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Abstract

A physics-based equivalent circuit model (ECM) is derived by applying the finite volume method to a pseudo-

two-dimensional (P2D) model of lithium-ion (Li-ion) batteries. Only standard passive components are used

to construct the equivalent circuit, which reflects the fact that a Li-ion battery is an energy storage device.

Voltages across and currents through the circuit elements in the ECM are identified with the respective

internal electrochemical processes in the battery, thus allowing the parametric values of circuit elements

to be expressed as functions of the Li-ion concentrations and temperature. Variations in the parametric

values across the thickness of the battery lead to a distributed-parameter ECM amenable for a wide range of

applications. Furthermore, in contrast to existing reduced-order models of Li-ion battery which are described

by differential-algebraic equations, the ECM is governed by ordinary differential equations wherein all the

circuit components are expressed as explicit functions of the state and input variables. Hence, the developed

model allows the solution to be found directly using matrix algebra, resulting in rapid simulation study

suitable for the development of computationally efficient real-time battery control algorithms. Results of

simulation based on the developed distributed-parameter ECM show close agreement with those obtained

from a partial differential equation based P2D model under a wide range of applied current rates, but at a

much reduced computational burden.
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1. Introduction

Due to their relatively high cell voltage, low self-discharge, wide temperature operating range, and an

excellent trade-off between power and energy densities, lithium-ion (Li-ion) batteries have become ubiquitous

energy storage devices in recent years for use in both mobile applications, including electric vehicles and

consumer devices, and stationary applications such as to provide uninterrupted power supply in the form of

large-scale, grid-connected, battery energy storage systems (BESS) [1]. As a result of this, advanced battery

management systems (ABMS) have been developed using sophisticated physics-based Li-ion battery models

that are capable of producing superior battery performance compared to traditional management systems

which are based on empirical models [2]. While the empirical models are intuitive and relatively simple to use

in control system design and implementation, they do not provide any insights into the internal behaviors of

the battery. These internal behaviors furnish important information, such as the internal physical limitation

and state of health of these batteries, which needs to be considered for both the short- and long-term

battery operations [2]. In contrast, physics-based battery models provide the mathematical description of

the electrochemical and thermodynamic processes of the cells [3, 4, 5, 6, 7, 8, 9, 10]. These models are defined

by complicated, nonlinear, partial differential algebraic equations (PDAEs) from which the internal behaviors

of the battery can be predicted accurately. However, as these PDAEs are not amenable to analytical or

computationally efficient numerical solutions, various reduced-order models have been developed, which

are either distributed-parameter models [11, 12, 13, 14] or lumped-parameters models [15, 16, 17]. The

distributed-parameter models are normally expressed in the form of ordinary differential algebraic equations

(DAEs), although to obtain a DAE solver that is computationally efficient and numerically stable for a wide

range of battery parameters and operating conditions can still be challenging for real-time applications. The

lumped-parameter models are simple and require minimum computational effort. However, they must be

fine-tuned according to the electrolyte properties in thick electrodes and/or at high current rates [18].

Another approach to battery modeling is to use equivalent circuit models (ECMs). These have the advan-

tage of ready implementation in well-accepted circuit simulation and control system design software packages

such as MATLAB/Simulink [19]. In these packages, various numerical solvers have been incorporated and

can be selected to solve the circuit model to facilitate the design of the control system. Conventionally ob-

tained from system identification, the parametric values of such empirical models shall be adjusted regularly

to fit the measurement data from tests carried out on-site [20]. However, this approach to battery model-

ing has limited applicability for long-term battery performance prediction under the ever-changing system

dynamics. To address this shortcoming, the ECMs with the capability of describing the internal electrochem-

ical behaviors of Li-ion batteries have been developed in recent years. Based on the single-particle concept,

the quantitative linkage between electrochemical models and lumped-parameter ECMs has been studied

in [21] and [22], using Pad approximation and polynomial profile approximation techniques, respectively.
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Unfortunately the developed models can only be applied to relatively low current rate applications. In [23],

the mass and charge transports in the Li-ion battery have been analogized using separate sub-circuits based

on the finite difference method (FDM). These sub-circuits have different units and thus cannot be readily

implemented in circuit simulation software for the purpose of circuit analysis and control system design.

This FDM technique has been used and improved in [24] where an integrated network with the incorporation

of double-layer capacitance, thermal behaviors, and the phenomenon of cell degradation is developed. A

non-standard circuit component has to be predefined to represent the chemical reactions that occur at vari-

ous interfaces that govern the conversion between the different species, including electrons, lithium ions and

intercalated lithium. The energy and charge conservation is not explicitly exhibited from the perspective

of circuit theory. In [25], a semi-empirical multi-particle ECM is developed by considering the non-uniform

behaviors along the cell thickness. The transport of lithium ions in the electrolyte is represented by an

assumed resistance network with fixed parametric values. The resistance values need to be identified using

the electrochemical impedance spectroscopy technique, subject to a large set of experimental data. This

method adds complexity to model implementation and it is only verified based on a specific type of Li-ion

battery. Similar to the electrochemical models [11, 12, 13, 14], the above-mentioned distributed-parameter

ECMs [23, 24, 25] are normally expressed in the form of DAE systems which contain certain algebraic

constraints and require a stable and fast DAE solver to ensure accurate results using iterative numerical

methods. These DAE solvers can greatly increase the solution time, especially under ever-changing dynam-

ic operating conditions [26]. Also, the degraded performance of the battery under the real-time charging

profile has not been evaluated in existing literature where only constant current or pulse current profile are

used for model validation. There is no evidence to show these models and the corresponding DAE solution

algorithms are sufficiently efficient for use in the context of advanced model-based real-time control schemes

operating under realistic fast-dynamic load conditions.

In the current work, a novel computationally efficient physics-based distributed-parameter ECM is devel-

oped using finite volume method (FVM). Compared to the existing physics-based ECMs, the ECM presented

contains only standard, passive circuit components, a feature that is consistent with the fact that Li-ion

batteries are energy storage devices rather than active sources. The conservation of energy of such standard

circuit components is well-explained in circuit theory [27]. The use of the standard passive elements means

that the model can be analyzed and implemented in readily available circuit simulation software and incorpo-

rated battery control schemes in real-time. Each of the components in the ECM presented here is related to

a specific, internal, electrochemical process of the Li-ion cell which therefore allows the internal states of the

cell to be determined. Furthermore, the proposed ECM is defined by ordinary differential equations (ODEs),

without algebraic constraints. Direct solution approaches can therefore be applied and the time-consuming

iterative solving procedures for DAEs used in existing literature are avoided. The direct numerical procedure

applied here is complemented by taking advantage of the high sparsity of the resulting matrix system [28].
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Simulation results obtained based on the developed ECM are shown to agree closely with those produced

using the well-established PDAE-based, electrochemical, pseudo-two-dimensional (P2D) model described

in [4], but at significantly reduced computational times. Finally, the developed ECM is of a general form

that other important cell dynamical processes such as temperature variation [29] and cell degradation that

have been well-studied in existing literature can be readily incorporated, while the proposed direct solution

method can still be applied.

The rest of the paper is organized as follows. Section 2 proposes a PDAE-based distributed-parameter

ECM from the P2D model of Li-ion battery. Section 3 develops the discretized ECM using FVM. The

concept of an elementary section (ES) of the equivalent circuit is used. An ES is the basic unit in the ECM

and describes the electrochemical behavior in each control volume associated with the discretized ECM

model equations. The complete discretized ECM and its solving technique is presented to achieve improved

computation efficiency without sacrificing much of the model accuracy. The method to incorporate the

impacts of the thermal and side reaction processes is also presented and discussed. Model validation and

comparisons are given in Section 4 while the main findings are concluded in Section 5.

2. Electrochemical model of Li-ion battery

2.1. Pseudo-two-dimensional model

A schematic of a 1D-spatial model of the Li-ion cell is shown in Fig. 1. It shows that the cell between

the two current collectors has been divided into three domains in the horizontal axis (x-direction), including

the positive electrode (denoted by the symbol +), the negative electrode (−), and the separator (sep)

compartment in-between them. The separator provides electronic insulation but allows ionic conduction.

The physical boundaries of the three domains are denoted as 0+/L+, 0−/L− and 0sep/Lsep, respectively.

According to the porous-electrode theory and concentrated solution theory, the lattice structure of the

electrode can be treated as particles immersed in the electrolyte, and the intercalation process can be

modeled by moving lithium ions in or out of the solid particles during charging or discharging. For example,

in the charging process as shown in Fig. 1, lithium ions diffuse to the surface of the active material particles

(solid phase) within the positive electrode where the electrochemical reaction occurs. Then the lithium

ions travel across the separator towards the negative electrode through the electrolyte via diffusion and

ionic conduction. Another electrochemical reaction occurs at the particle surface in the negative electrode

and lithium ions further diffuse towards the inner regions of the particles until the charging process ends.

A similar reverse process occurs when the battery is being discharged. The Li-ion diffusion in the radial

direction (r-direction) of the assumed particle exists everywhere along the x-direction, which treats the solid

and electrolyte phases as superimposed continua without regard to microstructure/mesostructure [12].
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Figure 1: 1D Schematic of P2D model of Li-ion cell during charging. X represents a space- and time-dependent variable.

Such pseudo-2D concept has been adopted to develop various Li-ion cell models with well prediction

performance and used in many applications such as [12, 13, 14, 30, 31]. A P2D model of Li-ion cell which

consists of a set of coupled, nonlinear PDAEs are presented in Table 1, while the physical meanings of each

of the symbols used in the equations are given in the Nomenclature section or explained in [3, 32].

