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Abstract: A computationally-efficient and reliable method is developed to permit the simultaneous assessment of both the short- 
and long-term performance of lithium-ion battery in power system planning studies. Toward this end, a physics-based equivalent 
circuit model of the lithium-ion battery is derived in which side reaction-induced degradation of the battery is included. Whence 
a computational procedure is developed to enable the parametric values of the circuit elements in the equivalent circuit model to 
be automatically updated as the battery operates. The resulting model allows the increase in the internal resistance and the decrease 
in the energy storage capacity of the battery to be determined, based solely on the information of the power flows at the battery 
terminals. Dynamic simulation results obtained using the developed equivalent circuit model are shown to be in close agreement 
with those obtained from well-established electrochemical models, but at a much reduced computational burden.  
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1. Introduction

Battery energy storage is increasingly being recognized as
essential for modern electric power systems which contain 
significant amount of renewable generation. Of the various 
types of battery, lithium-ion (Li-ion) battery has become the 
most prominent candidate in such application [1] [2]. A case 
in point is the 100-MW/129-MWh Li-ion battery energy 
storage system (BESS) which operates in conjunction with the 
315-MW Hornsdale wind farm in South Australia [3].
Renewable generations, such as that based on wind and
sunlight, tends to be uncertain and can seriously compromise
the security and reliability of power supply as a result [4]. The
role of the BESS is to alleviate such undesirable impacts on
the power systems, and the BESS have to be judiciously
designed at the planning stage so as to comply with stipulated
technical and economic requirements [5].

System-level design of the BESS usually involves two 
aspects. First, operational planning is the strategization of the 
short-term (from several hours up to several days) power flows 
at the BESS plant terminals and the design of 
charging/discharging pattern of the BESS. Various approaches 
to BESS design have been developed aiming to achieve such 
short-term control objectives as power smoothing, peak 
shaving, and/or dispatch scheduling. In [6], a BESS control 
strategy and the real-time power allocation method have been 
developed for photovoltaic and wind generation by modifying 
the smoothing target according to the monitored BESS state of 
charge. To enable the renewable generators to emulate the 
ability of the traditional thermal units in providing reliable 
power dispatch, operational strategies based on feedback 
control [7], model predictive control [8], and rule-based 
control [9] have been proposed, the purpose of which is to 
minimize the generation schedule tracking error. The short-
term dispatch schedule for a dual-BESS scheme has been 
studied in [10] for a wind farm, with the objective to minimize 

the number of the switch-over between the two battery banks. 
In these works, the storage capacity and power rating of the 
BESS have been assumed known a priori. On the other hand, 
the aspect of battery sizing is to determine suitable BESS 
energy storage capacity and power rating during the design 
and planning stage of the BESS. The aim of the study is to 
ensure the long-term (say, several years) technical and 
economic requirements imposed on the BESS can be met. As 
the design objective for short-term operation affects the results 
of battery sizing study, the above-mentioned two aspects of the 
BESS design have to be considered simultaneously. Toward 
this end, the BESS design can always be formulated as a 
system-level optimization problem, with some form of cost-
benefit analysis. For example: the dispatch strategy and BESS 
capacity are determined by maximizing a defined service 
lifetime/cost index, so that the short-term dispatchability of a 
wind farm is achieved [11]. On the other hand, by treating the 
BESS as a power smoothing device or as an energy buffer to 
be utilized to reduce the degradation on the quality of 
electricity supply due to the uncertain renewable sources, the 
optimal BESS capacity can be determined using a cost-benefit 
analysis, as has been done in [12]. A variable-interval 
reference signal optimization approach and a fuzzy control 
charging/discharging scheme are proposed in [13] for BESS to 
smoothen the generated wind power, and the optimal BESS 
capacity is determined by minimization of the BESS 
annualized cost. In [14], the optimal planning of distributed 
BESS in active distribution networks has been investigated 
with the consideration of reactive power support and short-
term network reconfiguration, the optimal power/energy 
capacities and location has been obtained using mixed-integer 
second-order-cone programming. The optimal placement, 
capacity and operation of BESS in conjunction with high 
penetration of photovoltaic in distribution network has been 
studied in [15] to effectively limit the voltage rise. A method 
to maximize the profit of wind farm is presented in [16] to 
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incorporate BESS, and the optimal BESS design is obtained 
using dynamic programming. A statistical approach to 
determine the capacity and the charging/discharging strategy 
for battery-supercapacitor hybrid storage system is discussed 
in [17], with the aim to achieve a dispatchable wind farm. 
Operational planning for a wind‒battery system is carried out 
in [18] using a modified min-max dispatch method. A 
coordinated operational dispatch and capacity determination 
scheme for a BESS-wind farm is proposed in [19], with the 
view to mitigate the fluctuation and stochastic nature of the 
wind resources through changing the wind farm output power 
reference value between the optimistic and pessimistic 
forecast scenarios. Based on Sequential Monte Carlo 
simulation technique, a wind farm incorporated with BESS is 
designed in [20] to track the generation schedule while the 
optimal BESS capacity and control strategy is studied by 
considering the real-time pricing of electricity in [21]. In all 
these works [11]-[21], precise prediction of the lifetime of the 
battery has been considered an important long-term factor for 
the economic evaluation. One common concern pertaining to 
the aforementioned works is that empirical measurements of 
battery lifetime, such as that based on maximum cycle number 
or Ah-throughput, have been used to predict the BESS end-of-
life (EOL). Unfortunately, these relatively simple battery 
lifetime determination methods have not been proven to be 
entirely reliable for Li-ion based batteries. This is because the 
degradation of the batteries are known to be dependent of the 
potential, current direction, current magnitude, depth of 
discharge, temperature, amongst other factors [22], [23]. 

Furthermore, the optimization procedure referred to in the 
planning studies requires BESS model which is able to 
accurately predict both the short- and long-term battery 
performance, but at acceptable computational burden. As 
befitting the short-term role of energy buffer, the amount of 
the energy stored in the BESS is often evaluated, subjected to 
hard constraints such as the BESS energy capacity and power 
rating [20]. In this connection, the BESS dynamic behavior 
can be studied using battery equivalent circuit models (ECMs), 
as has been done in [6]-[10]. The main reasons for using this 
type of empirical models are that ECMs are intuitive to the 
researchers in the field of electrical engineering, while the 
short-term battery performance can be readily analyzed using 
well-established circuit theory. Additional constraints such as 
applied current and terminal voltage limits can be readily 
included, as part of the optimization design procedure. 
Unfortunately, as the capability of Li-ion battery to efficiently 
store or release energy reduces with battery usage, the 
degradation of BESS performance has to be included. 
Although for online control purpose, the parametric values of 
the circuit components in the ECMs could be adjusted to fit the 
observed battery performance, this approach requires complex 
set of data to be extracted from laboratory experiments or 
staged tests [24]. The suitability of such an approach to battery 
modeling at the planning study stage of the BESS is doubtful 
because the experimental or staged test conditions can be 
significantly different from that encountered in the field [25].  

In contrast to the ECM and based on electrochemical and 

thermodynamic principles, various physics-based Li-ion 
battery models have been developed in recent years for the 
purpose of battery cell design [26]. These models do consider 
the internal behavior and the major causes of battery aging, 
such as that due to side reactions and mechanical stresses, and 
are indeed capable of predicting accurately both the short- and 
long-term performance of the battery cell [27]. Also, intensive 
investigations have identified the side reactions in the negative 
electrode are the major cause of Li-ion cell degradation [28]. 
Various phenomena due to the side reactions, such as the loss 
of active material and the increase of the depletion layer, can 
be readily incorporated into these physics-based models [29]. 
The physics-based models have been further simplified in the 
attempt to balance between model accuracy and computational 
efficiency, so that they can be incorporated into advanced 
battery management systems for online prediction of battery 
cell performance and lifetime [30], [31]. Notwithstanding 
these developments however, these simplified first-principle 
models are still too complex and are incompatible for use in 
the planning and capacity determination studies of the BESS.  

In consideration of [6]-[31], the aim of the present work is 
to develop a reliable and practical method to predict Li-ion 
BESS performance for system-level BESS design and 
planning studies. Toward this end, a physics-based ECM of the 
Li-ion battery is derived from an electrochemical model such 
that the quantitative links between the electrochemical process 
of the Li-ion battery and the circuit dynamics are established. 
The long-term impacts of side reactions on battery storage 
capacity and internal resistance are included in the ECM. 
Whence a numerical procedure that is compatible with system-
level optimization procedure is developed to automatically 
update the parametric values of the physics-based ECM circuit 
parameters as the battery cell degradation progresses. The 
resulting model allows accurate and rapid prediction of the 
behavior of Li-ion battery, thanks to the recent research 
outcomes in battery electrochemistry and circuit theory. To the 
best knowledge of the authors, the present investigation is the 
first reported work to incorporate physics-based Li-ion model 
in the design and planning of grid-connected BESS. 

