriori state update: x(k) = X(k) + K, (z(k) — g(%(k),u(k)))

Posteriori error covariance update: P, = (I — K,G,)P,

to 0.55, Ah the accumulated ampere-hour throughput, and E,,
the activation energy (J / mol) defined by

E,(c) = (31700 — 370.3 - ¢). (10)

LIBs reach the end-of-life when C), drops by 20%. Being
aware of this, and referring to (9), Ah and the total cycling
number before reaching the end-of-life (/V) can be derived as

_E“(C)ﬂ T

Ah(e,T,) = {20 / Ble) 'exp< RT,

N (¢, T,) = 3600Ah (c,T,)/Ch. (12)

Afterward, the drop of state of health (SoH) under multiple
stresses is given by:

[k |At

ASoH,, = — — k20
SoHy, 2N, (c, T,)Ch,

(13)
where At is the lasting time of current.

[ll. FAST CHARGING STRATEGY

The proposed charging strategy is comprised of a model-
based observer used for estimating the unmeasurable states
of LIB, and a DDPG-DRL optimizer for online charging
control. The involved sub-algorithms are elaborated in this
section.

A. State Observer

A model-based state observer is devised to estimate the
unmeasurable SoC and T, and thus enable the state-feedback
control framework. The electro-thermal functions (1)—(8) are
utilized to build a state-space model, where the state variables
are Vp1, V2, SoC, T¢, and Ty, the system input is I, while
the system outputs are V; and Ts. Considering the nonlinearity
of the system, an extended Kalman filter (EKF) is used to
design the state observer in this article. The algorithmic pro-
cedures of EKF are summarized in Table II [35], where X,
and X, are the covariance matrix of process and measurement
noises.
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TABLE IlI
HYPERPARAMETERS USED FOR THE PROPOSED DDPG-DRL STRATEGY

Parameter Description (unit) Value
Ne Experience pool size 384000
M Training total steps 500000
T Maximum episode length (s) 2000
Np Minibatch size 128
re Initial learning rate (policy network) 0.001
Ire Initial learning rate (value network) 0.002
y Discount factor 0.99

T Soft updating factor 0.01

B. Optimization Problem Formulation

It is favorable that a charging solution can make an optimal
balance among conflicting objectives of charging rapidity, ther-
mal safety, and life extension. In this article, the optimal control
is realized by minimizing the following cost function:

Ji = w1Csoc + w2Clolt + W3Cheat + WiCsoh + W5Csmooth
(14)
where wy, wa, w3, wy, and wy are weights describing the impor-
tance of different targets.
Csoc describes the charging time and is given by

Cooc = |Soctar - SOCt| (15)

where SoC; and SoCy,; denote the present SoC and the target
SoC at the end of charge. The RL agent sets the expectation on
overall rewards with respect to future time steps as its objective.
Hence, this term means that an action suppressing this deviation
(high current) will be awarded, while a conservative action
causing large deviation (low current) will be penalized. In this
way, the RL agent is guided to pursuit high charging currents
during the training, and thus shortens the charging time.

Chols and Cheat denote the safety-violating cost with respect
to over-voltage and over-temperature of LIB. Particularly, the
terminal voltage and internal temperature of LIB are desired to
be controlled below a specific threshold. Using hard constraints
potentially disrupt the exploration process of DRL considering
the high possibility of constraint violation. Therefore, the fol-
lowing soft penalties are instead employed:

0 if ‘/tarflow < ‘/t < V:carfupp

Cyolt =4 T1 ‘V;E - Vtar_upp| if V, > Vtar_upp (16)
T1 “/t - War_low| if Vt < ‘/tar_low
0T, < Tiar
Cheat N {TQ |Ta,t - Ttarl 1f Ta,t 2 Ttar (17)

where Vi, Viar_upp»> and Viar 10w are the present, upper and lower
limit terminal voltage, respectively, T, ; and T}, are the present
and upper limit internal temperature of LIB, respectively. The
over-voltage should be avoided to ensure the safety of LIB in
practical applications. Hence, a large weighting factor (three
order of magnitude higher than the rest) is used for ws to ensure
a compliance to the voltage constraint without overshooting.
Cson denotes the aging cost of LIB given by