Additional equations of the P2D model pertaining to the parameters Uss, κ, De, Ds, and k0 are given

in Appendix A. These parameters are expressed as functions of Li-ion concentrations and temperature, and

can be experimentally determined. The detailed expressions may vary based on the materials used for the

electrodes and electrolyte. In this article, LiCoO2 and LiC6 are assumed for the positive and the negative

electrodes, respectively, and the expressions are taken from [33].

For example, Equation (10) shows that the equilibrium potential Uss of the electrode is a nonlinear

function of the stoichiometry θss = css/cs,max at the surface of the assumed particle as well as the temperature

T . On the RHS of (10), the first term U∗ss is the equilibrium potential of the electrode at a reference

temperature T ∗ whilst the second term represents the variation of Uss due to temperature change, with the

coefficient ∂Uss/∂T |T∗ being the entropic variation of Uss. Both U∗ss and ∂Uss/∂T |T∗ are functions of θss,

and these relationships are generally denoted by the functions fs and fT respectively, given by (A.1)–(A.4).

Next, electrolyte conductivity κ in (1) and electrolyte diffusivity De in (5) are functions of the Li-ion

concentration ce in the electrolyte, and the relevant expressions are (A.5) and (A.6).
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Table 1: P2D model governing equations

PDEs of P2D Model Boundary Conditions

Charge conservation in electrolyte phase (domain = +,−, sep)

∂Φe(x,t)
∂x = − ie(x,t)κ +

2RgT (x,t)t0a
F

∂ ln ce(x,t)
∂x (1)

κ± ∂Φe
∂x

∣∣
x=0±

= 0,

κ+ ∂Φe
∂x

∣∣
x=L+ = κsep ∂Φe

∂x

∣∣
x=0sep ,

κsep ∂Φe
∂x

∣∣
x=Lsep = κ− ∂Φe

∂x

∣∣
x=L−

∂ie(x,t)
∂x = aFj(x, t) = 3εs

Rp
Fj(x, t) = J(x, t) (2)

ie(x, t)|x=0± = 0,

ie(x, t)|x=L± = ie(x, t)|x∈[0sep,Lsep] = iapp(t),

j(x, t)|x∈[0sep,Lsep] = 0

Charge conservation in solid phase (domain = +,−)

∂Φs(x,t)
∂x = − is(x,t)σ (3)

σ± ∂Φs
∂x

∣∣
x=0±

= −iapp(t),

σ+ ∂Φs
∂x

∣∣
x=L+ = σsep ∂Φs

∂x

∣∣
x=0sep ,

σsep ∂Φs
∂x

∣∣
x=Lsep = σ− ∂Φs

∂x

∣∣
x=L−

∂is(x,t)
∂x = −aFj(x, t) = − 3εs

Rp
Fj(x, t) = −J(x, t) (4)

is(x, t)|x=0± = iapp(t),

is(x, t)|x=L± = is(x, t)|x∈[0sep,Lsep] = 0

Mass conservation in electrolyte phase (domain = +,−, sep)

∂ce(x,t)
∂t = 1

εe
∂
∂x

(
De

∂ce(x,t)
∂x

)
+

t0a
Fεe

∂ie(x,t)
∂x (5)

D±e
∂ce
∂x

∣∣
x=0±

= 0,

D+
e
∂ce
∂x

∣∣
x=L+ = Dsep

e
∂ce
∂x

∣∣
x=0sep ,

Dsep
e

∂ce
∂x

∣∣
x=Lsep = D−e

∂ce
∂x

∣∣
x=L−

Mass conservation in solid phase (domain = +,−)

∂cs(x,r,t)
∂t = 1

r2
∂
∂r

(
Dsr

2 ∂cs(x,r,t)
∂r

)
(6)

D±s
∂cs
∂r

∣∣
r=0±

= 0,

D±s
∂cs
∂r

∣∣
r=R±p

= −j(x, t),

cs|r=R±p = c±ss(x, t)

Algebraic Equations in P2D Model

j(x, t) = 2i0(x,t)
F sinh

(
Fηs(x,t)

2RgT (x,t)

)
(7) –

i0(x, t) = Fk0

√
ce(x, t)(cs,max − css(x, t))css(x, t) (8) –

ηs(x, t) = Φs(x, t)− Φe(x, t)− Uss − rf (x,t)J(x,t)
a (9) –

Uss(θss, T )= U∗ss + ∂Uss

∂T

∣∣
T∗

(T (x, t)− T ∗)

= fs(θss) + fT (θss)(T (x, t)− T ∗)
(10) –

Output equation of P2D Model

Vbat(t) = Φs(0
+, t)− Φs(0

−, t) + (r+
col + r−col)iapp(t) (11) –

Furthermore, local temperature T (x, t) will also affect κ, De, Ds, and k0. Thermal model of Li-ion

cell that governs T (x, t) can be readily incorporated into the presented P2D model (1)–(11) and treated as
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a state variable, as will be shown in Section 3.7. In this article, the quantities obtained at the reference

temperature will be indicated with a superscript “*”.

Note that the presented P2D model provides a generic framework to develop other physics-based Li-ion

battery models for the purpose of real-time control. The developed model balances a trade-off between

accuracy and computational complexity. The effective properties of the P2D model are assumed known

parameters for simulation, and they can be experimentally determined or estimated by using more sophis-

ticated models with the capability to describe the mesostructure of the Li-ion cell [34, 35, 36].

2.2. Approximation of solid phase diffusion equation

PDE (6) is the Fick’s law of diffusion equation and it describes the diffusion of lithium ions in the solid

phase. The concentration profile in r-direction can be simplified using various techniques [37], among which

the polynomial profile approximations establish the relationship between the surface concentration css, the

volume-averaged concentration cs,avg, the average concentration flux qs,avg and the ionic flux j [11]. Such

approximation methods reduce the order of the P2D model by removing the radial coordinate r, yielding

a PDAE model system in x and t, and have been shown to be accurate for various ranges of applied

current while satisfying the boundary condition (6) [11]. In this article, (6) will be approximated using a

two-parameter polynomial approximation (12), following which the technique to develop the ECM in the

following sections will be presented.

∂cs,avg(x,t)
∂t = − 3

Rp
j(x, t)

5Ds
Rp

[css(x, t)− cs,avg(x, t)] = −j(x, t)
(12)

Given approximation (12), the governing equations for the variables of the P2D model become (1)–(5)

and (7)–(12).

2.3. Model reformulation

The presented approximate P2D model will be reformulated into a distributed-parameter electrical ECM

described by PDAEs in this subsection. As (2)–(4) and (11) are already in pure electrical form, only the

equations associated with concentration and mass transfer, including (1), (5), (7)–(10), and (12), will be

reformulated.

First, Equation (1), which describes electronic conduction in the electrolyte, can be rewritten as

∂Φ′e(x, t)

∂x
= − ie(x, t)

κ
=
∂Φe(x, t)

∂x
− ∂Ve(x, t)

∂x
(13)

Here Ve is a voltage term representing the overpotential due to the diffusion of lithium ions in the

electrolyte. Φ′e is the voltage difference between electrolyte potential Φe and Ve. They are defined as

Ve(x, t) := ΥT (x, t) ln[ce(x, t)/c
0
e] (14)
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Φ′e(x, t) := Φe(x, t)− Ve(x, t) (15)

where Υ = 2Rgt
0
a/F in (14) is a constant.

Next, following the detailed derivation process in Appendix B.1, the electrolyte diffusion equation (5)

can be reformulated to

C̄d
∂Ve(x, t)

∂t
=

∂

∂x

(
σd
∂Ve(x, t)

∂x

)
+ J(x, t) (16)

Here, J(x, t) is the local volumetric intercalation current density, as presented in (2) and (4). The overbar

in (16) and hereafter is used to denote the values that are specified in per unit volume. The volumetric

capacitance (in the unit of [F·m−3]) and the conductivity σd (in the unit of [S·m−1]) are given as

C̄d =
Fεe
t0a

ce(x, t)

ΥT (x, t)
, σd =

FDe(x, t)

t0a

ce(x, t)

ΥT (x, t)
(17)

Similarly, following the detailed derivation in Appendix B.2, the equivalent circuit equations for the

solid phase diffusion equation (12) and the temperature-dependent equilibrium potential equation (10) are

obtained as (18) and (19) respectively:

C̄∗s
dV ∗s (x,t)

dt = J(x, t)

Ḡ1(U∗ss(x, t)− V ∗s (x, t)) = J(x, t)

 (18)

C̄sT
dVsT(x,t)

dt = J(x, t)

Uss(x, t) = U∗ss(x, t) + VsT(x, t)

 (19)

where the volumetric capacitances and volumetric conductance (in the unit of [F·m−3]) are expressed as

C̄∗s, =
Fεscs,max

−f ′s(θs,avg)
, Ḡ1 =

Fεscs,max

−f ′s(θs,avg)

15Ds

R2
P

, C̄sT =
1

T − T ∗
f ′s(θs,avg)

f ′T (θs,avg)
C̄∗s (20)

Note that in (20), f ′s and f ′T represent the derivative functions of fs and fT in (10), respectively.

Furthermore, the activation overpotential ηs due to the main electrochemical reaction described by the

Butler-Volmer equation (7) can be considered to be the voltage across a polarization conductance Ḡη.