Accordingly, the remaining contents are organized as 
follows: Section 2 presents the modeling considerations of 
grid-connected BESS and the essence of an electrochemical 
model of Li-ion battery, from which Section 3 develops a 
physics-based ECM with the incorporation of the major 
degradation mechanism. A reduced-order ECM suitable for 
system-level studies is also derived. Several indices are then 
developed in Section 4 to provide quantitative measures of the 
energy storage and power delivery capabilities of the battery 
which can be directly used for BESS design. Section 5 
includes a comparison of reported experimental data, 
simulation results obtained using well-established 
electrochemical battery models with those from the developed 
ECMs. Examples of the application of the developed models 
are also given. Main findings are included in Section 6.  
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2. Electrochemical Model of Li-Ion Battery 

2.1 Some Preliminary Considerations 
In order to develop the Li-ion battery model which shall be 

computationally efficient and yet sufficiently accurate for use 
in power system planning studies, the following assumptions 
have been made.  

Low C-rate: It is well recognized BESS is suitable for use 
to support intra- and inter-day energy management of power 
grids [32]. For such an application, the maximum C-rate of the 
BESS is often limited to a much lower level compared to that 
used in mobile applications, such as in electric vehicles [33]. 
Indeed in the abovementioned literature [6]-[21], the capacity 
of the BESS is such that the BESS operating C-rate is usually 
limited to no higher than 1C. Under this constrained C-rate, 
laboratory results show that the effects of the spatial variations 
of local concentration and potential in the electrolyte are 
negligible [34], and the behavior of electrolyte can be 
described using a lumped resistance [25]. In this condition, 
major internal electrochemical dynamics and external 
characteristics of the cell can be explained using the single 
particle model (SPM) [25] [27]. More would be said about the 
SPM in the next sub-section.  

Constant temperature: the low C-rate current on a battery 
bank generates much less heat per cell than that encountered 
in high C-rate applications. Also as space and weight are of 
less important design factors for the grid-connected BESS than 
that for use in electric vehicles, the BESS can be housed in an 
environmentally-controlled facility and the battery operating 
temperature can be readily controlled [33]. Accordingly, in 
this study, the operating temperature of the BESS is assumed 
to be maintained at a suitably constant level and the impact on 
battery performance due to any variations in the temperature 
is negligible.  

Degradation due to side reactions: Although various causes 
of Li-ion battery degradation have been identified (see e.g., 
[35, 36]), for the purpose of BESS planning studies, the 
degradation mechanisms that occur in extremely unsuitable or 
stressed operating conditions shall not be considered. These 
conditions, including overcharge, overdischarge and over-
temperature, should be avoided through the careful design and 
operations of the BESS. Hence, attention of the present study 
is only directed towards the most common degradation 
mechanisms encountered during the normal operations of the 
BESS. In this connection, the major cause of the Li-ion cell 
degradation has been identified as the consequence of the 
irreversible side reactions between lithium ions and electrolyte 
solvent species in the negative electrode of all types of Li-ion 
battery cells. Indeed this degradation mechanism has been 
considered in the design of battery management systems in 
[28, 35, 36]. Accordingly, the side reactions-induced 
degradation shall be included in the present study. Finally, 
accelerated aging can be observed near the EOL of Li-ion 
battery [22, 37], especially when the battery is operating at 
high temperature [38]. Operating the battery under such an 
unreliable state is, however, considered not advisable for 
power system application. Hence this operating condition shall 
be excluded in the present investigation. 

2.2 Single Particle Model 

A schematic diagram of the SPM of Li-ion battery cell is 
presented in Fig. 1. It shows the positive electrode (relevant 
quantities are denoted by the superscript “+” sign), the 
negative electrode (denoted by “‒”), the separator (denoted by 
“sep”), and the two current collectors. In the SPM, the lithium 
ions in each electrode are assumed to be stored in a spherical 
particle. This particle represents the solid phase in the porous 
electrode with lattice structure. When the battery is charging, 
as shown in Fig. 1, most of the lithium ions in the positive 
electrode will first diffuse to the surface of the particle, 
transport across the separator via the electrolyte, and then 
diffuse into the particle in the negative electrode. The reverse 
process occurs during discharging. These reversible 
intercalation/deintercalation processes are referred to as the 
main reactions hereafter. The volume-averaged current 
density due to this movement of lithium ions is denoted as 
J1

±(t). Note that the superscript “±”represent the quantity for 
both electrodes. 

In contrast to the main reactions, the side reactions are 
pertaining to the process when a small amount of the lithium 
ions react with the solvent species, producing a thin film at the 
solid-electrolyte interphase (SEI) in the negative electrode. 
Side-reaction current density in the negative electrode is 
denoted as Jsr

‒(t), as shown in Fig. 1. The relationship between 
J1

±(t), Jsr
‒(t) and the applied current Ibat(t) is given by 

 tot 1 bat( ) ( ) ( ) / ( )   J t J t I t AL  (1a) 

 tot 1 sr bat( ) ( ) ( ) ( ) / ( )      J t J t J t I t AL  (1b) 

where Jtot
±(t), L± and A are the total current density, the width, 

and the cross-sectional area of the electrode respectively. Here 
the direction of the current density terms are defined as 
positive when lithium ions are entering the particle, as 
indicated by the dashed lines in Fig. 1.  

2.3 Short-Term Dynamics due to the Main Reactions  

The short-term study of BESS is closely related to the 
charging/discharging process of Li-ion battery which 
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 Fig. 1. Schematic of the single particle model of Li-ion cell during the 
charging process: the lithium ions diffusion from the inner region of the 
positive electrode particle to its surface, react and transport to the negative 
electrode. Side reactions occur at the surface of the particle in the negative 
electrode, and SEI layer grows to cause capacity fade. 
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accompanies the main reactions. The main reactions cause the 
Li-ion concentration in the particle to vary radially and with 
time. This dynamic process is governed by Fick’s law of 
diffusion equation expressed in spherical coordinates. By 
applying a polynomial profile approximation, the Fick’s law 
of diffusion equation can be reduced to the following ordinary 
differential equations [39]: 

 ,avg 1 1
,max ,max

1 3
( ) ( ) ( )


  

      
s

s s s p

a
t j t j t

c c R
 (2a) 

 ,avg ,avg 12 2

30 45
( ) ( ) ( )

( ) 2( )


  

    s
s s

p p

D
q t q t j t

R R
 (2b) 

  ,max
1 ss ,avg ,avg

35
( ) ( ) ( ) 8 ( )

 
    

    s s
s s s

p

D c
j t t t D q t

R
 (2c) 

where θ±
s,avg(t) and θ±

ss (t) are the volume-averaged 
stoichiometry and the stoichiometry at the particle surface, 
respectively. Stoichiometry refers to the respective Li-ion 
concentration, normalized with respect to the theoretical 
maximum Li-ion concentration c±

s,max. Furthermore, Rp
± 

denotes the radius of the spherical particle, Ds
± is the solid 

phase diffusivity, εs
± is the volume fraction of the solid phase, 

a± = 3εs
±/Rp

± is the specific area of the electrode, q±
s,avg(t) is the 

average concentration flux, j1
±(t) = J1

±(t)/( Fa±) is the pore-wall 
molar flux, and F is the Faraday constant. 