Csoh = T3 ‘ASOHH (18)

where ASoH; is the drop of SoH as a consequence of the present
control action. Note that 7y, 7o, and 73 are transition coefficients
enforcing Cyolt, Cheat, and Csop dimensionally comparable to
C’soc-

The charging current is desired to be controlled smoothly in
real applications. In this regard, Cgpo0tn describing the cost of
control effort is given by

C’smooth - ‘It - Itfll . (19)

C.Improved DDPG Algorithm

Derived from the actor-critic structure, the DDPG algorithm
is devised with two deep neural networks, i.e., a value (critic)
network @ and a policy (actor) network u. The policy-network
behaves as an actor to map the state-space composition to a
continuous action ¢, while the value-network behaves as a critic,
which timely evaluates the policy function’s performance and
gives feedback for improvement. Target networks Q" and p’ are
used to track the original @ and p network, so as to mitigate
the effect of incorrect evaluation. Note that the target networks
possess the same structures and initial weights, yet update the
network parameters more robustly.

The determination of action of DDPG in a specific timestep
t considered both exploration and the inherent policy, which is
given by

a; = p(s¢|0*) +ee ~ N (20)

where s; is the state space, and 6* is the parameters of network
1, and € is the Gaussian noise, which exists only in the training
stage.

Since the policy is determined in the training stage, the
principles of offline training are clarified hereafter. The policy
evaluation is performed based on the Bellman’s principle as

Q" (st,ar) = Elr(se, ar) + vargmax(Q* (sir1,ai+1))] (21)
@t
where Q* denotes the optimal value function, r the single-step
reward and ~ the discount factor.

Equation (21) reveals that the optimal evaluation of present
composition of states and actions can be obtained recursively. It
is expected that the deep networks @ and Q' can approximate
this iterative task accurately. To realize it, the updating error of
value network () can be calculated by

Lq(t]69)

= [(T(Stvat) +9Q (51415 ar11 |09) — Q(s4, 4y |0Q ))]2

(22)
o)

a1 = N/(St (23)

where the first two terms in (22) denote the expected () value
referring to (21), and the last term refers to the actual output
of current value network. In this way, the squared error can
be obtained, and the gradient-descent updating method can be
performed to improve the policy evaluation ability.

An ideal value network is expected to output the accurate
evaluation of policy, so that the actor network can adjust its
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policies accordingly to discard the actions with bad @ value
feedback. Therefore, the performance objective of policy net-
work, represented by ®, can be defined as

$(0u) = E[=Q(s1, u(s1))]

where F(-) denotes the expectation operator.

The policy network keeps updating itself towards the direction
of promoting the performance objective. Therefore, the updating
error can be expressed as the gradient of objective with respect
to network g

L (t0") = Voud(0") = VaQ(st, u(se) |09 ) Vou pu(se [0M).

(25)

A soft updating strategy is adopted for the target networks Q’
and 4/, given by

(24)

0% + 709 + (1 — 7)0%

0" ror + (1 7)0 (20)

The experience replay method is further adopted for the
DDPG algorithm to avoid the back-forth correlation of trained
networks. Different from the simple random sampling adopted
by conventional DDPG, the improved DDPG algorithm endows
the importance weights to experience sample. This mechanism
is inspired from the fact that the highly rewarded or painful
experiences are more informative than the plain ones. The
experience replay method, which emphasizes those impressive
experiences, is hence expected to improve the efficiency and
stability of learning.