Substituting j = J/(aF ) into (7) yields the expression of ηs, i.e.,

ηs(x, t) =
2RgT (x, t)

F
sinh−1

(
J(x, t)

2ai0(x, t)

)
(21)

Dividing local volumetric current density J(x, t) by (21) allows the definition of the conductance Ḡη:

Ḡη :=
J(x, t)

ηs(x, t)
=

Fai0
RgT (x, t)

τ

sinh−1 (τ)
(22)

where τ = J(x, t)/(2ai0), and the exchange current density i0 is given by (8).

Finally, the volumetric conductance for the solid electrolyte interphase (SEI) film resistance in (9) can

be defined as

Ḡf := a/rf (23)

With (23) and considering j = J/(aF ), Equation (9) becomes

ηs(x, t) = Φs(x, t)− Φe(x, t)− Uss − J(x, t)/Ḡf (24)
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Figure 2: Discretization method.

3. Physics-based ECM of Li-ion battery

3.1. Spatial discretization using finite volume method

For the purposes of computer simulation and model-based control algorithm design, the PDAE-based

ECM (2)–(4), (11), (13)–(24) of Li-ion battery needs to be reduced into DAEs so that it can be solved

in a real-time environment. This can be achieved by spatial discretization in the x-domain. The FVM is

preferred in this article because it is robust, computationally efficient, and capable of preserving the law of

mass conservation [38].

In order to correctly carry out the spatial discretization, a mesh structure is first defined by subdividing

the x-domain into N = N+ +N sep +N− non-overlapping control volumes (CVs) with geometrically centered

nodes. The notation (N+, N sep, N−) will be used to represent the number of CVs. Every CV is associated

with a center node xk and spans the interval [xk−0.5, xk+0.5] as shown in Fig. 2. To facilitate the treatment of

boundary and interface conditions, the edges of each CV are aligned with the domain boundaries and internal

interfaces. The width of the CV with index k (CV k) is denoted as lk. Define the central variable Xk(t) :=

X(x, t)|x = xk, left edge variable Xk−0.5(t) := X(x, t)|x = xk−0.5, and right edge variable Xk+0.5(t) :=

X(x, t)|x = xk+0.5. Also, the following integer sets are defined: S+ = {k : 1 ≤ k ≤ N+}, Ssep = {k :

N+ + 1 ≤ k ≤ N+ +N sep}, S− = {k : N+ +N sep + 1 ≤ k ≤ N}, and S = {k : 1 ≤ k ≤ N}.

One can use the method of lines [39] to obtain the approximate values of the gradient of the variable

X(x, t) at the central node and the edges of CV k. However, this discretization approach requires the use

of the values of variables in the neighboring CVs. As shown in Fig. 2, in order to develop an equivalent

circuit for each CV for easy model implementation, the discretization equations for method of lines will be

modified into the following form, i.e.,

Gradient of central variable:

∂X(x, t)

∂x

∣∣∣∣
x=xk

≈ Xk+0.5(t)−Xk−0.5(t)

lk
=
|CE|
|BE|

(25)
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Gradient of left edge variable:

∂X(x, t)

∂x

∣∣∣∣
x=xk−0.5

≈ Xk(t)−Xk−0.5(t)

0.5lk
=
|CD|
|AD|

(26)

Gradient of right edge variable:

∂X(x, t)

∂x

∣∣∣∣
x=xk+0.5

≈ Xk+0.5(t)−Xk(t)

0.5lk
=
|AF|
|BF|

(27)

Based on this method, the spatially-discretized equations for the distributed-parameter ECM are ob-

tained and shown in Table 2. Amongst them, (29)–(33) are obtained by applying (25)–(27) to the PDEs

(13), (2)–(4), and (16). The other equations (34)–(37) correspond to (22), (24), (18), and (19), respectively,

which only describe the cell behaviors at the central node (x = xk). The units of all the quantities have

been converted into [A] (current), [Ω] (resistance), [F] (capacitance). Specifically, Ie,k = Aie,k, Is,k = Ais,k,

Re,k = lk/(κkA), Rs,k = lk/(σkA), Iionic,k = AlkJk, C∗s,k = AlkC̄
∗
s,k, CsT,k = AlkC̄sT,k, Cd,k = AlkC̄d,k,

Rf,k = 1/(AlkḠf,k), R1,k = 1/(AlkḠ1,k), Rη,k = 1/(AlkḠη,k). Special attention has to be paid to the

resistance Rd,k,k+0.5 and Rd,k,k−0.5 in (33). They are expressed as

Rd,k,k±0.5 =
0.5lk

Aσd,k±0.5
=

0.5lk
A

(
t0a

FDe,k±0.5

ΥTk±0.5

ce,k±0.5

)
≈ 0.5Υt0a

AF

lkTk
De,k

∂ ln ce,k±0.5

∂ce,k±0.5
(28)

Note that in the separator, as there is no ionic flux j, the term Iionic,k in (30) and (33) shall be set to

zero when it is applied to a CV in the separator domain.

Taken together, the FVM ECM equations describe the dynamic behavior of the CV k in the cell.

3.2. Elementary section

With the spatially-discretized ECM equations derived in Section 3.1, the equivalent circuit of each CV,

denoted the elementary section (ES), will be developed. First, the equivalent circuit to (29)–(32) and (35),

which shows the principle of charge and energy conservation, is obtained according to Kirchhoffs circuit laws

and is shown in Fig. 3(a). This circuit describes electronic and ionic conduction processes in a CV and it is

referred to as an ES of the main circuit. Note that Fig. 3(a) is only valid for a CV in the electrode domain

(k ∈ S+ ∪ S−). It is reduced to Fig. 3(b) for a CV in the separator domain (k ∈ Ssep), taking into account

the fact that there is no ionic flux (i.e., Iionic,k = jk = 0) in the separator.

Consider the controlled voltage source (CVS) of the equilibrium potential Uss,k in Fig. 3(a). It is associ-

ated with the diffusion of lithium ions in the solid phase governed by (36) and (37). According to (36) and

(37), the equivalent circuit associated with Uss,k is obtained and it is shown in Fig. 3(g). It can be seen that

Uss,k consists of three components:

1) V ∗s,k represents the open-circuit potential (OCP) of the electrode at reference temperature T ∗;

2) VsT,k represents the variation of OCP due to the temperature change;

10



Table 2: FVM ECM equations

FVM ECM Equations Boundary Conditions

Φe,k±0.5(t)− Φ′e,k(t) = ∓0.5Re,kIe,k±0.5(t) + Ve,k±0.5(t) (29)
Φe,0.5 = Φ′e,1,

Φ′e,N = Φe,N+0.5

Ie,k+0.5(t)− Ie,k−0.5(t) = Iionic,k(t) (30)

Ie,0.5 = Ie,N+0.5 = 0,

Ie,N++0.5 = Ie,N++Nsep+0.5

= Ie,k|k∈Ssep = Iapp

Φs,k(t)− Φs,k±0.5(t) = ±0.5Rs,kIs,k±0.5(t) (31)
Φs,N+ = Φs,N++0.5,

Φs,N− = Φs,N−−0.5

Is,k+0.5(t)− Is,k−0.5(t) = −Iionic,k(t) (32)

Is,0.5 = Is,N+0.5 = Iapp,

Is,N++0.5 = Is,N++Nsep+0.5

= Is,k|k∈Ssep = 0

Cd,k
dVe,k(t)
dt =

Ve,k+0.5(t)−Ve,k(t)
Rd,k,k+0.5

− Ve,k(t)−Ve,k−0.5(t)
Rd,k,k−0.5

+ Iionic,k(t) (33)
Ve,0.5 = Ve,1,

Ve,N = Ve,N+0.5

ηs,k(t) = Rη,kIionic,k(t) (34) -

Φs,k(t)− Φe,k(t) = Uss,k + ηs,k(t) +Rf,kIionic,k(t) (35) -

C∗s,k
dV ∗s,k(t)

dt =Iionic,k(t), U∗ss,k(t)− V ∗s,k(t) = R1,kIionic,k(t) (36) -

CsT,k
dVsT,k(x,t)

dt = Iionic,k(t), Uss,k(t) = U∗ss,k(t) + VsT,k(t) (37) -

3) ∆Uk = U∗ss,k − V ∗s,k = R1,kIionic,k represents the overpotential due to the diffusion of lithium ions in

the solid phase.

As mentioned earlier in Section 2.2, there are many methods to approximate (6), instead of the two-

parameter polynomial approximation method adopted here. Different methods can result in different RC

equivalents to CVS Uss. As another example, Appendix B.2 gives the derivation of RC equivalence using a

higher-order polynomial approximation which is more accurate for higher current application [11], and its

equivalent circuit is shown in Fig. 3(h). The study on the other methods of approximation has been left for

future work and is expected to bring fruitful outcomes.

Fig. 3(c) shows the electrical circuit for (33), which describes the mass transfer in the electrolyte in

the electrode domain. It is denoted the ES of the supplementary circuit. Again, for the separator domain

(k ∈ Ssep), as Iionic,k = 0, the corresponding ES can be reduced to Fig. 3(d). Next, it can be seen that the

CVS Ve,k in Fig. 3(a) and the controlled current source (CCS) Iionic,k in Fig. 3(c) are coupled components

and they constitute a lossless two-port network component, as shown in Fig. 3(e). This component represents

an ideal transformer with turns ratio of 1:1, as shown in Fig. 3(f). As the two terminals have equal terminal

powers Ve,kIionic,k, this ideal transformer component clearly embodies the principle of conservation of energy

11



Φ′e,k

Φs,k

Φe,k

Φe,k+0.5

Rf,k
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Iionic,k
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C2,k

Iionic,k
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s,k

VsT,k
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V2,k

CsT,k

C*
s,k

Vs,k

ΔUk

(h)

+
− Usr,ref

ηsr,k
+
− 

Isr,k

Figure 3: (a) ES of the main circuit of the electrode; (b) ES of the main circuit of the separator; (c) ES of the supplementary

circuit of the electrode; (d) ES of the supplementary circuit of the separator. (e) Coupled CCS and CVS; (f) Ideal transformer

equivalence of coupled CCS and CVS. (g) RC equivalence to equilibrium potential Uss,k using two-parameter polynomial ap-

proximation; (h) RC equivalence to equilibrium potential Uss,k using higher-order polynomial approximation; (i) R equivalence

to main reaction overpotential ηs,k.

between the charge transfer (main circuit) and mass transfer (supplementary circuit) processes. This feature

has not been explicitly exhibited in existing literature from the perspective of circuit theory.
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3.3. Construction of the full ECM
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Figure 4: (a) Three ESs connected in series; (b) Simplified equivalent circuit for (N+, Nsep, N−) = (2, 1, 2). Note that

R±
col = r±col/A.