Next, the potential Φs
± at the terminal of each electrode is 

given by  

 ss 1 bat( ) ( ) ( ) ( )


   
      f

s e

r
t U t I t t

AL a
 (3) 

The various terms on the RHS of (3) are now described. The 
equilibrium potential U±

ss of the electrode appears as the first 
term. U±

ss is expressed as a function fs±(·) of the surface 
stoichiometry θss

±. fs±(·) is determined by the characteristics of 
the electrode materials and it can be obtained experimentally. 
fs±(·) of several types of commonly-used electrode in 
commercial Li-ion batteries are shown in Appendix A. The 
analytical expressions of fs±(·) are assumed known in this 
work. The second term η1

±(t) on the RHS of (3) is the 
activation overpotential of the main reactions and it is 
expressed as 

 1 1
1

0

2 ( )
( ) sinh

2 ( )


 



 
  

 

gR T Fj t
t

F i t
  (4) 

 0
0 eff ,max ss ss( ) ( )(1 ( ))      s ei t r c c t t  (5) 

where Rg is the universal gas constant, T is the cell 
temperature, i0

±(t) is exchange current density of the main 
reactions, r±

eff is the electrode rate coefficient, and ce
0 is the 

average Li-ion concentration in the electrolyte. The third term 
on the RHS of (3) represents an overpotential when battery 
current flow through the SEI film resistance rf

 ±. The last term 
Φe

± on the RHS of (3) is the electrolyte potential. The potential 
difference Φe

+(t) ‒ Φe
‒(t) between the positive and negative 

electrodes is modelled as  

 
sep

batsep
eff eff eff

1 2
( ) ( ) ( ) ( )

2

 
 

     
  e e

L L L
t t I t

A
 (6) 

where κeff represents the effective electrolyte conductivity. 
 Finally, the terminal voltage of the battery Vbat(t) is  

 bat col bat( ) ( ) ( )s sV t t t R I      (7) 

where Rcol is the lumped resistance of the current collectors. 

2.4 Long-Term Dynamics due to the Side Reactions  

The irreversible side-reaction current density in the 
negative electrode is modelled using Tafel equation [28] [31], 
i.e. 

 sr
sr 0,sr

( )
( ) exp

2


 

 
    

 



g

F t
J t i a

R T
 (8) 

where ηsr
‒(t) and i0,sr are the activation overpotential and the 

exchange current density of the side reactions, respectively. 
Similar to η1

±(t) in (3), ηsr
‒(t) is given by  

 sr sr,ref bat

( )
( ) ( ) ( ) ( )


   

      f
s e

r t
t t t U I t

AL a
 (9) 

where the equilibrium potential U‒
sr,ref of the side reactions can 

be assumed to be constant, consistent with the approach used 
in [27-29, 31].  
 The side reactions can cause the evolution of model 
parameters. As the main purpose of the present study is to use 
the existing electrochemical models to derive system-level Li-
ion battery model, the increase of SEI film resistance in the 
negative electrode is considered due to the presence of Jsr

‒, i.e. 

 sr ,00

1
( ) ( )  

    
 

tf
f f

f f

M
r t J d r

Fa
 (10) 

where Mf, ρf, κf and rf,0
‒ are the molecular weight, density, ionic 

conductivity, and initial resistance of the SEI film. The SEI 
film resistance rf

+ in the positive electrode is considered 
constant [24].  

On the other hand, the impact of side reactions on the 
decrease of volume fraction number εs

‒ due to the loss of active 
materials has been reported [29]. More will be said about this 
aspect of parametric variation in Sub-section 3.2. 
 As explained in Section 2.2, the growth of the SEI film is 
the product of the side reactions that consumes lithium ions 
and solvent species. It will lead to slow degradation of Li-ion 
cell in the forms of capacity fade and power fade [40], and 
which affects the long-term performance of the BESS. In the 
next section, a physics-based Li-ion battery ECM will be 
derived based on (1)‒(10). Following that, the effect of 
degradation will be investigated using the developed ECM.  

3 Physics-Based Equivalent Circuit Models 

3.1 Derivation of a Physics-Based Equivalent Circuit 
Model for Li-Ion Battery 

It is intuitive and convenient to use equivalent circuits in the 
field of electrical engineering for system design and indeed, 
using ECM is a popular pathway toward studying the behavior 
of BESS. However, conventional empirically-derived ECMs 
do not provide information on the various battery internal 
states which can affect battery long-term performance. In view 
of this shortcoming, a degradation-conscious physics-based 
ECM will now be derived from (1)‒(10).  



This work has been accepted for publication in Applied Energy on 20 April 2019 
(https://doi.org/10.1016/j.apenergy.2019.04.143) 

5 
 

5

 First, perform the change of variables from θ±
s,avg(t), 

q±
s,avg(t) and j1

±(t) to voltages and current quantities. These 
latter quantities are easier to relate physically, in the context of 
electrical circuits:  

 1 ,avg( ) 
 s sV f  (11) 

 ,avg
2 ,avg

,max

8 ( )
( ) ( )

35

 
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 
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 

p s s
s

s

R f
V t q t

c
 (12) 

 1 1 1( ) ( ) ( )I t AL J t AL Fa j t         (13) 

Following the detailed derivation given in Appendix B, the 
solid-phase diffusion equation (2) can then be converted to  

 1 1
1

1
( )= ( ) 


V t I t

C
 (14a) 
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 (14b) 

 ss 1 2 1 1( ) ( ) ( ) ( )      U t V t V t R I t  (14c) 

where the R and C parameters are expressed as  
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Next, the activation overpotential η1
±(t) can be treated as the 

consequence of the presence of a resistance Rη,1
±. It is shown 

in [41] that under low C-rate condition, 
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Substituting (3), (6), (14c) and (16) into (7) yields the 
terminal voltage  
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where the SEI resistance Rf
± and the electrolyte resistance Re 

are defined as 

 



  f

f

r
R

AL a
 (18) 
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sep
sep

eff eff eff

1 2
( )
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 
 

      
  e e e e

L L L
R R R R

A
 (19) 

 For the side reactions, define a resistance Rη,sr
‒ to associate 

the activation overpotential ηsr
‒(t) with the side reaction 

current Isr
‒, viz.,  

 sr 0,srsr
,sr

sr sr

2 ln[ ( ) / ( )]( )

( ) ( )

 


  


 
 gR T J t i at

R
I t F AL J t

 (20) 

where Isr
‒ is defined herewith as 

 sr sr( ) ( )I t AL J t     (21) 

Equation (8) shows that Jsr
‒ < 0. Whence from (21), the 

direction of flow of Isr
‒ is independent of that of the applied 

current Ibat. This is because the irreversible side reactions are 

solely due to the interactions between the lithium ions and 
solvent, and are not affected by intercalation/deintercalation.  

Finally, using (3), (9) and (20), one obtains  

 ,sr sr sr,ref ss 1( ) ( )       R I t U U t  (22) 

 Accordingly from (14), (17) and (22), the equivalent circuit 
shown in Fig. 2 is derived. The expressions of the R and C 
parameters of the derived ECM are given by (15), (16) and 
(18)‒(20), while the currents are expressed by (13) and (21). 
Furthermore, the slow evolution of the SEI resistance Rf

‒ shall 
be governed by side reaction current Isr

‒, described by (10), 
(18) and (21). The key point is that the voltages appearing 
across the various circuit elements in the ECM can be 
identified with the intercalation kinetics, ion diffusion and 
electric potentials. These relationships are summarized in 
Table 1. Specifically, the capacitor voltage V1

± represents the 
open-circuit potential (OCP) of the electrode, and the battery 
open-circuit voltage (OCV) is the difference between V+

1 and 
V‒

1. In the ECM, C1
± is the main energy storage component, 

while R1
±, R2

± and C2
± pertain to the diffusion of lithium ions 

in the solid phase. The remaining difference between Vbat and 
the OCV is caused by the solid phase Li-ion diffusion and the 
various internal resistances.  
 

3.2 Capacity Fade 

 The developed circuit shown in Fig. 2 can be used to explain 
the phenomenon of capacity fade of Li-ion battery. Using (11) 

Vbat(t)

R1Rη,1 

Ibat(t)

Rf 
+++

+

R2

C2
+

+

− 
V2

+

+

− 

V2

C2

R2
‒

‒

‒

+

− 

C1

+

− 
V1

+

+

C1
− 

V1

− 

+

‒

Rf 
‒

R1
‒

Re
+

Re
‒

Re
sep
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Electrode

Negative 
Electrode

Separator

Φs
+

Φs
− 

+− 

Φe
− 

Φe
+

Usr,ref

Rcol

I1(t)
+

Ibat(t)

Solid phase Electrolyte SEI layer

Isr(t)<0‒

Rη,1
‒

Rη,sr
‒

I1(t)
‒

+

− 

+

− 

η1
‒

ηsr
‒

η1
+

+

− 

Main reactions circuit Side reactions circuit

‒

 
Fig. 2. A degradation-conscious physics-based equivalent circuit derived 
from single particle model of Li-ion battery. The circulating current Isr

‒ in the 
negative electrode is the result of side reactions. The flow direction of Isr

‒ is 
always opposite to the reference direction indicated by the dotted arrow. 
  
Table 1  
Physical meanings of the various voltages shown in the ECM.  