The probability of the sampled experience j can be described
as

Pj = Dj /(3 Dy)

D; = 1/rank(j) 27

where >, () denotes the total index in the experience pool, and
« is the hyperparameter to determine priority degree, ranging
from O to 1. Lower « tends to uniform sampling of conventional
DDPG, rank (-) is the importance degree of a set of experience,
which can be calculated by

rank(j) =/ Lq(j)-

By adopting the experience replay, those experiences causing
more significant changes to the policy evaluation will be as-
signed more weights, and therefore, are more likely to be chosen
and replay in the training process.

(28)

D. Continuous DRL-Based Charging Control

To solve the optimization problem suggested by (14) in the
continuous DRL framework, the reward function has to be
expressed alternatively by

T(5t7at) = fnor(b - Jz)

where b is a user-defined bias to adjust the range of reward
function, and f,,(-) denotes a sigmoid-based normalization
function, which contributes to consolidating the physical vari-
ables into a unified range of [—1,1].

(29)

(@) DRL
Actor Critic
EKF-based Optimizer
State observer
\ Update 0% Updnleﬂql 1'-«0)
Sensors s~ G LIEAD) Value
V(50 1(5)10%)) L0
= Qs (i |
1 t Soft update | 6" Soft update | 0%
Value Target
(Se41) 7
Battery ” e %
T ta'(s....u%s.‘.)le"’)
{86, 70, Se41}
Experience - Np*{spa;7i 50}
Replay Buffer  Priority
sampling
b
EKF-based
Battery State observer DRL
t
— Sensors
% state variables
St
4 charging current
a
Fig. 2. Implementation of the DDPG-DRL fast charging strategy. (a)

Training process and its principles. (b) Real-time application process.

In this article, the state space is defined as

S = {SOC, fnor (Tc) ) fnor (V;«)}

where V; is directly measurable, while SoC and 7, can be
estimated online using model-based observer in Section III-A.

The DDPG-DRL strategy is expected to control the charging
current in a continuous manner, thus the action space can be
defined as

(30)

A= {ct|er € (0,6C) } 3D

where the upper limitation of 6C is determined based on the
specification of the investigated LIB.

With the afore-defined reward function, state and action space,
the architecture of the DDPG-DRL fast charging strategy has
been put forward. Particularly, the diagram of the DDPG-DRL
strategy is shown schematically in Fig. 2, while the associated
hyperparameters are listed in Table IIl. For clarity, the proce-
dures of training and real-time implementation are detailed in
Tables I'V and V, respectively.

[V. RESULTS AND DISCUSSION
A. Validation of Battery Modeling

The A123 26650 LIB cell is cycled with 2C, 4C and, 6C
using Arbin testing system, which consists of the programmable
electrical load and power supply. The ranges of sensors are 10
A and 5 V, while the error limits are both within 0.05%. The test
cell is placed in a programmable thermal chamber to control
the ambient temperature at 25 °C during the experiment. At the
same time, three thermocouples are attached to different surface
locations of the cylindrical cell along the axial direction, and the
averaged readings of them are treated as the surface temperature.
The modeled battery terminal voltage and surface temperature
are plotted against their experimental benchmarks in Fig. 3. It
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TABLE IV
TRAINING PROCEDURE OF DDPG FAST CHARGING STRATEGY

TABLE VI
MODELING ERRORS AT DIFFERENT C-RATES

DDPG-based ageing- and heating- aware fast charging algorithm

1. Inputs: initial policy parameters 6% and 6", value parameters 8¢ and
69, empty experience replay buffer D.
2. While epoch < threshold:
Initialize the battery model.
While not terminate:
Obtain the state space S,, which is consisted of normalized state
variables s, from the battery model.
Select action a = u(s,) + &, mapping the action into the expected
charging current /;.
Execute the I, in the battery model.
Observe next state s, 1, reward 7,
Store transition {s;, a;, 13, @41 } in the priority experience buffer D.
Retrieve a batch of transitions, B = {s;, a;, 1}, S;41} from D according
to the probability of the priority experience mechanism.
Update the value network with:

. 2
Lo(t169) = [(T(S:rat) + YQ’(St+1rat+1|9Q) = Q(se atIGQ))]
Update the policy network with:

L, (t16%) = Voup(6*) = V,Q (51, k()10 ) Vgnp(s,16*)
Update the target networks with:
0% «16%+(1—-1)6¢
O «1o* + (1 —1)6"
If 5,44 triggers the episode terminated condition:
epoch = epoch + 1
3. Save parameters of the policy network 6* for real-time applications.