According to FVM, the right edge variable of CV k is identical to the left edge variable of CV k + 1.

This requirement of continuity can be automatically satisfied by cascading different ESs. As an example,

Fig. 4(a) shows part of the circuit consisting of three cascaded ESs: ES k − 1 and ES k are at the interface

of the separator and the negative electrode, while ES k + 1 is at the end terminal of the electrode.

After cascading, it is possible to simplify the ECM by reducing the number of circuit components. Firstly,

the capacitors and resistors connected in series can be combined:
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With this combination, the ODEs that govern the capacitor voltages are changed from (36), (37), and

(33) to

Cs,k
dVs,k(t)

dt
= Iionic,k(t) (38)

Cd,k
dVe,k(t)

dt
=
Ve,k+1(t)− Ve,k(t)

Rd,k+0.5
+
Ve,k−1(t)− Ve,k(t)

Rd,k−0.5
+ Iionic,k(t) (39)

In (38), the capacitor voltage Vs,k = V ∗s,k+VsT,k represents the temperature-dependent OCP as indicated

in Fig. 3(g). Secondly, certain floating branches can be deleted if no current flows into them. This can

be investigated from the boundary conditions. For example, according to boundary conditions of (32),

Ie,k+1.5 = 0 and Is,k−0.5 = 0. Thus, the bottom-right branch of the ES k + 1 and the top-left branch of ES

k of the main circuit can be removed. Similarly, according to boundary conditions of (33) Ve,k+1 = Ve,k+1.5,

the extra branches on the right-hand side terminal of the supplementary circuit can also be deleted. Thirdly,

the two series-connected CVSs on the same branches at the bottom of the main circuit effectively cancel

each other out, as the pair have equal but opposite polarities. As an example, Fig. 4(b) shows the complete

equivalent circuit of Li-ion battery for (N+, N sep, N−) = (2, 1, 2) by applying the above circuit simplification

steps.

3.4. State-space representation of physics-based ECM

The complete distributed-parameter ECM of Li-ion battery cell denoted DAE-OCM has now been de-

rived. It can be observed that only standard passive circuit components consisting of resistors, capacitors,

and ideal transformers are used to form the circuit. Hence, according to conventional circuit theory, the

ECM can now be readily expressed in a compact state-space form, namely,

d
dtxc(t) = Acxc(t) + Bcu(t)

y(t) = Ccxc(t) + Dcu(t)

 (40)

Here, the input variable u(t) is the applied current Iapp(t) = Aiapp(t), the output variable y(t) is the

terminal voltage Vbat(t), and the state vector xc(t) consists of all the capacitor voltages in the ECM, viz.,

xc(t) =



V+
s (t)

V−s (t)

V+
e (t)

Vsep
e (t)

V−e (t)


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where

V+
s =



Vs,1

Vs,2
...

Vs,N+−1

Vs,N+


,V−s =



Vs,N++Nsep+1

Vs,N++Nsep+2

...

Vs,N−1

Vs,N



V+
e =



Ve,1

Ve,2
...

Ve,N+−1

Ve,N+


,Vsep

e =



Ve,N++1

Ve,N++2

...

Ve,N++Nsep−1

Ve,N++Nsep


,V−e =



Ve,N++Nsep+1

Ve,N++Nsep+2

...

Ve,N−1

Ve,N


The equations in (40) represent a continuous-time single-input single-output (SISO) state-space model.

The elements in the matrices Ac, Bc, Cc, and Dc are functions of the RC parameters and the detailed

derivation of them are given in Appendix C.

3.5. ODE-ECM

For implementation as a real-time control system, (40) has to be discretized in time and solved numeri-

cally. In order to perform the numerical integration to obtain the state vector xc(t + ∆t) at the next time

step, the values of Ac, Bc, Cc, and Dc must be updated within each time step ∆t. The RC parameters

that determine Ac, Bc, Cc, and Dc, according to (17), (20), (22), and (23), depend on the following vari-

ables: ce,k(t), θs,avg,k(t), θss,k(t), and τk(t) (which is proportional to Iionic,k(t)). Amongst them, ce,k(t) and

θs,avg,k(t) can be directly calculated from the state variables xc(t) using (14) and (B.4), respectively. To

obtain the remaining two variables θss,k(t) and Iionic,k(t), a highly nonlinear algebraic equation system has

to be solved:

0 = g(Iionic(t),θss(t), u(t)) (41)

where Iionic(t) and θss(t) are vectors of Iionic,k(t) and θss,k(t), respectively. Together, (40) and (41) represent

a system of DAEs that govern the differential variables xc(t) and the algebraic variables Iionic(t) and θss(t)

for the DAE-ECM. This algebraic equation imposes an implicit algebraic constraint to the model (40). Due

to the fact that (41) is highly nonlinear, an iterative method must be used within each time step ∆t to

calculate the value of Iionic(t) and θss(t)with known u(t) = Iapp(t). Such a process would increase the

solution time significantly and may even lead to numerical instability, especially in situations where the

input current, Iapp(t), varies dramatically [40]. In fact, θss,k(t), Iionic,k(t) are only used in (22). In order to

remove the constraint (41) of the DAE-based model, an approach is now proposed to approximate Iionic,k(t)

and θss,k(t) so that (22) can be expressed as a function of state and input variables.
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First, the profile of ionic flux j(x, t) in the x-direction will be estimated by a quadratic function for each

electrode. For the positive electrode, assuming the gradient of j at x = 0 is zero, the estimated ionic flux is

expressed as

ĵ(x, t) = γ+x2 (42)

A “ˆ” symbol will be used to denote the estimated quantities. Integrating (4) from 0+ to L+ gives∫ L+

0+

−a+F ĵ(x, t)dx± =

∫ L+

0+

∂is(x, t)

∂x
dx = is(x, t)|x=L+ − is(x, t)|x=0+ = −iapp(t) (43)

Substituting (42) into (43) yields

γ+ =
3

a+F (L+)
3 iapp(t) (44)

The relationship between central node index k and spatial position x is

x =
2k − 1

2N+
L+ (45)

Substituting (44) and (45) into (42), and using Iionic,k = AlkakFjk = A(L+/N+)akFjk, the relationship

between Îionic,k and Iapp is obtained:

Îionic,k(t) =
3

N+

(
2k − 1

2N+

)2

Iapp(t) (46)

A similar approach can be applied to the negative electrode, which yields

Îionic,k(t) = − 3

N−

(
4N − 2N− − 2k + 1

2N−

)2

Iapp(t) (47)

Next, considering (36), the surface stoichiometry θss,k(t) can be estimated using

θ̂ss,k(t) = f−1
s (Û∗ss,k(t)) = f−1

s (V ∗s,k(t) +R1,k Îionic,k(t)) (48)

Hence, using (47) and (48), (22) can be estimated based on input variable Iapp(t) and state variable

V ∗s,k(t), and the resulting model is denoted as ODE-ECM. Table 3 summarizes the expressions that determine

the R and C parametric values of the ODE-ECM. All the RC parameters as well as the matrices Ac, Bc,

Cc, and Dc have been expressed as explicit functions of the state variables xc(t) and input variable Iapp(t),

and thus the derivative of the state variables can be rapidly calculated without using an iterative method.

The physical meaning of each component and their dependence on state and input variables are also shown

in Table 3.

