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Abstract—The ability of induction generator-based dish-
Stirling (DS) solar-thermal power plant in providing primary
frequency control is examined. A dynamic model of the power
plant is developed in which the receiver/absorber temperature
of the Stirling engine is allowed to vary. Primary frequency
control is achieved through the adaptive regulation of the receiver
temperature set-point and the droop setting of the output power-
temperature characteristics of the DS system. However, the
penetration level of the solar-thermal generation into grid system
has to be constrained to avoid the onset of instability due to the
nonminimum phase characteristics of the DS system. Transient
droop compensation technique is then proposed to alleviate the
instability issue, and results in an increase in the allowable DS
penetration level.

Index Terms—Dish-Stirling system, fixed-speed induction gen-
erator, frequency control, solar-thermal power generation.

I. INTRODUCTION

IN recent years, one witnesses the ever-increasing pro-
portion of the renewable generation in many electricity

supply networks. Amongst the various concentrated solar
power (CSP) technologies, the dish-Stirling (DS) solar-thermal
generating system has a unique construction: a parabolic dish-
like reflector concentrates sunlight onto a small area called the
receiver located at the focal point of the reflector. The receiver
serves as the heat source for a Stirling engine which drives an
electric generator. This system is capable of operating at high
efficiency and releases nearly no emission [1]. The amount
of CSP generation in grid systems is expected to increase:
for instance, the recently-announced construction of 12 large-
scale CSP plants in Australia is a case in point. However, the
solar irradiance input to the CSP system, such as that of the
DS generators, tends to be unsteady and is uncertain. Conse-
quently it would induce undesirable frequency perturbations
in the interconnected network. As the penetration level of the
CSP generation increases, a stage will be reached when the
CSP generators will be forced to contribute in the provision
of network system frequency support [2]–[4]. Notwithstanding
the works described in [2]–[5] wherein the assumed DS plant
model from [6] is used, the frequency regulating ability of the
DS power plants has yet to be rigorously analyzed primarily
due to the lack of suitable DS plant model. The purpose of
the present investigation is to fill this gap.
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As frequency control is closely associated with the mech-
anism to achieve load-generation real power balance, the key
task is to find effective ways to regulate the generated power
of the DS system in response to the frequency variations. A
conventional DS system is equipped with the technologically
well-proven and economical squirrel-cage induction generators
(SCIGs). However, SCIGs operate over a relatively narrow
speed range and therefore, such a fixed-speed dish-Stirling
system (FSDS) is incapable of providing significant level of
frequency regulation through the adjustments of the generator
speed. Possible ways to mitigate such a deficiency include the
replacement of the SCIGs with variable-speed generators [6],
[7] and/or the use of energy storage systems to provide the
necessary spinning reserve. However, these remedies would
incur increased costs and the reliability of the overall system
could be reduced. The more attractive option is to fully exploit
the potential of the FSDS on frequency regulation, and to
minimize the need to replace and/or to add major equipment.

As shall be seen later, the output power of the FSDS
can be varied by controlling several state variables within its
thermodynamic system, without the need to install additional
hardware. To evaluate the potential of such strategy, a suitable
mathematical model of the FSDS is required. As explained
in the authors previous work [8], approximate average-value
model of the Stirling engine is advantageous over the complex
multi-cylinder thermodynamic model because the approxi-
mate model can lead to a simpler approach to analysis and
controller design. Indeed, several average-value models have
been derived to meet the respective research purposes [7]–[9].
However, the behavior of the FSDS under variable receiver
temperature operating mode has not been investigated in [7]–
[9] where the temperature is invariably assumed to be very
close to its maximum allowable value so as to achieve high
thermal efficiency. Although varying temperature has been
considered as one of the effective methods to regulate the
engine power [10], to do so to achieve the frequency control
objectives has not been fully studied in the open literature.

In comparison to the cited works, major contributions of
the present investigation are: 1) a nonlinear FSDS model is
developed from the thermodynamic principles governing the
FSDS. The model is suitable for use in network primary
frequency control studies in which the receiver temperature
is allowed to vary; 2) The FSDS is shown to exhibit non-
minimum phase characteristics when the generator operates
to meet grid-code frequency control requirement. Whence
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the maximum solar insolation and allowable FSDS penetra-
tion levels to ensure stable FSDS operation are determined
from small-signal analysis; 3) An enhanced droop primary
frequency control scheme is proposed to increase the stability
margin of the FSDS. The control scheme permits higher FSDS
generation participation in grid systems.