Voltage Quantities Physical Meanings 

1V   OCP of the electrode 

1 1V V   OCV of the battery 

2 1 1V R I    Solid-phase overpotential due to Li-ion diffusion 

1
  Activation overpotential of the main reaction 

sr   Activation overpotential of the side reaction 

1fR I   Overpotential due to the SEI film resistance 

1 2 1 1V V R I      Equilibrium potential Uss
± of the electrode  

ss 1 1fU R I      Potential Φs
± of the electrode 
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and (15), the amount of electric charges Q1
± stored in the 

capacitor C1
± can be calculated as: 

 ,max
1 0% ,avg( ) ( ( ))

3600

  
   


 s s

s

AL F c
Q t t  (23) 

 ,max
1 100% ,avg( ) ( ( ))

3600

  
   


 s s

s

AL F c
Q t t  (24) 

Q1
+ is defined as zero when θs,avg

+ = θ0%
+: it corresponds to the 

state of the stoichiometry of the positive electrode when the 
battery is fully-discharged at the begin-of-life (BOL) stage of 
the battery operation, and correspondingly θs,avg

‒ = θ0%
‒ and 

Q1
‒ = Qmax,0. Simultaneously Q1

‒ is defined as zero when θs,avg
‒ 

= θ100%
‒, the state of the stoichiometry of the negative electrode 

when the battery is fully-charged at the BOL of the battery and 
correspondingly, θs,avg

+ = θ100%
+ and Q1

+ = Qmax,0. Typically 
the V1

± vs. Q1
± profile curves of a battery at the BOL stage of 

battery operations are as shown in Fig. 3(b) and Fig. 3(c). They 
are shown by the black solid curves in the figure and are 
similar to the function fs±(θ±

s,avg) given in (11). This is because 
of the linear relationship between Q1

± and θs,avg
±, as conveyed 

by (23) and (24). The OCV vs. Q1
+ curve in Fig. 3(a) can be 

obtained according to OCV = V1
+ ‒ V1

‒. As an illustration, 
points P, A, and B in Fig. 3 govern the state of the battery 
OCV, V1

+ and V1
‒ respectively when the battery is at the BOL.  

If the side reactions are ignored, Isr
‒ = 0, and suppose the 

battery is charged from the BOL stage. The stored charges in 
C1

+ and C1
‒ change by the amount ΔQ1

+ and ΔQ1
‒ respectively. 

Clearly ΔQ1
+ = ‒ΔQ1

‒ as a result of charge conservation. The 
new operating states of the battery OCV, V1

+ and V1
‒ will be 

P′, A′, and B′ in Fig. 3 respectively, as the consequence of the 
changes in the stored charges. 

Now include the side reactions. As shown in Fig. 3(c), the 
potential of the negative electrode V1

‒ is always lower than the 
side reaction reference voltage U‒

sr,ref. So the side reaction 
current Isr

‒(t) will thus circulate in the negative electrode 
circuit and in the direction opposite to that shown in Fig. 2. 
Hence, C−

1 will receive an amount of electric charge Q‒
loss due 

to the circulating Isr
‒. Q‒

loss (in Ah) can be calculated, as 
follows:  

 loss sr loss,00

1
( ) ( )

3600
      

t
Q t I d Q  (25) 

Consequently, while the operating point of C1
+ remains at 

A′, the operating point of C1
‒ will now move to the left by the 

amount Q‒
loss along the Q1

‒ axis, to reach the point B″. The 
state of charge on C1

‒ is now closer to the limit Qmax,0 by the 
amount Q‒

loss: the capacity for C1
‒ for it to be fully discharged 

has been reduced by the amount Q‒
loss. So although the ability 

for C1
+ to fully discharge has not been affected by the side 

reactions, the ability of the battery as a whole to discharge has 
been reduced due to loss of lithium ions. As a consequence, 
the V1

‒ vs. Q1
‒ curve will move to the right by amount of Q‒

loss 
, as shown in Fig. 3(c). The new OCV curve is obtained as 
shown in Fig. 3(a) since OCV = V1

+ ‒ V1
‒. The new V1

‒ and 
OCV are depicted by red solid curves. 

By the same reasoning, it can also be concluded that due to 
the side reactions, there is a reduction in the charge storage 
capacity of the battery during the discharging process as long 
as the side reactions occurs. This loss in storage capacity is an 

irreversible process and is commonly referred to as capacity 
fade of Li-ion battery. Even when the BESS is not in service 
and Ibat = 0, the circulating current Isr

‒ continues to flow which 
leads to the battery continuously losing the storage capacity. 
Indeed, the presence of the side reactions has been identified 
as one of the major causes for the so-called self-discharge of 
Li-ion cell [29]. Thus unlike the empirical ECMs derived from 
observed external characteristics, the physics-based ECM 
shown in Fig. 2 allows these internal electrochemical 
behaviors of the Li-ion battery to be explained and accounted 
for.  

The above analysis can be readily extended to investigate 
the effect of the variation of other parameters on capacity fade. 
For example and as alluded to in Section 2.4, if the reduction 
of the solid phase volume fraction εs

‒ as a results of the loss of 
active material is taken into consideration, the following 
equation taken from [29] can be incorporated into the ECM: 

 iso sr ,00

1
( ) ( )      


tf

s s
f

M
t k J d

F
 (26) 

where kiso is a dimensionless constant describing the rate of 
reduction of εs

‒. As the amount of charge Q1
‒(t) remains 

unchanged, according to (24), θs,avg
‒(t) will increase in 

proportion to the reduction of εs
‒. Since V1

‒ = fsr‒ (θs,avg
‒), this 

will cause a shrinking of the V1
‒ vs. Q1

‒ curve, shown by the 

Qmax,00

Q1
‒

Q1
+

Usr,ref 

V1 
‒

V1
+

Qmax,0 0

‒

B

B′ 

A′  

ΔQ1
+

ΔQ1
‒

B″ 
Qloss

Q1
+

VEOC

VEOD

0
Qmax,0

OCV 
=V1

+‒V1
‒ 

(a)

(b)

(c)

BOL Degraded (Constant      )

SOC
SOCmaxSOCmin

0

εs
‒ Degraded (Reduced      )εs

‒

‒

A

P
P′ 

B″ 

 
Fig. 3. Typical relationships of (a) OCV vs Q1

+; (b) OCP of the positive 
electrode V1

+ vs Q1
+; (c) OCP of the negative electrode V1

‒ vs Q1
‒. The black 

solid curves correspond to battery at BOL stage. The red solid curves 
correspond to the case after the side reactions have occurred but the variation 
of volume fraction number εs

‒ has not been considered. With the variation in 
εs
‒ included, the red solid curves move to the right and appear as the red dotted 

curves.  
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red dotted line in Fig. 3(c). It in turn will cause further OCV 
change and capacity fade as shown in Fig. 3(a).  

3.3 A Reduced-Order Equivalent Circuit Model 

 In this sub-section, the proposed 4th-order ECM in Fig. 2 
will be simplified and a computationally efficient solution 
procedure will be developed for grid-connected BESS design 
studies. 
 First, for system-level study, the short-term transient due to 
the Li-ion diffusion can be ignored. It is shown in the authors’ 
previous work [42] and the derivation in Appendix B that the 
parallel RC components in Fig. 2 can be approximated by a 
resistance of 6R1

±.  
 Next, from Fig. 3 it can be readily seen that Q1

+(t) and Q1
‒

(t) shall satisfy  

 1 1 max,0 loss( ) ( ) ( )    Q t Q t Q Q t  (27) 

 Considering the side-reaction current Isr
‒ is much lower than 

the main-reaction current I1
+ and I1

‒, within a relatively short 
simulation time step Ts, the increase in Qloss

‒(t) calculated 
using (25) tends to be much smaller than the variations in 
Q1

+(t) and Q1
‒(t). So Qloss

−(t) can be considered constant in 
(27) and thus Q1

‒(t) and Q1
+(t) become dependent variables. 