Note that in obtaining the expression of Rd,k+0.5, the following approximation is used:

∂ ln ce,k+0.5

∂ce,k+0.5
≈ ln ce,k+1 − ln ce,k

ce,k+1 − ce,k
=

1

ce,k

ln(ce,k+1/ce,k)

ce,k+1/ce,k − 1
=

1

ce,k

χk+1,k

exp(χk+1,k)− 1
(49)

where

χk+1,k := ln(ce,k+1/ce,k) =
Ve,k+1

ΥTk+1
− Ve,k

ΥTk
(50)
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Table 3: Expressions and physical meanings of circuit components of ODE-ECM

Sym. Expressions Physical Meanings
Dependent state

and input variables

Cs,k

(
1

1+
fT (θs,avg,k)

fs(θs,avg,k)
(Tk−T∗)

)
×

AlkFεs,kcs,max,k

−f ′s(θs,avg,k)

Capacitance due to the transport

of lithium ions in the solid phase

with temperature effect

Vs,k(θs,avg,k)

R1,k
−f ′s(θs,avg,k)

AlkFεs,kcs,max,k

R2
p,k

15Ds,k

Local virtual resistance

representing the dissipation due to

Li-ion diffusion in solid phase

Vs,k(θs,avg,k)

Rs,k+0.5
0.5
A

(
lk
σk

+ lk+1

σk+1

)
Local resistance in solid phase None

Re,k+0.5
0.5
A

(
lk
κk

+ lk+1

κk+1

)
Local resistance in the electrolyte

Ve,k(ce,k),

Ve,k+1(ce,k+1)

Rd,k+0.5

0.5Υt0a
AF

(
lkTk
De,k

+ lk+1Tk+1

De,k+1

)
×

1
ce,k

χk+1,k

exp(χk+1,k)−1

Local virtual resistance representing

the dissipation due to Li-ion

diffusion in the electrolyte

Ve,k(ce,k),

Ve,k+1(ce,k+1)

Cd,k
AlkFεe,kce,k

t0aΥTk

Capacitance due to the concentration

in the electrolyte
Ve,k(ce,k)

Rη,k

1
Alkak

RgTk
F 2k0,kcs,max,k

×
1√

ce,k θ̂ss,k(1−θ̂ss,k)

sinh−1(τ̂k)
τ̂k

Local resistance due to the main reaction

Ve,k(ce,k),

Vs,k(θs,avg,k),

Iapp

Rf,k
rf,k
Alkak

Local SEI film resistance None

As (49) has a removable discontinuity at χk+1,k = 0, one can redefine its value by recognizing that

lim
χk+1,k→0

χk+1,k

exp(χk+1,k)− 1
= 1 (51)

One can use the steady-state values, when Iapp(0) = 0, to initiate the time-domain simulation. At steady

state, initial Ve,k(0) = 0, and the initial values of V ∗s,k can be calculated using the initial state-of-charge

(SOC) and T . The SOC at node k is defined here as the portion of total stored charge in the main capacitor

V ∗s,k. As the volume-averaged concentration θs,avg is proportional to the charges stored in the main capacitor,

one obtains

SOCk(t) =


1− θs,avg,k(t)−θ+

0%

θ+
100%

−θ+
0%

= 1− f+
s (V ∗s,k(t))−θ+

0%

θ+
s,100%

−θ+
0%

, k ∈ S+

θs,avg,k(t)−θ−
0%

θ−
100%

−θ−
0%

=
f−s (V ∗s,k(t))−θ−

0%

θ−
100%

−θ−
0%

, k ∈ S−
(52)

where θ+
100% and θ+

0% are the corresponding stoichiometry for the fully-charged and the fully-discharged

positive electrode, and θ−100% and θ−0% have similar meanings for the negative electrode. Next, the ODE-
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ECM can be discretized in the time domain and solved by various well-established numerical methods for the

purposes of computer simulation and real-time control. The system order of the ECMs equals to the number

of the capacitors: this is 2N+ +2N−+N sep if the two-parameter Li-ion concentration approximation model

is used to represent the transport process of the Li-ion in the solid phase. As can also be seen in Appendix C,

the matrices of the state-space model of the developed ECM are sparse. Well-established numerical methods

for dealing with sparse matrices can be used to reduce solution time [29].

It should be pointed out that when (N+, N sep, N−) = (1, 0, 1), the resulting ECM represents the single-

particle model (SPM), which is a lumped-parameter model relevant in low current rate applications. This

ECM for SPM has been reported in [22]]. When (N+, N sep, N−) = (1, 1, 1), the ECM represents the

equivalent circuit for an extended single-particle model, as proposed in [41] where diffusion of Li-ion in the

electrolyte is considered. These models are valid for low current rate applications where the distributed

effect of variables along the cell thickness is ignored.

3.6. Conservation of mass

One important feature of the developed ECM is that the law of mass conservation is preserved. This

can be proven in the following way. The mass of the lithium ions in the CV k in the solid phase can be

calculated using the concentration, cs,k(t), and the effective volume, Alkεs,k, as

ms,k(t) = Alkεs,kcs,k(t) (53)

Using (53), (36) and (B.5), it can be readily shown that the sum of the rate of change in the mass of the

lithium ions in the solid phase is zero, that is,

∑
k∈S+∪S−

dms,k(t)

dt
=

1

F

∑
k∈S+∪S−

C∗s,k
dV ∗s,k
dt

=
1

F

(∑
k∈S+

Iionic,k +
∑
k∈S−

Iionic,k

)
=

1

F
[Iapp + (−Iapp)] = 0

(54)

Hence, the mass of the lithium ions in the solid phase is conserved. On the other hand, the mass of the

lithium ions in the CV k in the electrolyte is given by

me,k(t) = Alkεe,kce,k(t) (55)

Similarly, using (33) and (55), it can be readily shown that∑
k∈S

dme,k(t)

dt
=
∑
k∈S

lkAεe,k
dce,k(t)

dt
=
t0a
F

∑
k∈S

Cd,k
dVe,k
dt

= − t
0
a

F

(∑
k∈S+

Iionic,k +
∑
k∈S−

Iionic,k

)
= − t

0
a

F
[Iapp + (−Iapp)] = 0 (56)

Equation (56) indicates that the mass of the lithium ions in the electrolyte is also conserved at all times.

The proposed ECM establishes a relationship between charge conservation and mass conservation, as the
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lithium ions are charged particles. This feature of mass conservation is a welcome benchmarking outcome

for the physical credibility of the developed ECM. Its importance is also realized, for example, when it is

necessary to estimate the state-of-charge of the battery where the selection of control parameters for the

state estimator is constrained by mass conservation, as is reported in [42].

3.7. Equivalent circuits for thermal model

Table 3 shows that various R and C parameters are affected by the temperature Tk. As mentioned

earlier, the proposed ECMs assume that the value of Tk is given. A thermal model can be incorporated to

describe the heat transfer process that governs the variation of Tk in the cell. In this subsection, a technique

to incorporate the thermal model to the developed ECMs is shown. The equations and the boundary

conditions that describe the heat transfer phenomenon in the Li-ion cell is given as [29]

ρcp
∂T (x, t)

∂t
=

∂

∂x

(
λ
∂T (x, t)

∂x

)
+ qT (x, t) (57)

qT (x, t) = qT,ohm(x, t) + qT,rxn(x, t) + qT,rev(x, t) (58)

λ
∂T (x, t)

∂x

∣∣∣∣
x=0+,0−

= h(Tend − T (x, t))|x=0+,0− (59)

qT,ohm(x, t) = σ
(
∂Φs(x,t)

∂x

)2

+ κ∂Φe(x,t)
∂x

(
∂Φe(x,t)

∂x +
2RT (x,t)t0a

F
∂ ln ce(x,t)

∂x

)
qT,rxn(x, t) = Faj(x, t)ηs(x, t)

qT,rev(x, t) = Faj(x, t)T (x, t) ∂Uss

∂T

∣∣
T∗

 (60)

where Tend is the temperature at the end of the electrode. ρ, cp, and λ are the density, the specific heat

and thermal conductivity, respectively. The heat flux qT consists of three components: 1) the heat qT,ohm

generated due to the movement of the electrons in the conductive pass; 2) the heat qT,rxn generated due to

the main chemical reaction which is an exothermal reaction; 3) the heat qT,rev generated due to reversible

entropy of reaction.

Using the FVM equations (25)–(27) to discretize (57)–(60), one obtains an equivalent thermal circuit

form

CT,k
dTk(t)

dt
=
Tk+0.5(t)− Tk(t)

RT,k,k+0.5
− Tk(t)− Tk−0.5(t)

RT,k,k−0.5
+QT,k(t) (61)

QT,k(t) = lkAqT ,k(t) = QT,ohm,k(t) +QT,rxn,k(t) +QT,rev,k(t) (62)

Tk+0.5(t)− Tk(t)

Rd,k,k+0.5
=
Tend − Tk(t)

RT,end
(63)

QT,ohm,k(t) = (0.5Rs,k)(I2
s,k−0.5(t) + I2

s,k+0.5(t)) + (0.5Re,k)(I2
e,k−0.5(t) + I2

e,k+0.5(t))

+Ie,k−0.5(t)(Ve,k−0.5(t)− Ve,k(t)) + Ie,k+0.5(t)(Ve,k(t)− Ve,k+0.5(t))

QT,rxn,k(t) = Rη,kI
2
ionic,k(t)

QT,rev,k(t) = VsT,k(t)Iionic,k(t)


(64)
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where the circuit parameters are defined as

CT,k = ρkcp,klkA, RT,k,k±0.5 =
0.5lk

λk±0.5A
, RT,end =

1

hA
(65)

As shown in (62), heat flow rate QT,k(t) consists of the heat rate QT,ohm,k due to the resistive loss in

Rs,k and Re,k; heat rate QT,rxn,k due to the reactive loss in Rη,k and heat rate QT,rev,k associated with the

reversible entropy of reaction CsT,k. They can be calculated from the ODE-ECM developed in Section 3.

Note in the ODE-ECM, the resistances Rd,k and R1,k, which are derived from the diffusion equations, do

not produce any heat. They only represent the dissipative effect in the irreversible diffusion process. With

the temperature Tk as additional state variables to capacitor voltages, the RC parameters are still explicit

functions of the state variables, and the resulting model remains an ODE system although the system order

is increased by N . The corresponding state-space representation of (61) is in the form

d

dt
xT (t) = ATxT (t) + BTQT (t) (66)

QT (t) = Hxc(t) + Gu(t) (67)

where

xT (t) =
[
T1(t) T2(t) · · · TN (t)

]T
, QT (t) =

[
QT,1(t) QT,2(t) · · · QT,N (t)

]T
(68)

The matrices AT and BT , H, and G can be obtained using (61) and (64), although for reason of brevity,

the derivations are not given explicitly here. With the temperature state equations (66) and (67) and

ODE-ECM (40), the complete state-space equation can be written as

d

dt

xc(t)
xT (t)

 =

 Ac 0

BTH AT

xc(t)
xT (t)

+

 Bc

BTG

u(t) (69)

3.8. Equivalent circuits for side reactions

This subsection briefly discusses the method to incorporate the degradation model into the developed

ECM. Various causes of Li-ion battery degradation have been investigated and identified, see e.g., [43,

44], based on which numerous degradation models have been developed in recent years for the behavioral

prediction of Li-ion battery [5, 7, 8, 10, 45, 46]. In the present study, attention is only directed towards

the most common and significant degradation mechanism encountered during the normal operations of the

Li-ion battery: that due to the irreversible side reactions between the lithium ions and solvent species in the

negative electrode of the battery cell. This side reactions process causes the capacity fade and the growth

of SEI film in the negative electrode, and it has been widely considered in the design of ABMS [5, 43, 44].