The remainder of this paper is organized as follows. In
Section II, a brief explanation of the FSDS is presented and
the FSDS model is developed to include the effects of lower
receiver temperature on the output power of the FSDS. Section
III presents the steady-state analysis of the FSDS operation,
using the developed model. Section IV develops an adaptive
droop control scheme to provide primary frequency support
from the FSDS so as to comply with the frequency response
requirement demanded by grid codes. Section V studies the
performance of a proposed scheme in which the droop con-
trol is augmented by transient droop compensation for grid-
connected FSDS system. Examples of dynamic simulation
study are included in Section VI to verify the validity of
the developed model and the proposed design methodology.
Section VII summarizes the main findings.

II. MODELING OF THE FSDS

A. FSDS Operating Under Maximum Allowable Temperature

The modeling and control of such a DS system has been
addressed in [8], [11], [12] under the assumption that the
generating system operates near the maximum allowable tem-
perature Th,max. The energy conversion process of such a DS
system consists of three parts. First, the parabolic dish alluded
to earlier collects, reflects and concentrates the solar irradiance
I onto a heat receiver attached to the absorber tubes of the
Stirling engine. This heat transfer process is described by [8]

(Trec/Krec)Ṫh = KconI −Qh −QL (1)

QL = (Th − Ta)/Krec (2)

where Qh is the thermal power absorbed by the engine,
QL is heat losses, and Th and Ta are the receiver and the
ambient temperature respectively. Constants Trec, Krec and
Kcon embody the heat transfer characteristics of the receiver.

Next, a Stirling engine converts the heat into mechanical
energy. In authors previous work [9], an average-value model
of the most commonly-used double-acting kinematic Stirling
engine was derived. The relevant expressions are:

Qh = ηh[Khpmeanωm +A(gA) + CpmeanṪh] (3)

Pm = ηmKmpmeanωm (4)

(gA) = Ṁ = (1/Kp)ṗmean (5)

Tv(gȦ) = −(gA) +Kvc (6)

where the thermal power Qh and the mechanical power Pm are
functions of the thermodynamic state variables including the
engine speed ωm, mean pressure pmean of the working gas in
the engine cylinders, temperature Th, and their derivatives. ηh
and ηm are two efficiency coefficients introduced to account

for the steady-state thermal and mechanical losses, which are
expressed as

ηh =

1∑
i=0

1∑
j=0

aijp
i
meanω

j
m/(Khpmeanωm) (7)

ηm =

1∑
i=0

2∑
j=0

bijp
i
meanω

j
m/(Kmpmeanωm) (8)

where aij and bij are two groups of multivariable polynomial
coefficients obtained from engine performance map. Constants
Kh, Km, A and C are defined in [7], where the steady-
state behavior of the developed model has been verified to be
accurate by a DS emulator. In (5), Kp represents a proportional
relationship between the total mass M of the working gas and
pmean. Thus, pmean can be regulated by manipulating the net gas
flow rate gA using a solenoid valve system with external gas
tanks, and Kv , Tv , and c are the relevant gain, time constant,
and control command of this valve system.

Finally, a Stirling engine-driven SCIG converts the mechan-
ical energy into electricity. As shown in [7]–[9], the developed
model is more suitable than the detailed adiabatic model used
in [11], [12], in the course of developing control systems for
the DS generators.

B. FSDS Operating Under Variable Temperature

The aim of this study is to investigate how the output power
Pm of the FSDS can be manipulated to support grid frequency,
by allowing the variation of receiver temperature Th of the
FSDS. When Th falls below Th,max, the model given in Section
II-A is invalid and it needs to be modified. First, the nonlinear
characteristics of radiation heat loss at temperature lower than
Th,max means that the normalized equation (36) derived in
Appendix A is to replace (2) and it yields

QL(Th) = Krec1(Th − Ta) −Krec2(T 4
h − T 4

a ). (9)

The first and the second terms on the RHS of (9) embody
the effects of heat losses due to convection/conduction and
radiation respectively.