TABLE V
REAL-TIME CONTROL PROCEDURE OF DDPG FAST CHARGING STRATEGY

DDPG-based ageing- and heating- aware fast charging algorithm

1. Construct the state observer, config the input/output of the LIB system.
2. Load the trained parameters of the policy network of the DDPG agent, set
constrained thresholds for the input/output variables of the policy network.
3. While not terminate:

Send the state variable of the present time step s, to the policy network

Obtain the network’s output of the present time step a,.

Map the network’s output into the expected charging current /,.

Check if the termination condition is satisfied.

> >

T T

op-- )

8 8

S —2C ChargModel| ©
2 3 0 2C Charg Exp. | =
£ ——4C ChargModel| £ v

E 2.6 © 4C Charg.Exp. E 2.6 ===2C Charg.Model © 2C Charg.Exp.
5] g === 6C Charg.Model o ===4C Charg.Model © 4C Charg.Exp.
= 25 0 6CCharg.Exp. | 55 = 6C Charg.Model © 6C Charg.Exp.
0 500 1000 1500 0 500 1000 1500
Time(s) Time(s)
34 (C) j===2C Charg.Model 34 (d) ===2C Charg.Model

G © 2C Charg.Exp. %) © 2C Charg.Exp.
s 32 ===4C Charg.Model s 32 ===4C Charg.Model
& &

e O 4C Charg.Exp. e O 4C Charg.Exp.
g 30 = G6C Charg.Model g 30 ——6C Charg.Model
5 0 6C Charg.Exp. 5 © 6C Charg Exp.
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24 24

0 500 1000 1500 0 500 1000 1500
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Fig. 3. Results of model validation: terminal voltage of (a) charge, and
(b) discharge, surface temperature of (c) charge, and (d) discharge.

is shown that the modeled results resemble the ground truth
closely at different C-rates. The corresponding statistical errors
are summarized in Table VI. The observed low modeling errors
validate the high fidelity of the presented model for describing
the electro-thermal dynamics of LIB.

Terminal voltage (V) Surface temperature (°C)

2C 4C 6C 2C 4C 6C
MAE 0.0199 0.0294 0.0146 0.150 0.080 0.260
RMSE 0.0297 0.0349  0.0242 0.164 0.102  0.296
(a) -02 (b) 1.04
k= % 1.02
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Fig. 4. Indicators of training for each episode. (a) Average reward. (b)
End SoC. (c) Average terminal voltage. (d) Average cell temperature.

B. Validation of Training Process

The training performance as a key measure of the proposed
DDPG-DRL charging strategy is evaluated in this section. The
episodic average reward value is illustrated in Fig. 4(a). Ex-
plicitly, an increased reward value implies the improvement
of trained charging strategy from the optimality point of view.
The physical indicators are depicted in Fig. 4(b)—(d) for further
validation. It is shown that the mentioned early termination
is attributed to the overcharging, i.e., the end SoC exceeds
the upper threshold. As the training proceeds, the end SoC is
suppressed towards the target SoC, which reveals the compliance
to the constraints. Meanwhile, the terminal voltage and battery
temperature are both confined to reasonable levels. All the results
have validated the convergence and potential feasibility of the
trained policy.