To simplify notation, hereafter Q1
+(t) is denoted by the state 

variable z to indicate the state of intercalation. 
It can be seen from (15) and (16) that some of the RC 

parameters are functions of θ±
s,avg. Furthermore, using (23), 

(24) and (27), the linear relationships between θ±
s,avg(t) and 

Q1
±(t) can be readily derived. Hence, the RC parameters can 

now be expressed as functions of z. Whence the series-
connected components can be combined to yield 

 eq1 col ,1 1( ) ( ) 7 ( )        e f fR z R R R R z R z R  (28) 

 eq2 ,1 1( ) ( ) 7 ( )  R z R z R z  (29) 

 Two additional equivalent components are also defined for 
use in latter analysis: 

 eq 1 1 1 1( ) ( ) ( ) / ( ( ) ( ))C z C z C z C z C z      (30) 

 eq eq1 eq2( ) ( ) ( )R z R z R z   (31) 

Next, the incorporation of side reaction circuit imposes an 
algebraic constraint to the ECM via (16) and (20)‒(22). 
Instead of using time-consuming iterative method to solve the 
nonlinear simultaneous equations, it is proposed to replace the 
side reaction branch by a current source Isr

‒. Isr
‒ can be 

expressed as an explicit function fsr of z and Ibat, i.e. 

 sr sr bat( ) ( , )I t f z I   (32) 

 The expression of fsr is given in Appendix B. Based on the 
above simplification, the reduced-order equivalent circuit 
model (RO-ECM) shown in Fig. 4 is obtained.  
 

However, over a longer period Td, the increase in Qloss
‒(t) 

can be significant. Q1
+(t) and Q1

‒(t) will have to be evaluated 
using (27) by taking into account the change in Qloss

‒(t). Req(z), 
Ceq(z) and fsr(z, Ibat) will have to be updated as a result. In this 
case, Qloss

‒(t) represents another state variable which is 
evaluated using (25). In this work, each Td interval is selected 
to correspond to a particular state of degradation of the Li-ion 
battery. Henceforth, the state of degradation is denoted by an 

index k, with k = 0 when the battery is at the BOL stage. 
Furthermore, k would be attached as a subscript to each of the 
battery parameters to signify its association with the k-th state 
of degradation. For example, Req(z) and fsr(z, Ibat) would be 
denoted as Req,k(z) and fsr,k(z, Ibat), respectively. Also, from 
(10), (21), (25) and (26), it can be shown that the circuit 
parameters impacted by the cell degradation can now be 
expressed as functions of Qloss,k

‒, i.e. 

 , ,0 SEI loss,
   f k f kR R k Q  (33) 

 , ,0 AM loss,
    s k s kk Q  (34) 

where kSEI = 3600Mf/[(κfρfF)·(AL‒a‒)2] and kAM = 
3600kisoMf/(ρfFAL‒). 

3.4 Solution Procedure for the Reduced-Order 
Equivalent Circuit Model in System-Level Studies 

In view of the fast intercalation dynamics due to the main 
reactions and the slow degradation dynamics due to the side 
reactions, a dual time-step solution procedure to simulate the 
Li-ion battery behavior for a given battery input power Pbat(t) 
is now proposed, as follows.  
 Initialization: Starting from the instance when the battery is 
at its BOL (k = 0) state, with the given initial values of the 
state variable of intercalation z0 and Q‒

loss,0 = 0, calculate the 
initial circuit parameters such as Rf,0

‒
 and εs,0

‒. The initial 
terminal voltage is the corresponding OCV. 
 Step 1: Calculate the battery current Ibat(t), viz., Ibat(t) = 
Pbat(t)/Vbat(t‒Ts). 

Step 2: Calculate the state variable z(t) using (35) based on 
Ibat(t) and z(t‒Ts).; 

 1 bat( ) ( ) ( ) / 3600 ( )   s sz t Q t I t T z t T  (35) 

Step 3: Calculate V1
+(t) from z(t) using (23) and fs+(·). 

Step 4: Calculate the side reaction current Isr‒(t) based on 
Ibat(t) and z(t) using (32); 

Step 5: Calculate Qloss
‒(t) using (25);  

 Step 6: If the end of a Td interval is reached, let Qloss,k
‒ = 

Qloss
‒(t), and perform the following calculations (a), (b), (c) 

and (d) using Qloss,k
‒. Otherwise go to Step 7 directly; 

  (a) Update the relationship between z and Q1
‒(t) 

according to (27); 
  (b) Update the relationships between Q1

‒(t) and V1
‒(t) 

according to (24) and fs‒(·), if εs
‒ is varying; 

     (c) Update Rf
‒ according to (18) and (33);  

     (d) Update the function fsr(z, Ibat) according to the 
equations (C.1) and (C.2) given in Appendix C; 

Vbat(t)

Ibat(t)
+

− 

V1

C1
− 

V1

− 

+

‒

Req1

Main reactions circuit Side reactions circuit

Req2

+

− 

Isr
− 

C1
+

+

− OCV

+
 

Fig. 4. A reduced-order physics-based ECM for Li-ion battery. The parallel 
RC components in Fig. 2 are replaced by pure resistances for planning 
studies. 
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 Step 7: Calculate the terminal voltage Vbat(t) using (17) and 
V1

+(t), V1
‒(t), Req1,k(z), Req2,k(z), and Ibat(t).  

Repeat Steps 1‒7 for the next Ts until the end of the 
simulation period is reached. The block diagram of the 
developed model and solution procedure is shown in Fig. 5, 
where the numerical integration uses the time-step Ts for the 
main reactions sub-model, and Td for the side reactions sub-
model. 

4 Analysis of Battery Performance  

4.1 Impact of Degradation on Circuit Parameters  
Fig. 6(a) shows the relationship between the OCV and 

Q1
+(t), i.e. z, of the particular type of Li-ion battery considered 

in [26, 28, 40]. The curves correspond to the battery at BOL (k 
= 0), at an arbitrary state of degradation k, and at such a 
degraded state that the battery is considered to have reach its 
EOL. Also, define herewith the end-of-charge (EOC) state as 
when the battery OCVk reaches the pre-specified maximum 
voltage level VEOC, and the corresponding Q1

+ is Q1
+

EOC,k. 
Similarly the end-of-discharge (EOD) state occurs when the 
battery OCVk is at the pre-specified minimum voltage level 
VEOD. The corresponding Q1

+
EOC,k and Q1

+
EOD,k are also shown 

in Fig. 6(a). Whence the battery Ah capacity at the kth state of 
degradation is defined as  

 max, 1,EOC, 1,EOD,k k kQ Q Q    (36) 

Note that at BOL, Q1
+

EOD,k = 0 and Q1
+

EOC,k = Qmax,k = Qmax,0. 
As the battery degrades, both Q1

+
EOC,k and Q1

+
EOD,k have 

shifted to the right. Interestingly it is observed the right shift 
in Q1

+
EOD,k is much more pronounced than that of Q1

+
EOC,k. A 

reduction in the Ah capacity Qmax,k as defined by (36) is 
observed.  

 In order to fairly compare the capacity fade effect and the 
variation of circuit parameters as the battery degrades, one can 
shift the OCV curve in Fig. 6(a) toward the left by the amount 
(Q1

+
EOC,k ‒ Qmax,0), so that all the OCV curves intercept the 

VEOC line at the same point. Next, normalize the horizontal axis 
based on the battery Ah capacity Qmax,0 at BOL. The horizontal 
axis is now expressed as the battery state-of-charge (SOC), i.e. 

 1 1,EOC, max,0 max,0SOC( ) [ ( ) ( )] /kt Q t Q Q Q     (37) 

The linear relationship between SOC and Q1
+ shown in (37) 

is also reflected in Fig. 3, in which SOCmax and SOCmin are 
respectively the upper and lower limits of SOC when the 
battery is at the BOL. The resulting OCV vs. SOC curves are 
shown in Fig. 6(b), and it can be seen the SOC range between 
the EOC and EOD reduces as k increases.  

 
Fig. 6. Functional relationships of (a) OCVk vs. z, (b) OCVk vs. SOC, (c) Req,k 
vs. SOC, and (d) Ceq,k vs. SOC when the battery is at the BOL, kth, and EOL 
state of degradation.  
 

Furthermore, Fig. 6(c) shows that the overall resistance 
Req,k(SOC), as defined by (31), increases significantly with k. 
This is primarily due to the increase in Rf, the SEI film 
resistance. At the same time, Fig. 6(d) shows that Ceq,k(SOC), 
as defined by (30), decreases appreciably as k increases. The 
most severe degradation state shown is that corresponding to 
the battery EOL condition (defined as Qmax,k = 0.55Qmax,0 in 
this example). The combination of these trends will have 
significant bearing in the capability of the battery to efficiently 
store and convert energy as the battery degrades. 