In the P2D model presented in Table 1, the intercalation current density J(x, t) in (2), (4), and (9)

shall be replaced by the total local volumetric current density Jtot(x, t). Jtot(x, t) consists the intercalation

current density J(x, t) and the side reactions current density Jsr(x, t), i.e.,

Jtot(x, t) = J(x, t) + Jsr(x, t) (70)
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The kinetics of the side reactions are described using the Tafel equation, by assuming the side reactions

are irreversible, i.e.,

Jsr(x, t) = −i0,sra exp

(
−Fηsr(x, t)

2RgT (x, t)

)
(71)

ηsr(x, t) = Φs(x, t)− Φe(x, t)− Usr,ref −
Jtot(x, t)

a
rf (x, t) (72)

where i0,sr, ηsr, and Usr,ref are the exchange current density, the activation overpotential, and the equilibrium

potential of the side reactions, respectively.

Furthermore, the increase of SEI film resistance due to side reactions current density Jsr is described by

rf (x, t) = −
∫ t

0

Mf

ρf

1

Fκfa
Jsr(x, τ)dτ + rf,0 (73)

Here, Mf , ρf , κf , and rf,0 are the average molecular weight, the density, the conductivity, and the initial

value of the SEI film, respectively. Based on the FVM and method of electrical analogy, the equivalent circuit

that represents the side reactions model (69)–(71) in an ES can be obtained. It is also shown in Fig. 3(a),

in which the local side reactions current is defined as Isr,k = AlkJsr,k. An extra equation derived from (72)

shall be used to update the SEI film resistance Rf,k, i.e.,

Rf,k(t) = − 1

(Alkak)
2

Mf

ρf

1

Fκf

∫ t

0

Isr,k(τ)dτ +Rf,0 (74)

It should be pointed out that existing works show that the side reactions can also affect other elec-

trochemical parameters, e.g., the volume fraction of solid active material εs, porosity εe, and the effective

diffusion coefficient of electrolyte De, amongst others [8]. Extra equations can be added to dynamically

update the associated resistances and capacitances in the ECM.

As the purpose of the current work is to provide a generic numerical methodology based on existing well-

developed electrochemical models, the detailed studies on various degradation models will not be elaborated

and they are left as part of future work.

4. Results and discussion

The P2D model (1)–(11) of a Li-ion battery given in Section 2.1 has been experimentally validated in

various studies such as [33]. Therefore the P2D model shall be used herewith as a benchmark for val-

idating the developed physics-based ECMs. The P2D model was implemented and solved in COMSOL

Multiphysics R© Modeling Software. The developed DAE-ECM and ODE-ECM were implemented in MAT-

LAB R2016a/Simulink 8.7 software, and the variable-step solver ode23tb (stiff/TR-BDF2) was selected.

To demonstrate the effectiveness of the proposed ECMs, the results were also compared with those ob-

tained from a MATLAB code of P2D model named LIONSIMBA [31]. LIONSIMBA uses IDA package

[47] to solve the set of DAEs with a good trade-off between accuracy and computational time based on
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FVM. As LIONSIMBA and the proposed ECMs are all based on FVM, the same number of CV or ES

(N+, N sep, N−) = (10, 5, 10), maximum step-size of 0.5 s, and two-parameter polynomial approximation

(12) were used for consistency. All the simulated results were obtained on a 64-bit Windows 7 on a Dell

OptiPlex 9020 PC, with Intel Core i7-4790 CPU@ 3.60 Hz and 16GB RAM. All the parametric values

adopted for this study and the relevant references for these values are given in Appendix D.

4.1. Constant current discharge — isothermal condition
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Figure 5: Simulation results under 1C discharge current from COMSOL, LIONSIMBA, ODE-ECM, and DAE-ECM. (a)

Terminal voltage; (b) Voltage error compared with COMSOL results in percentage; (c) Surface stoichiometry of Li-ion in the

solid phase of electrodes; (d) Li-ion concentration in the electrolyte.

Fig. 5 shows a comparison of the results from different models for a 1C constant current discharge. The

simulated cells were initially fully charged at 4.17 V, and discharge was stopped at 3.0 V. In this case, a

large value, h = 1000 W · m−2 · K−1, of the heat transfer coefficient was selected in order to simulate an

isothermal condition on the left and the right external boundaries (x = 0±) of the cell. The computational

performance of each model and the root mean square error (RMSE) relative to the COMSOL P2D model

output is given in Table 4. It can be observed in Fig. 5(a) that the outputs from the two ECMs compare very
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Figure 6: Simulation results under 3C discharge current from COMSOL, LIONSIMBA, ODE-ECM, and DAE-ECM. (a)

Terminal voltage; (b) Voltage error compared with COMSOL results in percentage; (c) Surface stoichiometry of Li-ion in the

solid phase of electrodes; (d) Li-ion concentration in the electrolyte.

favorably to that of the P2D model implementations. Indeed, the RMSE of the DAE-ECM and ODE-ECM

are 0.0093% and 0.0082%, respectively, indicating that both have achieved similar accuracy under this test

condition. Fig. 5(c) and Fig. 5(d) show the comparison of the Li-ion stoichiometry in the solid phase and

the Li-ion concentration in the electrolyte, respectively. Again, it can be seen that the results from the

two ECMs compare very well to those of the P2D implementations. It is noted that the execution time for

the ODE-ECM is 1.82 s, compared to the 1.15 s for the LIONSIMBA code on the same computer. The

DAE-ECM takes a significantly longer time (29.3 s) to complete the simulation than the other models.

Fig. 6 shows the same comparisons as given in Fig. 5, except for a 3C constant current discharge rate.

In this instance, the RMSE for the voltage increases for each implementation. This is due to the poorer

performance caused by the two-parameter approximation (12) at a higher current level. Nevertheless, the

performance of ODE-ECM still compares favorably to the DAE-ECM and the P2D models, as the execution

time is 1.25 s and the overall RMSE is only 0.18%.
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Table 4: Comparison of different models under constant discharge current (using two-parameter parabolic approximation of

solid-phase diffusion equation)

Model
1C Discharge 3C Discharge

Execution Time RMSE Execution Time RMSE

P2D (COMSOL) 21.6 s – 19.3 s –

Approx. P2D (LIONSIMBA) 1.15 s 0.0143% 0.86 s 0.21%

DAE-ECM 29.3 s 0.0093% 12.38 s 0.15%

ODE-ECM 1.82 s 0.0082% 1.25 s 0.18%

The distribution of Li-ion concentration in the electrolyte is shown in Fig. 7 and Fig. 8 for the 1C and

3C discharge cases, respectively. The vertical dotted lines at k = 10.5 and k = 15.5 represent the interface

between the electrodes and the separator domains. It can be seen that the boundary conditions and the

continuity of the concentration are handled well by the ECMs.

 
Figure 7: Simulation results under 1C discharge current: Distribution of Li-ion concentration in the electrolyte across the

x-domain at three time points.

4.2. Constant current discharge — non-isothermal condition

Next, the capability of the proposed ECM to incorporate the thermal model is examined. Fig. 9(a)

shows the temperature profile in time at the right end of the negative electrode (x = 0−) for the same 1C

discharge test in Section 4.1. However, the heat transfer coefficient was decreased to 0.01 W · m−2 · K−1,

0.1 W ·m−2 ·K−1, and 1 W ·m−2 ·K−1, respectively, to simulate three different non-isothermal conditions.

Only profiles at x = 0− have been shown as it has been observed that there is very little difference in

these profiles for other values of x (temperature difference between different nodes < 0.05 K). The voltage

differences of the ECMs compared to that from LIONSIMBA are shown in Fig. 9(b). It can be seen that

the cell temperature and voltage from the two ECMs are close to LIONSIMBA results. In this case, both
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Figure 8: Simulation results under 3C discharge current: Distribution of Li-ion concentration in the electrolyte across the

x-domain at three time points.

V
ol

ta
ge

 D
iff

er
en

ce
 fr

om
 P

2D
 (%

)

Figure 9: Comparison of simulated temperature and voltage error of 1C discharge current with different heat transfer coefficients.

ECMs accurately predict the thermal behavior of the battery. However, as noted above, the execution time

of the ODE-ECM (2.3 s) is much shorter than that of the DAE-ECM (34.7 s).