C. Thermal and Health-Conscious Validation: Simulation

The proposed strategy manifests itself with the LIB over-heat
protection and life extension by penalizing the high temperature
and degradation in the cost function. To justify this merit, it is
compared with a baseline strategy, i.e., its counterpart without
thermal and health constraints, while the other configurations
are kept consistent. To rule out the effect of model uncertainty
and give a theoretical validation, the strategies are carried out
in a simulation environment herein. In particular, the presented
electro-thermal-aging model is used as a “virtual battery” and
implant to the OPAL-RT real-time simulator, while the strategies
are executed with the embedded processor. It is shown that the
occupied execution cycle is only 5.45 us, and no overrun is
reported, which validates the real-time tractability.
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The comparative results are shown in Fig. 5. It is shown that
the proposed strategy needs 699 s to charge the LIB to the target
SoC, which is 4.43% longer than using the baseline strategy.
The more conservative charging is rooted in the restriction of
charging current to ensure the expected thermal and degradation
performance. As shown in Fig. 5(c), the internal temperature of
LIB increases to over 45°C by using the baselined strategy. In
contrast, the proposed strategy keeps the internal temperature
well below the defined threshold. This is within expectation as a
high temperature introduces extra “cost” by the penalty imposed,
while an excessively low temperature compromises the charging
speed inevitably.

A long-term simulation consisting of 1000 charging cycles
is performed to evaluate the proposed strategy in terms of
battery life extension. The SoH drops by using different strate-
gies under different surrounding temperatures are illustrated in
Fig. 6. Three conclusions can be drawn. First, as expected,
the degradation accelerates with elevated temperature, due to
the enhanced aging modes like the SEI growth. Second, the
proposed strategy suppresses the aging rate compared to the
baseline strategy, attributed to the penalties to over-temperature
and quick degradation. Third, the antidegradation potential of
the proposed strategy becomes more prominent with the rise
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Fig. 7. Comparison of the proposed strategy with CCCV strategies. (a)

Current. (b) SOC. (c) Terminal voltage. (d) LIB core temperature.

TABLE VI
COMPARISON OF CHARGING SPEEDS FOR DIFFERENT STRATEGIES

DDPG- _ 2C 4Cc 6C
Strategy DRL ccev ccev ccey MPC
To 80% SOC,s 475 1515 743 490 521
To 90% SOC,s 554 1703 836 552 608
Fully charge,s 926 2283 1297 914 1054

of surrounding temperature. It can be inferred that within a
colder environment, the temperature rise is not sufficient to
trigger the over-temperature penalty, so that the difference is
hardly observable. In contrast, the temperature easily breaks the
upper limitation under a relatively high temperature like 40°C.
In this case, both the two penalizing mechanisms in the proposed
strategy take effect, leading to a superimposed, and thus, stronger
effect of antidegradation.

D. Comparison of Strategies: Experimental Validation

This section goes further to compare the proposed strategy
with the state-of-the-art benchmarks, i.e., the rule-based and
model-based ones. It is worth noting that the model mismatch
can decline the performance of the proposed strategy in prac-
tice. The strategies are hence applied on real-world batteries
for experimental validation. The validation environments are
consistent for different strategies to ensure a fair comparison.

The CCCV charging as a rule-based strategy is most-widely
used in practical applications. The experimental charging results
by using 2C, 4C, and 6C CCCV strategies and the proposed
strategy are shown comparatively in Fig. 7. The time consumed
to charge the LIB to different charge levels, i.e., 80%, 90% SoC
and fully charge, are summarized in Table VII. With respect
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to the CCCV strategies, it is explicit that a tradeoff always
exists between the charging speed and the threshold compliance.
Although the 2C CCCYV strategy ensures a favorable thermal
condition, its charging is much slower than the other strategies.
As the CC rate increases to 6C, the charging time has been
reduced largely. However, the accelerated charging is at the
expense of over-temperature, which is unfavorable from the
safety and longevity point of view. It is hence concluded that
the CCCYV strategy is far from optimality, since it fails to control
the charging smartly to fulfill multiple objectives.