4.2 Feasible Operating Zone  

Fig. 7 shows the battery terminal voltage Vbat vs SOC curves 
when the battery is at the BOL state and that at an arbitrary kth 
state of degradation. The OCV0(SOC) curve corresponding to 
the BOL state is the dotted line A0B0. Fig. 7 also shows several 

Pbat
÷

Ibat

Isr
− 

Eq.(32)
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+
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+
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Fig. 5. The general model structure and solution procedure for the developed
RO-ECM. z = Q1

+ represents the state of the stored charge level; Qloss,k
‒ is 

associated with the state of degradation level and the input to the model is
battery power Pbat. Terminal voltage Vbat is the output of the model. Other
outputs regarding the stored energy level and energy capacity used in
planning studies can be expressed as functions of Q1

+ and Qloss,k
‒, as given in 

(39)-(43). 
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practical limits imposed on the battery operations which are 
considered in Sub-sections 2.1 and 4.1. The vertical lines N0B0 
and A0M0 denote the minimum and maximum SOC imposed 
on the battery operations in order to avoid the undesirable 
over-discharge/over-charge. The horizontal lines N0A0 and 
B0M0 prescribe the voltage limits that defined the EOC and 
EOD states alluded to earlier. 

Apart from the constraints placed on the terminal voltage 
and the SOC, the continuous operating power rating Pr of the 
battery and the associated power converter is yet another 
practical limit imposed on the operations of the BESS. Vbat at 
the maximum battery power charging/discharging conditions 
can be obtained simply by satisfying the equation 

 bat eq, batOCV (SOC) ( / ) (SOC)k r kP V R V   (38) 

In Fig. 7, the trajectories F0C0 and E0D0 correspond to the 
instances when the battery is at the BOL and it is being loaded 
under the continuous maximum power charging and 
discharging conditions respectively. As shown in Fig. 7, a 
feasible SOC range for the maximum power operation is 
approximately [SOCmin, SOCmax]. Hence, the shaded area 
within the boundary C0E′0D0F′0C0 prescribes the feasible 
operating zone (FOZ) of the BESS at BOL. By the same 
reasoning, when the battery is at the kth state of degradation, 
the corresponding new FOZ is CkE′kDkF′kCk shown in Fig. 7. 
The OCVk(SOC) curve would now intersect the new boundary 
at A0 and Bk. According to the analysis shown in Section 4.1, 
the position of Bk determines the Ah capacity Qmax,k defined by 
(36). Due to the increased resistance Req,k, the vertical distance 
between the discharging curve EkDk and the charging curve 
FkCk becomes wider than that when that battery is at BOL. 
Thus the feasible SOC range is reduced to [SOCDk, SOCCk]. 
SOCCk and SOCDk can be calculated using (38) by setting Vbat 
= VEOC and Vbat = VEOD, respectively. These operating 
constraints can be used in system studies when designing 
BESS operational strategy. 

4.3 Energy Storage Capacity 

For the applications of BESS in grid systems, power flows, 
stored energy and energy conversion efficiency are of direct 
interest. In Fig. 4, the capacitor Ceq = C1

+||C1
‒ is the dominant 

energy storage component in the ECM. For a small change dQ 

in the amount of stored charge in Ceq, the corresponding 
change in its stored energy is dE = VC×dQ = 
OCV×d(SOC×Qmax,0). For the battery to be capable of 
supplying rated power Pr continuously, as the case when 
developing Fig. 7, the feasible energy storage capacity Er,k of 
the battery at the kth state of degradation is 

 
Ck

Dk

SOC

, max,0 SOC
OCV (SOC ) SOCr k kE Q d    (39) 

The feasible energy storage capacity Er,0 when the battery is 
at BOL can be calculated by setting SOCCk ≈ SOCmax and 
SOCDk ≈ SOCmin into (39). As the battery degradation 
progresses, the OCVk(SOC) curve becomes increasingly 
depressed. Furthermore, in view of the FOZ, as SOCDk moves 
to the right of SOCmin, while SOCCk moves to the left of 
SOCmax, the value of the integral term in (39) reduces and Er,0 
decreases to Er,k. Therefore, the ability of the BESS to store 
energy reduces over time.  

Next, introduce the concept of energy storage capacity 
index λk: 

 , ,0/k r k rE E   (40) 

λk provides a measure of the energy storage capacity of the 
battery at the kth degradation state relatives to that when the 
battery is at BOL. The value of λk would decrease as the battery 
degrades, which is another way to reflect the capacity fade 
phenomenon on Li-ion battery as described in Section 3.2. 
 Also, two additional indices can be introduced to quantify 
the maximum amount of energy that can feasibly be 
exported/imported at the BESS terminals at any given time. 
Consider Fig. 7 again and the SOC of the battery corresponds 
to that at the arbitrary operating point χ on the OCVk(SOC) 
curve. Clearly, the maximum amount of energy that can be 
exported before the BESS reaches its minimum feasible SOC 
level SOCDk is 

 
Dk

SOC
eq,

, max,0
EODSOC

(SOC )
(SOC) OCV (SOC ) SOC

 
   

 
 r k

e k k

P R
E Q d

V

 (41) 

 Conversely, the maximum amount of energy that can be 
imported by the battery before its SOC arrives at the maximum 
feasible SOC level SOCCk is  

 
CkSOC

eq,
, max,0

EOCSOC

(SOC )
(SOC) OCV (SOC ) SOC

 
   

 
 r k

i k k

P R
E Q d

V

 (42) 

 Ee,k(SOC) and Ei,k(SOC) are proportional to the areas 
enclosed by the boundaries RkDkHkJkRk and GkCkLkJkGk 
respectively in Fig. 7. As Req,k(SOC) and Ceq,k(SOC) evolve 
over time, one can dynamically track the maximum amount of 
the energy the battery can feasibly be exported or imported at 
any given time by applying (41) or (42). Such information is 
most useful in developing operational strategies for the 
battery, as when for example, the battery attempts to carry out 
the power smoothing or power dispatch tasks such as those 
described in [6]-[21].  

Another useful index for practical use in BESS design is the 
state of energy (SOE), which can be defined as  

Fig. 7. Li-ion battery feasible operating zone (the shaded area) as impacted 
by the growth of the SEI film, and the loss of lithium ions and solvent species.
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SOC( )
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SOC

OCV (SOC ) SOC
SOE ( )

OCV (SOC ) SOC

 


 




t

k

k

k

d
t

d
 (43) 

where the numerator represents the amount of the stored 
energy that can be discharged and the denominator is the 
stored energy capacity. SOCBk is the SOC at the point Bk. 

5 Results and Discussion 

5.1 Model Validation 

In this sub-section, the developed RO-ECM is to be 
validated using the experimental data obtained in [43] where it 
reports that a LiCoO2 battery with 1.8-Ah rated capacity is 
tested under certain cyclic conditions. In each cycle, firstly, the 
battery is charged from a given initial stoichiometry. The 
charging current is constant at 1 A until the battery terminal 
voltage reaches VEOC of 4.2 V. Then, the terminal voltage is 
kept constant by reducing the charging current until the current 
falls below 50mA. The battery is then discharged at the 
constant 1A level until the battery terminal voltage reaches the 
cut-off level of about VEOD = 2.0 V. Whence the battery is 
deemed to have completed one charging-discharging cycle and 
the cycle is then repeated. The electrochemical parametric 
values for the RO-ECM used in the simulation are given in 
Table A.1 in Appendix A. The volume fraction is considered 
constant in this case, consistent with the assumption made in 
[43]. 
 

The simulation results of the battery terminal voltages at the 
end of the 10th, 300th, 400th and 800th charging-discharging 
cycles are shown in Fig. 8. The figure clearly indicates that the 
proposed RO-ECM is able to capture the major effect of the 
degradation, in the form of the reduction in the discharge 
capacity as the cycle number increases. For example, the 
discharge capacity has been reduced from 1.8 Ah at the end of 
the 10th cycle to some 1.2 Ah at the end of the 800th cycle. Most 
encouraging, in comparison with the experimental data, the 
maximum error between the experimental and the predicted 
discharge capacity is less than 2%. Furthermore, the RO-ECM 
yields the battery terminal voltage profile which is in good 
agreement with the experimental measurements throughout 
the complete discharge process.  

5.2 Models Comparison 

In this sub-section, results of simulation based on the 
proposed physics-based ECMs of Li-ion battery will be 
compared with those obtained using two electrochemical 
models, that of the SPM and a pseudo-two-dimensional (P2D) 
electrochemical model. P2D model is based on a complex 
partial differential algebraic equation system which has to be 
solved using specific solver. P2D model is well-established 
and is known to be accurate. Unfortunately the time-step used 
to solve the P2D model has to be sufficiently small to ensure 
numerical accuracy. Hence solution time tends to be high. 
Nevertheless, P2D model is used in this study as it can serve 
as the benchmark for the developed ECMs. Details of the P2D 
model used can be found in [42].  