4.3. Model comparison under UDDS dynamic current profile

Fig. 10 shows the comparison between ODE-ECM and LIONSIMBA P2D model under a dynamic UDDS

drive cycle current profile [48]: a standard test profile adopted in many studies to evaluate the performance

of batteries used in electric vehicles. Three UDDS drive cycles are concatenated, and the magnitude of the

current has been doubled to create a longer and more dynamic scenario: the maximum discharge current

rate is about 4.3C, and the total test period is one hour. Fig. 10 shows that the maximum voltage difference
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between the two models is about 0.2% and the RMSE is less than 0.01%. The execution time using the

developed ODE-ECM is about 3.7 s, while LIONSIMBA takes 942.5 s to complete the simulation. It can be

seen that compared to the previous cases of constant current discharge, in which the ODE-ECM has similar

performance to LIONSIMBA, but the improvement on simulation speed is significant for the ODE-ECM

without the loss of accuracy. It is noted that the performance of a DAE-based ECM proposed in [24], where

the execution time for a 25-min real-world load-cycle, was given as 42.57 s with the maximum voltage error

of 0.2% compared to the experimental results.
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Figure 10: Simulated results under revised UDDS current profile using P2D model (LIONSIMBA) and ODE-ECM.

5. Conclusion

This paper proposes a distributed-parameter equivalent circuit model for Li-ion battery cells based on

electrochemical principles using the finite volume method. Compared to the existing Li-ion cell model, the

algebraic equations that require iterative solution methods have been removed, and the resulting ODE-
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based system can be solved rapidly using the proposed method with high accuracy, making it superior

to the existing physics-based Li-ion cell models, especially in the real-time dynamic environment, while the

important features such as charge/mass and energy conservation are preserved. Other internal phenomena of

the cell, such as thermal effects, can be readily incorporated into the developed ECM with low computational

requirements. The model can be used in computer simulation and real-time control system design for

advanced battery management schemes. As the performance of the proposed ECM also depends on the

selection of the number of elementary sections and approximation methods of the solid-phase diffusion

equation (6), the relevant study has been left for future work which can be expected to bring fruitful

outcomes.

Appendix A.

The equations given below describe the material-dependent electrochemical characteristics of the elec-

trode and electrolyte for LiCoO2 positive electrode and LiC6 negative electrode.

f+
s (θ+

ss) =
−4.656 + 88.669(θ+

ss)
2 − 401.119(θ+

ss)
4

+ 342.909(θ+
ss)

6 − 462.471(θ+
ss)

8
+ 433.434(θ+

ss)
10

−1 + 18.933(θ+
ss)

2 − 79.532(θ+
ss)

4
+ 37.311(θ+

ss)
6 − 73.083(θ+

ss)
8

+ 95.96(θ+
ss)

10 (A.1)

f−s (θ−ss) = 0.7222 + 0.1387(θ−ss) + 0.029(θ−ss)
0.5 − 0.0172(θ−ss)

−1
+ 0.0019(θ−ss)

−1.5
+

0.2808 exp(0.9− 15θ−ss)− 0.7984 exp(0.4465θ−ss − 0.4108) (A.2)

f+
T (θ+

ss) =
−0.001

(
0.199521039− 0.928373822(θ+

ss) + 1.364550689(θ+
ss)

2 − 0.611544894(θ+
ss)

3
)

1− 5.661479887(θ+
ss) + 11.47636191(θ+

ss)
2 − 9.824312136(θ+

ss)
3

+ 3.048755063(θ+
ss)

4 (A.3)

f−T (θ−ss) =

0.001


0.005269056 + 3.299265709(θ−ss)− 91.79325798(θ−ss)

2
+ 1004.911008(θ−ss)

3

−5812.278127(θ−ss)
4

+ 19329.7549(θ−ss)
5 − 37147.8947(θ−ss)

6
+

38379.18127(θ−ss)
7 − 16515.05308(θ−ss)

8


 1− 48.09287227(θ−ss) + 1017.234804(θ−ss)

2 − 10481.80419(θ−ss)
3

+ 59431.3(θ−ss)
4

−195881.6488(θ−ss)
5

+ 374577.3152(θ−ss)
6 − 385821.1607(θ−ss)

7
+ 165705.8597(θ−ss)

8

 (A.4)

κ = εbrugg
e × 10−4 × ce(x, t)


−10.5 + 0.668× 10−3ce(x, t) + 0.494× 10−6c2e(x, t)+

(0.074− 1.78× 10−5ce(x, t)− 8.86× 10−10c2e(x, t))T (x, t)

+(−6.96× 10−5 + 2.8× 10−8ce(x, t))T
2(x, t)


2

(A.5)
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De = εbrugg
e × 10−4 × 10

−4.43− 54

T (x,t)−229−5.0×10−3ce(x,t)
−0.22×10−3ce(x,t) (A.6)

k0 = k∗0 exp

(
−E

k
a

Rg

(
1

T (x, t)
− 1

T ∗

))
(A.7)

Ds = D∗s exp

(
−E

Ds
a

Rg

(
1

T (x, t)
− 1

T ∗

))
(A.8)

Appendix B.

Appendix B.1. Derivation of ECM for Li-ion diffusion in electrolyte

According to (14), the electrolyte concentration can be expressed as

ce(x, t) = c0e exp

(
Ve(x, t)

ΥT (x, t)

)
(B.1)

Taking time derivative of (B.2) gives

∂ce(x, t)

∂t
≈ ce(x, t)

ΥT (x, t)

∂Ve(x, t)

∂t
(B.2)

Similarly, taking derivative of (B.1) with respect to x yields

∂ce(x, t)

∂x
≈ ce(x, t)

ΥT (x, t)

∂Ve(x, t)

∂x
(B.3)

In obtaining (B.2) and (B.3), it is assumed that the relative rates of change of temperature T with

respect to time and space are both much slower than those of Ve. This is normally valid because temperature

variation is a relatively slow process. Substituting (B.2), (B.3), and (2) into (5), and rearranging the resulting

equation gives (16).

Appendix B.2. Derivation of ECM for Li-ion diffusion in solid phase

Define a voltage term V ∗s as a function fs of the average stoichiometry θs,avg = cs,avg/cs,max, i.e.,

V ∗s := fs(θs,avg) (B.4)

Function fs is given in (A.1) and (A.2) for different electrodes. The time derivative of the average

concentration θs,avg(x, t) can be calculated by

∂cs,avg(x, t)

∂t
= cs,max

∂θs,avg(x, t)

∂t
= cs,max

∂θs,avg

∂V ∗s

∂V ∗s (x, t)

∂t
=

cs,max

f ′s(θs,avg)

∂V ∗s (x, t)

∂t
(B.5)

where f ′s denotes the derivative function of fs.

Next, denote the second term of the RHS of (10) as VsT (x, t) := fT (θss)(T (x, t)−T ∗), its time derivative

is thus

∂VsT (x, t)

∂t
= (T (x, t)− T ∗)∂fT (θss)

∂t
+ fT (θss)

∂T (x, t)

∂t

≈ (T (x, t)− T ∗)∂fT (θs,avg)

∂t
=
T (x, t)− T ∗

f ′T (θs,avg)

∂θs,avg(x, t)

∂t
(B.6)

28



where the effect of temperature variation is again assumed negligible. Using (C.5) and (C.6) to eliminate

∂θs,avg(x, t)/∂t, one obtains the first equation of (19).

Substituting (B.5) into (12), and considering a = 3εs/Rp and J = Faj, equation (18) is obtained.

Similarly, if a three-parameter polynomial approximation introduced in [11] is used instead of the two-

parameter approximation, (12) can be replaced by

∂cs,avg(x,t)
∂t = − 3

Rp
j(x, t)

∂qs,avg(x,t)
∂t = − 30Ds

(Rp)2
qs,avg(x, t)− 45

2(Rp)2
j(x, t)

35Ds
Rp

[css(x, t)− cs,avg(x, t)]− 8Dsqs,avg(t) = −j(x, t)

 (B.7)

With the similar procedure to obtain the ECM for two-parameter approximation, and using the FVM

for spatial discretization, the ECM for the three-parameter approximation (B.7) can be derived, i.e.,

C∗s,k
dV ∗s,k(t)

dt =Iionic,k(t)

C2,k
dV2,k(t)
dt = −V2,k(t)

R2,k
+ Iionic,k(t)

U∗ss,k(t) = V ∗s,k(t) + [V2,k(t) +
R1,k

7 Iionic,k(t)]

 (B.8)

where

V2,k(t) ≈ −8Rpf
′
s(θs,avg,k)

35cs,max,k
qs,avg(t), R2,k ≈

6

7
R1,k, C2,k ≈

7

12
Cs,k (B.9)

Appendix C.

Appendix C.1. Ionic flux current

For a mesh structure in the main circuit in the electrode, according to KVL and KCL, one obtains a

linear system with N+ +N− equations:

Vs,k +RΣ,kIionic,k + Ve,k +Re,k+0.5Ie,k+0.5 = Vs,k+1 +RΣ,k+1Iionic,k+1 + Ve,k+1 +Rs,k+0.5Is,k+0.5 (C.1)

where

Is,k+0.5 =


Iapp −

k∑
i=1

Iionic,i, k ∈ S+

−
k∑
i=1

Iionic,i, k ∈ S−
, Ie,k+0.5 =


k∑
i=1

Iionic,i k ∈ S+

Iapp +
k∑
i=1

Iionic,i, k ∈ S−
(C.2)

Substituting (C.2) into (C.1) and then solving the resulting equation gives the expressions of Iionic,k,

I+
ionic = R−1

1

[
R3Iapp + E1(V+

s + V+
e )
]

(C.3)

I−ionic = −R−1
2

[
R4Iapp + E2(V−s + V−e )

]
(C.4)

where

I+
ionic =

[
Iionic,1 Iionic,2 · · · Iionic,N+

]T
, I−ionic =

[
Iionic,N++Nsep+1 Iionic,N++Nsep+2 · · · Iionic,N

]T
,
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R1 =



RΣ,1 +Rse,1.5 −RΣ,2 0 . . . 0 0

Rse,2.5 RΣ,2 +Rse,2.5 −RΣ,3 . . . 0 0

Rse,3.5 Rse,3.5 RΣ,3 +Rse,3.5 . . . 0 0
...