By comparison, the DDPG-DRL strategy shows to manage
the tradeoff smartly. It is shown that the estimated internal
temperature of LIB is well confined to the threshold of 45°C,
which is quite similar to the case of 4C CCCV strategy. However,
its charging time is 36.7%, 33.7%, and 28.6% shorter than the
4C CCCYV strategy for the three end charging points. Compared
to the 6C CCCV strategy, the charging time is quite approaching,
but the risk of battery over-heat is strictly avoided. Overall
speaking, the proposed DDPG-DRL strategy succeeds to find
a balanced solution between the 4C and 6C CCCV strategy
by accounting for conflicting objectives of both the charging
rapidity and the physical constraint compliance.

The MPC as a typical model-based optimization method is
further compared with the proposed DDPG-DRL strategy, and
the experimental results are shown in Fig. 8. It is shown that the
charging currents given by the two strategies follow a similar
trajectory, i.e., maintaining at the highest allowable value at early
stage while heading downwards as the charging proceeds, to
keep the critical variables within expected ranges. As seen from
Table VII, the charging speed is similar for the two strategies.
Moreover, the LIB internal temperature is controlled well within
the imposed thresholds for both of the two strategies. It is

TABLE VIl
SOH DROPS FOR 100 CHARGING CYCLES USING DIFFERENT STRATEGIES

SOH drop DDPG-DRL MPC 6C CCCV
Experimental 0.88% 0.86% 1.01%
Calculated 1.21% 1.17% 1.27%

worth noting that the MPC gives a more conservative solution,
witnessed by the under-shot temperature against the threshold
of 45°C and the slightly longer charging time. This is more
likely caused by the model mismatch which distorts the control
trajectory to some extent compared to the ideal condition. Such
slight deviations, however, cannot promise any virtual difference
of the two strategies. It is thereby validated that the DDPG-DRL
strategy performs equivalently with the state-of-the-art MPC
strategy. Despite the similar optimality, the online tractability
of DDPG-DRL strategy is much more favorable than the MPC,
which will be discussed in detail in following sections.

Long-term cycling experiments are further performed to eval-
uate the health-conscious properties of different strategies. The
candidates for comparison herein include the 6C CCCV, MPC,
and DDPG-DRL strategy. The selection is made based on the
fact that, these strategies share similar charging speeds, thus the
difference in health degradation rate can be a strong measure of
their optimality. Specifically, the strategies are applied on real-
world batteries for charging, while a consistent 0.3 C discharge
is applied to deplete the LIB. The described cycles are repeated
to observe the causal effects of different strategies on the battery
degradation.

The results of LIB capacity fade using different strategies
are summarized in Table VIII. Explicitly, the experimental and
calculated SoH drops disclose a consistent trend over different
strategies, albeit an average deviation of 0.30% exists between
the modelling and experiment due to the intrinsic error of aging
model. The observed error is acceptable as the highly nonlinear
aging path of LIB is extremely difficult for accurate modeling.
From the health-conscious point of view, the proposed strat-
egy and MPC show lower degradation rates, attributed to the
well-constrained temperature and C-rate. By comparison, the
6C CCCV strategy incurs vastly faster degradation. Specifically,
the proposed strategy can elongate the LIB life time by 14.8%
compared to the 6C CCCV strategy when the charging speed
is approximately equivalent. The faster LIB degradation under
6C CCCV mode can be explained by that the aging-dependent
stress variables have been left unregulated.

To attest this conjecture, the operating points distributed in the
aging severity factor map are plotted comparatively in Fig. 9(a).
It is shown that the operating points are more likely distributed
at the upper right quarter of the map with high aging severity
by using 6C CCCV strategy. By observing the boxplot of severe
factorin Fig. 9(b), the 6C CCCYV strategy gives rise to an average
severe factor of 5.46, while the highest severe factor reaches
up to 7.88. By comparison, the DDPG-DRL and MPC strategy
control the average severe factor at 5.15 and 5.13, respectively,
suggesting a much-relieved aging stress. These results reveal the
distinct aging paths of LIB, which is the underlying reason of
life extension of the proposed strategy. In summary, the slower
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Fig. 9. Comparison of antiaging performance. (a) Operating points
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aging with similar charging speed well supports the superiority
of DDPG-DRL and MPC strategy.