All the models are implemented in MATLAB/Simulink on 
a PC with Intel Core i7-4790 CPU@ 3.60 Hz and 16GB RAM, 
with the fixed-step discrete solver selected. The similar CC-
CV cycling protocol and the 1.8 Ah LiCoO2 battery alluded to 
in Sub-section 5.1 are again used in this sub-section. During 
the CV stage, the terminal voltage was regulated using a 
feedback control scheme.  The battery parameters are as given 
in Table A.1 in Appendix A, while the degradation parameters 
are adjusted to accelerate the aging effect. The step size for 
SPM and 4th-order ECM are limited to 5 s to avoid 
computational instability. While for the RO-ECM, a step size 
of 60 s is selected due to the limitation of the feedback CV 
controller, but not due to the model itself. 

Fig. 9 shows the comparison of t he simulation results 
obtained from P2D, SPM and the developed ECMs. Fig. 9(a) 
and Fig 9(b) shows the battery terminal voltage profile and the 
charging capacity at the end of the 1st, 50th and 100th cycles of 
the CC-CV charging process. Fig. 9(b) shows the charging 
capacity is about 1.8 Ah for the 1st cycle charging process. 
However, the charging capacity is drastically reduced by a 

Fig. 8. Comparison of experimental and simulation results. Experimental data 
are obtained from [43]. The battery is cycled with the constant current-
constant voltage (CC-CV) charging and constant current discharging 
protocol. 

Fig. 9. Comparison of simulation results obtained from P2D model, SPM, 
developed ECM and RO-ECM: (a) and (b) are for CC-CV charging mode; 
(c) is for constant current discharge; (d) is the variation of film resistance Rf

‒

vs. battery operation time.  
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factor of 2 in the 100th cycle. This observation is confirmed by 
the SPM and P2D model. During the discharging stage, Fig. 
9(c) shows that the time to reach the cut-off voltage predicted 
by the ECMs is in excellent agreement with that obtained using 
the electrochemical models. Perhaps more importantly, the 
figure shows that after some 1.5 hours of the discharging 
process during the 1st cycle, the battery is seen to have reached 
the knee-point of the discharge curve beyond which the 
voltage reduces at a most rapid rate. At the end of the 100th 
cycle, however, the corresponding discharge time is predicted 
to be only some 0.9 hour before the voltage collapse occurs. 
This is again in excellent agreement with that given by the 
electrochemical models. 

Unlike the empirical ECMs referred to in Section 1, a 
distinct advantage of the proposed physics-based ECMs 
allows the changes in the parametric values of the circuit 
elements to be updated automatically as the battery degrades. 
Fig. 9(d) provides such an example in which the growth of the 
SEI resistance Rf

‒ is evaluated and is seen to have reached 
about 0.084 Ω after 300 hours of operation. The figure shows 
the irreversible growth is also demonstrated in the P2D model. 
Although not presented in the figure, it is found that at the end 
of the simulation, the battery total series resistance is about 
0.091 Ω without consideration of the electrolyte resistance Re. 
This confirms Rf

‒ has indeed become the dominant component 
of the battery resistance at this stage. 

Table 2 compares the time step used in the simulation, the 
execution time required using the P2D model, the SPM and the 
developed ECM and RO-ECM, and the root-mean-square 
errors (RMSEs) of the terminal voltage spanning over the 
entire 100 cycles of the cyclic testing of the battery. The 
RMSEs were evaluated by comparing the results obtained 
using these models with that based on the well-recognized 
P2D model. The errors are due to the assumption made in SPM 
and the ECMs in that the electrolyte concentration is constant. 
Nevertheless, all the voltage RMSEs are well below 1%. The 
RMSEs calculated when comparing the results of battery 
charging capacity and SEI film resistance obtained from the 
SPM and ECMs against the bench-mark P2D model are all less 
than 0.3%. Based on these observation, it is concluded that the 
ECM and RO-ECM have performed as well as the SPM, while 
the RO-ECM has the added advantage that it has reduced the 
solution time by a factor of about 40, as compared to that 
required by the SPM.  
 

Table 2  
Comparison of Models Complexity and Performance. 

Model P2D SPM  ECM  RO-ECM  
Time Step 0.5 s 5 s 5 s 60 s 

Execution Time 559 s 36.3 s 25.9 s 0.91 s 
RMSE 

compared 
to P2D 

(%) 

 Fig. 9(a) - 0.50% 0.51% 0.56% 
Fig. 9(b) - 0.15% 0.15% 0.16% 
 Fig. 9(c) - 0.59% 0.60% 0.65% 
 Fig. 9(d) - 0.22% 0.23% 0.25% 

5.3 Model Application: Impacts of Degradation on Long-
Term Battery Energy Storage System Operations 

The purpose of this sub-section is to demonstrate insights 
which can be gained from using the proposed physics-based 
RO-ECM of the Li-ion battery. In the illustrative example used 
herewith, a 91-MWh BESS is to smoothen the output power 
of a hypothetical 100-MW wind farm. The objective of this 

study is to investigate the performance of the BESS over the 
long term, as part of a system planning study based on 
historical wind resource data observed at the wind farm so that 
suitable BESS capacity and operational strategy can be 
determined. Accordingly, a set of wind speed data over a 
selected year was taken from [44] to generate the wind power 
at the hypothetical wind farm. The output power of the wind 
farm is to be smoothened by the buffering actions of the BESS. 
A sample of the wind and smoothened powers is shown in Fig 
10(a). The difference between the generated wind power and 
the smoothened power forms the input power Pbat(t) to the 
BESS over the year. In this study, the yearly Pbat(t) is then 
applied repeatedly to the BESS over an eight-year period. In 
this way, a meaningful evaluation of the BESS performance, 
impacted solely due to cell degradation over the long term, can 
be made. The electrochemical characteristics and parameters 
of the individual battery cells which constitute the BESS are 
again correspond to those given in [28] and are listed in 
Appendix A. All the battery cells are assumed identical and 
each cell is represented by the RO-ECM shown in Fig. 4. The 
circuit parameters and FOZ are obtained as functions of the 
SOC, in the form of look-up tables which are updated hourly 
(Td = 3600 s) in the simulation. For a step size Ts = 60 s, it 
requires 23 s to yield the results shown in Figs. 10‒12 for the 
8-year BESS operations.  

Fig. 10 shows the sample profiles of several Li-ion cell 
variables on the 93rd-94th days of the 1st, 6th and 8th year of 
BESS operations. From Fig. 10(b), it can be seen that the 
operating range of the cell terminal voltage Vbat increases as 
the BESS usage progresses. The loss of cell energy storage 
capacity and the increase in Rf with the battery usage account 
for the larger voltage variations. Fig. 10(c) shows the 
exportable energy Ee,k of the BESS over the 2-day interval, as 
well as the feasible energy capacity Er,k (dashed lines). It can 

Fig. 10. (a) Generated wind and output powers of wind farm; (b) – (d) Results 
of simulation study based on the proposed physics-based RO-ECM: 93rd-94th

days of the 1st, 6th and 8th years of battery operations. Also shown in (c) are 
the feasible energy capacity Er,k (dashed lines) of the selected days and years.
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be seen that Ee,k remains positive between the 14th - 36th hours 
of the selected 2-day interval in the 1st year of the BESS 
operations. Ee,k starts to reach the zero level over the same 
period when the battery is in the 4th year of operations. In the 
8th year and over the same period, the battery over-discharges 
during most of the time. This undesirable state can be readily 
identified in Fig. 10(b) whereby the cell terminal voltage has 
dropped below the set limit VEOD. The ability of the BESS to 
release energy to the grid is quite limited by this stage. 
Similarly, Fig. 11 shows selected BESS variables over another 
two-day period (218th-219th days) of the same three years. Fig. 
11(c) illustrates the amount of energy Ei,k that can be absorbed 
by the BESS. It can be seen that approximately between the 
22-24th hours of the two-day period, Ei,k falls from about 0.84 
Wh/cell in the 1st year, to about 0.32 Wh/cell in the 4th year, 
and reaches zero in the 8th year. From Fig. 11(b), it can be seen 
that Vbat in the 8th year has exceeded the upper limit of the 
terminal voltage VEOC: the BESS is overcharged over these two 
hours. 