...
...

. . .
...

...

Rse,N+−0.5 Rse,N+−0.5 Rse,N+−0.5 . . . RΣ,N+−1 +Rse,N+−0.5 −RΣ,N+

1 1 1 . . . 1 1


(N+×N+)

,

R2 =



RΣ,N++Nsep+1 +Rse,N++Nsep+1.5 −RΣ,N++Nsep+2

Rse,N++Nsep+2.5 RΣ,N++Nsep+2 +Rse,N++Nsep+2.5

Rse,N++Nsep+3.5 Rse,N++Nsep+3.5

...
...

Rse,N−0.5 Rse,N−0.5

1 1

0 . . . 0 0

−RΣ,N++Nsep+3 . . . 0 0

RΣ,N++Nsep+3 +Rse,N++Nsep+3.5 . . . 0 0
...

. . .
...

...

Rse,N−0.5 . . . RΣ,N−1 +Rse,N−0.5 −RΣ,N

1 . . . 1 1


(N−×N−)

,

R3 =



Rs,1.5

Rs,2.5
...

Rs,N+−0.5

1


(N+×1)

, R4 =



Re,N++Nsep+1.5

Re,N++Nsep+2.5

...

Re,N−0.5

1


(N−×1)

, Rse,k+0.5 := Rs,k+0.5 +Re,k+0.5,

E1 =



−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

0 0 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −1 1

0 0 0 . . . 0 0


(N+×N+)

, E2 =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1

0 0 0 . . . 0 0


(N−×N−)

.

30



Appendix C.2. State equation

Rewriting (38) and (39) in state-space form yields

d

dt



V+
s

V−s

V+
e

Vsep
e

V−e


=



0 0 0 0 0

0 0 0 0 0

0 0 A1 A2 0

0 0 A3 A4 A5

0 0 0 A6 A7





V+
s

V−s

V+
e

Vsep
e

V−e


+



B1 0

0 B2

B3 0

0 0

0 B4


I+

ionic

I−ionic

 (C.5)

where


A1 A2 0

A3 A4 A5

0 A6 A7

 =



−F1,1 F1,1 0 · · · 0 0

F1,2 −(F1,2 + F2,2) F2,2 · · · 0 0

0 F2,3 −(F2,3 + F3,3) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −(FN−2,N−1 + FN−1,N−1) FN−1,N−1

0 0 0 · · · FN−1,N −FN−1,N


,

Fi,j := 1/(Rd,i+0.5Cd,j),

B1 = diag(
1

Cs,1
,

1

Cs,2
, · · · , 1

Cs,N+

),B2 = diag(
1

Cs,N++Nsep+1
,

1

Cs,N++Nsep+2
, · · · , 1

Cs,N
),

B3 = diag(
1

Cd,1
,

1

Cd,2
, · · · , 1

Cd,N+

),B4 = diag(
1

Cd,N++Nsep+1
,

1

Cd,N++Nsep+2
, · · · , 1

Cd,N
).

Substituting (C.3) and (C.4) into (C.5), the state equation of the state-space model is obtained, i.e.,

d

dt



V+
s

V−s

V+
e

Vsep
e

V−e


=



B1R
−1
1 E1 0 B1R

−1
1 E1 0 0

0 −B2R
−1
2 E2 0 0 −B2R

−1
2 E2

B3R
−1
1 E1 0 A1 + B3R

−1
1 E1 A2 0

0 0 A3 A4 A5

0 −B4R
−1
2 E2 0 A6 A7 −B4R

−1
2 E2





V+
s

V−s

V+
e

Vsep
e

V−e


+



B1R
−1
1 R3

−B2R
−1
2 R4

B3R
−1
1 R3

0

−B4R
−1
2 R4


Iapp

(C.6)

Appendix C.3. Output equation

According to the structure of the equivalent circuit, the terminal voltage can be expressed as

Vbat = (Vs,1 + Ve,1 +RΣ,1Iionic,1)− (Vs,N + Ve,N +RΣ,NIionic,N )+

N−1∑
k=1

Re,k+0.5Ie,k+0.5 + (R+
col +R−col + 0.5Rs,1 + 0.5Rs,N )Iapp (C.7)
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Substituting (C.2) into (C.7) gives the output equation of the state-space model,

Vbat =
[
K1R

−1
1 E1 + M1 K2R

−1
2 E2 −M2 K1R

−1
1 E1 + M1 0 K2R

−1
2 E2 −M2

]
×[

V+
s V−s V+

e Vsep
e V−e

]T
+ (R+

col +R−col +Re,sep + K1R
−1
1 R3 + K2R

−1
2 R4)Iapp (C.8)

where

K1 =

[
N+∑
i=1

Re,i+0.5 +RΣ,1

N+∑
i=2

Re,i+0.5 . . . Re,N+−0.5 +Re,N++0.5 Re,N++0.5

]

K2 =

[
Re,N++Nsep+0.5 Re,N++Nsep+0.5 +Re,N++Nsep+1.5 . . .

N−2∑
i=N++Nsep

Re,i+0.5

N−1∑
i=N++Nsep

Re,i+0.5 +RΣ,N

]

M1 =

1×N+︷ ︸︸ ︷[
1 0 0 . . . 0

]
, M2 =

1×N−︷ ︸︸ ︷[
0 0 0 . . . 1

]
, Re,sep =

N++Nsep−1∑
i=N++1

Re,i+0.5
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Appendix D.

The following Li-ion battery electrochemical parameters used in this paper are obtained from [33].

Table D.5: Electrochemical parameters of Li-ion battery

Sym. Physical meaning Unit
Parametric value

Pos. Sep. Neg.

Rp particle radius m 2 × 10−6 – 2 × 10−6

D∗
s solid-phase diffusion coefficient m2 · s−1 1.0 × 10−14 – 3.9 × 10−14

a specific surface area of electrode m−1 8.85 × 105 – 7.236 × 105

L thickness of the electrode m 8.0 × 10−5 2.5 × 10−5 8.8 × 10−5

εs volume fraction of the solid phase – 0.59 – 0.4824

εe porosity – 0.385 0.724 0.485

σ solid-phase conductivity S · m−1 100 – 100

brugg Bruggeman coefficient – 4 4 4

cs,max maximum concentration in solid phase mol · m−3 51554 – 30555

θ0% stoichiometry for an empty battery – 0.99174 – 0.01429

θ100% stoichiometry for a full battery – 0.4955 – 0.8551

k∗ reaction rate constant A · m2.5 · mol−1.5 2.334 × 10−11 – 5.031 × 10−11

ρ density kg · m−3 2500 1100 2500

λ thermal conductivity W · m−1 · K−1 2.1 0.16 1.7

cp specific heat J · kg−1 · K−1 700 700 700

EDs
a solid-phase diffusion activation energy J · mol−1 5000 – 5000

Ek
a reaction constant activation energy J · mol−1 5000 – 5000

rf SEI film resistance Ω · m2 0 – 0

F Faraday constant s · A · mol−1 96487

T ∗ reference temperature K 298.15

Rg universal gas constant J · K−1 · mol−1 8.314

c0e initial concentration in electrolyte mol · m−3 1000

t0a transference number – 0.636

A electrode plate area m2 1
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Nomenclature

Symbol

η overpotential (V)

κ electrolyte conductivity (S ·m−1)

λ thermal conductivity (W ·m−1 ·K−1)

Φ potential (V)

ρ density (kg ·m−3)

σ solid-phase conductivity (S ·m−1)

θ stoichiometry

ε volume fraction of a phase

A electrode plate area (m2)

a particle surface area to volume (m−1)

C electrical capacitance (F)

c concentration (mol ·m−3)

cp specific heat capacity (J · kg−1 ·K−1)

CT thermal capacitance (J ·K−1)

D diffusion coefficient (m2 · s−1)

F Faraday’s constant (C ·mol−1)

G electrical conductance (S)

h heat transfer coefficient (W ·m−2 ·K−1)

I electric current (A)

i electric current density (A ·m−2)

i0 exchange current density (A ·m−2)

Iapp applied current (A)

iapp applied charging current density (A ·m−2)

J volumetric current density (A ·m−3)

j pore-wall molar flux (mol ·m−2 · s−1)

k0 electrode rate constant (A ·m2.5 ·mol−1.5)

L thickness of a domain (m)

l width of a control volume (m)

M average molecular weight (kg ·mol−1)

m mass (kg)

N number of control volume

q concentration flux (mol · s−1)

QT heat transfer rate (W)

qT heat flux (W ·m−3)

R electrical resistance (Ω)

r areal resistance (Ω ·m2)

Rg universal gas constant (J ·mol−1 ·K−1)

Rp particle radius (m)

RT thermal resistance (K ·W−1)

S set

T temperature (K)

t time (s)

t0a transference number

Tamb ambient temperature (K)

U equilibrium potential of a reaction (V)

V voltage (V)

Vbat battery terminal voltage (V)

x macro scale index (m)

Superscript

+ positive electrode

− negative electrode

−1 inverse
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T transpose

* reference value at 25◦

0 steady-state value

sep separator

Subscript

d diffusion in the electrolyte

e electrolyte/solution phase

f SEI film

k central node of the the control volume k

k + 0.5 right edge of the control volume k

k − 0.5 left edge of the control volume k

s solid phase

avg average

col current collector

max theoretical maximum

sr side reaction

ss surface of solid phase
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