Since the training of strategy is based on the built electro-
thermal-aging model, any model mismatch can be transferred
to the optimality of strategy. Therefore, meticulous model pa-
rameter calibration should be performed before the training to
provide a mathematical guarantee on the control performance.
With respect to the present case, moderate model deviations can
be observedin Fig. 3 and Table VI due to the errors of parameters.
In accordance, evident differences exist between experimental
results (Figs. 7 and & and Table VIII) and simulation results
(Figs. 5 and 6). However, the practical control validates to
guarantee an expected performance in the charging rapidity, as
well as the thermal and health protection. In the severest case,
slight constraint violation can occur due to the model mismatch,
but this can be easily corrected by pre-set rules to comply better
to the constraints.

E. Computing Complexity

The computational complexity is critical to evaluate the fea-
sibility of strategies in practical applications. The counting of
floating-point operations is known as a crude method to measure
the order of computational complexity via the big-O-notion.
In this regard, the MPC controller has cubic complexity con-
sidering the need of matrix multiplication and inversion. The
multistep optimization task within the control horizon further
aggregates the numerical complexity. By comparison, the vast
majority of computing cost of DDPG-DRL strategy comes from
the offline training stage, where the latent mapping between state
space and control policy is built and the time consumption is
not critical. Once trained successfully, the DDPG-DRL strat-
egy involves only computationally easy matrix manipulation
within the neural networks, which enjoys linear computational
complexity. Therefore, in spite of the time-consuming training,
the practical implementation of DDPG-DRL strategy is quite
tractable.

Alternatively, the absolute CPU time per algorithmic step is a
more direct measure of the computational complexity. Tests are
hence performed on a laptop with a 2.30 GHz CPU and 16 GB
DRAMs. The CPU times for performing the two strategies are
shown in Table X It is shown that the CPU time consumption of
the DDPG-DRL strategy is three orders of magnitude lower than

TABLE IX
CPU TIMES BY USING DIFFERENT STRATEGIES

DDPG-DRL strategy
297.2 us

MPC-based strategy
195.5 ms

CPU time

that of the MPC controller, suggesting an overriding superiority
of the DDPG-DRL strategy in terms of real-time tractability.

It should be noted that a lumped electro-thermal model is
used in this article, and accordingly, only the SOC, polarization
voltage and temperature are involved in the state space of MPC
controller. Nevertheless, a full consideration of other physical
states, like the side reaction potential, solid/liquid phase Li™
concentration at both electrodes, etc. are demanded for the
advanced control of LIB. In this case, a high-order physics
model with drastically expanded state space has to be used, and
thus, the feasibility of MPC controller becomes questionable
considering its cubic complexity. In contrast, the DDPG-DRL
strategy is expected to still keep an affordable computing cost
thanks to its linear complexity. The application of the proposed
strategy associated with more complex physics models will be
an interesting topic for future investigation.

V. CONCLUSION

A DRL-based strategy was proposed for the thermal- and
health-conscious fast charging of LIB. A multiobjective opti-
mization problem was formulated by penalizing the LIB over-
temperature and degradation. Further, an improved environmen-
tal perceptive DDPG algorithm with priority experience replay
was exploited to smartly tradeoff the charging rapidity and the
compliance to physical constraints. The major conclusions are
summarized as follows.

1) The DDPG-DRL strategy validates to fully charge the
LIB in 926 s without violating the physical constraints.

2) The CCCV strategy either slows down the charging or
recurs the over-heat and quick wear of LIB. Compared to
the 6C CCCV strategy, the DDPG-DRL strategy extends
the LIB life time by 14.8% with an equivalent charging
speed.

3) The DDPG-DRL strategy performs equivalently with the
state-of-the-art MPC controller in the charging rapidity
and the compliance to physical constraints. However,
the three orders of magnitude lower computational com-
plexity promises a much better potential for real-time
utilization.
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