Fig. 10(d) and Fig. 11(d) show the battery current C-rate 
over the selected periods are all under 0.52 C. Although details 
are not shown here, a statistical analysis carried out on the 
battery current over the 8-year period establishes that the 

maximum current is only 0.73 C and in fact, the probability the 
current is less than 0.5 C is 0.999. The assumption that the Li-
ion battery is operating at low C rate, a situation under which 
the physics-based ECMs has been developed from the SPM, is 
therefore valid in this example. 

Fig. 12 shows the persistent growth in Rf, the continuous 
decline in the energy capacity index λk, as well as that in the 
battery Ah charge capacity Qmax,k, and the feasibly exportable 
and importable energies Ee,k and Ei,k over the 8-year operations. 
It is interesting to note that the rates of the decline in the 
capacity-related terms λk, Qmax,k, Ee,k and Ei,k and that of the 
increase in Rf become less pronounced as the BESS ages. This 
is because the loss of the negative electrode capacity, as 
illustrated in Fig. 3, has moved the operating range to higher 
V1

‒ region as the degradation progresses. This causes a 
reduction in the voltage difference U‒

sr,ref ‒ V1
‒, which in turn 

slows down the rate of the side reactions. This interesting 
observation has also been reported in [28]. Also as shown by 
λk in Fig. 12, at the end of the 8th year, the maximum amount 
of the stored energy Er,k in Ceq,k that can be used during the 
subsequent continuous loading process is only 60% of that 
when the battery is at BOL state. It can also be seen from Fig. 
12 that the feasibly exportable energy Ee,k is always less and 
the feasibly importable energy Ei,k. The difference is due to the 
internal resistive loss in the battery. Indeed, it can be observed 
from Fig. 12 that the loss increases over time as a result of the 
persistent increase in Rf and therefore Req,k(z). Such 
information can be very useful in the operational planning of 
the BESS by taking into account the BESS varying energy 
conversion efficiency over the long term.  

In summary, this example serves to show that unlike the 
empirical ECM, the proposed physics-based RO-ECM allows 
overcharge/overdischarge conditions and feasible energy 
storage range to be determined. The model is computationally 
efficient and can be used to predict the onset of stressed battery 
operating conditions. Preventive actions can then be taken to 
ensure the safe and prudent operations of the BESS.  

6 Conclusions 

A physics-based equivalent circuit models which can be 
used to assess the long-term performance and to predict the 
lifetime of grid-connected lithium-ion battery energy storage 
system have been developed. By taking into account the side 
reactions into the modelling process, it is shown that the 
derived battery models yield results which are in good 
agreement with those obtained from reported test 
measurements, as well as with those simulation results 
obtained using the well-established electrochemical P2D and 
single particle models, but at much reduced computational 
burden. 

The developed physics-based equivalent circuit models 
provide valuable insights into the internal states of the battery, 
thus paving the way toward the design of strategies for the safe 
and judicious operations of the Li-ion energy storage device 
for system planning. A fruitful topic for future study would be 
in the integration of the BESS in renewable generation, where 
there is the need to determine battery power flow control 
strategy and storage capacity to balance the desire to minimize 
the rate of the battery degradation against the need to 
maximize the economic benefits of the BESS utilization. 

Fig. 11. (a) Generated wind and output powers of wind farm; (b) – (d) Results 
of simulation study based on the proposed physics-based RO-ECM: 218th-
219th days of the 1st, 6th and 8th years of battery operations. Also shown in (c)
are the feasible energy capacity Er,k (dashed lines) of the selected days and
years.  

Fig. 12. Qmax,k/Qmax,0, Rf,k and λk over the long term  
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Appendix A 

The electrochemical parametric values of the Li-ion 
battery models used in this work are obtained from [27, 28] 
and listed in Table A.1.  

Fig. A.1 shows the equilibrium potential vs. stoichiometry 
function fs±(θ±

ss) of some common types of electrodes for Li-
ion battery. These curves were obtained from the literature. 
The mathematical expressions of the curves can be obtained 
by curve fitting technique. 

In this work, LiCoO2 (LCO) positive electrode and LiC6 
(graphite) negative electrode are assumed. The corresponding 
expressions for fs±(θ±

ss) are: 
2 4
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Fig. A.1. Typical relationship between equilibrium potential U±

ss and 
stoichiometry θ±

ss of some common types of positive and negative electrodes. 
LCO: lithium cobalt oxide; LMO: lithium manganese oxide; NMC: lithium 
nickel manganese cobalt oxide; LFP: lithium iron phosphate; NCA: lithium 
nickel cobalt aluminum oxide; MCMB: graphite; LTO: lithium titanate. 

Appendix B 

First, take the time derivative of (11) and (12) to yield 

 ,avg 1
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1
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 
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s s

V
f

 (B.1) 

Table A.1  
Li-ion battery parameters. 

Sym- 
bol 

Physical Meaning (Unit) 
Parameters 

Positive Electrode (+) Separator (sep) Negative Electrode (‒) 
Rp particle radius (m) 2×10‒6 - 2×10‒6 
Ds solid phase diffusion coefficient (m2/s) 1×10‒14 - 3.9×10‒14 
a specific surface area of electrode (m‒1) 8.85×105 - 7.236×105 
L length of the electrode (m) 80×10‒6 20×10‒6 88×10‒6 
εs volume fraction of the solid phase 0.59 - 0.49 

cs,max theoretical maximum concentration in the solid phase (mol·m‒3) 51555 - 30555 
θ0% stoichiometry for an empty battery at BOL 0.95 - 0.03 
θ100% stoichiometry for a full battery at BOL 0.4870 - 0.8851 
reff electrode rate constant (A·m2.5·mol‒1.5) 2.252×10‒6 - 4.854×10‒6 
rf,0 SEI film resistance at BOL (Ω·m2) 0 - 0.01 
κeff Effective electrolyte conductivity (S·m‒1) 0.0045 0.0563 0.0113 
F Faraday constant (s·A/mol) 96487 
T temperature (K) 298.15 
Rg universal gas constant [J/(K·mol)] 8.314 
rcol current collector resistance (Ω·m2) 0 
ce

0 average Li-ion concentration in the electrolyte (mol/m3) 1000 
A electrode plate area (m2) 0.05961 
Mf average molecular weight of the SEI film (kg/mol) 7.3×10‒4 
ρf SEI film density (kg/m2) 2.1×10‒3 
κf SEI film conductivity [1/(m·Ω)] 0.01 

i0,sr exchange current density for side reaction (A/m2) a 2.025×10‒7  
b 6.0×10‒6  

Usr,ref
‒ equilibrium potential of side reaction (V) 0.4 

Qmax,0 charge capacity at BOL (Ah) 1.8 
a. For Section 5.1 
b. For Section 5.2 



This work has been accepted for publication in Applied Energy on 20 April 2019 
(https://doi.org/10.1016/j.apenergy.2019.04.143) 

14 
 

14

 ,max
,avg 2

,avg

35
( ) ( )

8 ( )


 

 


 





s
s

p s s

c
q t V t

R f
 (B.2) 

Substituting (13) and (B.1) into (2a) to eliminate j1
±(t) and 

θs,avg
±(t), (14a) is obtained and the expressions of C1

± is given 
in (15). 

Next, (2c) can be written as 
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Substituting (12) and (13) into (B.4) to produce (14c). The 
expression of R1

± is given in (15). 
Finally, substituting (12), (13) and (B.2) into the (2b) to 

yield the second sub-equation of (14b). The expressions of C2
± 

and R2
± are 
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 It can be readily shown that 2 1 2 1(7 /12) , 6    C C R R . 

Appendix C 

The side-reaction current density Jsr
‒ can be expressed as an 

explicit function of the input current Ibat and the stoichiometry 
θss

‒ by solving the nonlinear simultaneous equations (1b), (4), 
(8) and (9) of SPM, as suggested in [40] 
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 For low-C rate application, θss
‒ ≈ θs,avg

‒. So it can be 
expressed as a linear function of process state variable z (i.e. 
Q1

+) and Qloss
‒, governed by (24) and (27), viz., 

 max,0 loss
ss ,avg 100%

,max

( ) ( )
( ) ( ) 3600


  

  

 
     

s
s s

Q Q t z t
t t

AL F c
 (C.2) 

Hence, with given Qloss
‒, side-reaction current Isr

‒ =AL‒Jsr
‒ 

can thus be written as an explicit function of z and Ibat. This is  
denoted as Isr

‒ = fsr(z, Ibat) in (32).  
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