Second, the temperature affects the thermal efficiency of the
Stirling engine. A commonly used expression to estimate the
output mechanical power Pm of the Stirling engine is given
in [13], where Pm is proportional to (Th − Tk)/(Th + Tk).
The cooler space temperature Tk of the Stirling engine is
considered constant. Hence, the efficiency ηm in (8) shall be
modified to

ηm =
1

Km

1∑
i=0

2∑
j=0

bijp
i−1
meanω

j−1
m

(
Th − Tk
Th + Tk

1 + Tk
1 − Tk

)
(10)

where a constant gain (1+Tk)/(1−Tk) is used to ensure that
at Th = Th,max = 1 p.u., (10) is identical to (8).

In summary, the complete FSDS model for the primary
frequency support study consists of (1), (3)–(7), (9) and (10),
based which steady-state analysis will be carried out next.
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III. STEADY-STATE ANALYSIS OF THE FSDS

A. Output Power-Receiver Temperature Relationship

The focus of this subsection is to derive the steady-
state functional relationship between the output power of the
Stirling engine and the receiver temperature of the FSDS.
Consider ωm = 1 p.u. for the fixed-speed operation and setting
all the d/dt terms in (1), (3)–(5), and (6) to zero, the following
steady-state relationship can be derived:

Pm =

2∑
j=0

(b0j + b1jpmean)
Th − Tk
Th + Tk

1 + Tk
1 − Tk

(11)

Qh = a00 +a01 + (a10 +a11)pmean = KconI−QL(Th). (12)

Note that (11) and (12) contain nonlinear terms with respect
to Th. To simplify the analysis, a second-degree polynomial
is used to approximate the nonlinear term in (11), i.e.,

Th − Tk
Th + Tk

1 + Tk
1 − Tk

= km0 + km1Th + km2T
2
h . (13)

Substituting (13) into (11), Pm can expressed as

Pm = d00+d01Th+d02T
2
h+(d10+d11Th+d12T

2
h )pmean (14)

where the polynomial coefficients dij are defined as

dij = kmj(bi0 + bi1 + bi2) (i = 0, 1 and j = 0, 1, 2)

At maximum insolation, I = 1 p.u. Substituting Th =
pmean = Pm = 1 p.u. into (13) and (14), it can be readily
shown that km0 +km1 +km2 = 1 and d00 +d10 +d01 +d11 +
d02 + d12 = 1.

Next, using (9) and (12), one can obtain the expression for
pmean as a function of I and Th, whence,

pmean =
KconI −QL(Th) − a00 − a01

a10 + a11
. (15)

Substituting (15) into (14) to eliminate pmean, thus the output
mechanical power Pm of the Stirling engine is

Pm(I, Th) = (d10 + d11Th + d12T
2
h )/(a10 + a11)

× [KconI −QL(Th) − (a00 + a01)]

+ d00 + d01Th + d02T
2
h . (16)

As can be seen in (16), the insolation level I and tem-
perature Th are the two variables governing Pm. As I is
considered an uncontrollable input in this study, the potential
of controlling Pm through the manipulation of Th shall be
examined next.

B. Feasible Operating Zone of FSDS

With the derived steady-state relationship (16), one can
obtain a family of Pm–Th curves at various insolation levels
I . Example of such a family of Pm–Th curves, with each
curve corresponding to a given I , is shown by the dashed
lines in Fig. 1. The values of the FSDS parameters used to
construct the figure are given in Appendix B. In practice,
however, the working gas mean pressure pmean has to be
limited between the pressure in the low pressure tank pmin
and the pressure in the high pressure tank pmax. Concurrently,

MPPT

Fig. 1. Feasible operating zone: FSDS operating under variable temperature.

the receiver temperature, Th, is constrained to lie between the
low temperature limit Th,low which enables the Stirling engine
to generate power, and the maximum temperature Th,max the
receiver can tolerate. Th,low must be higher than the cooler
space temperature Tk of the Stirling engine so as to comply
with the second law of thermodynamics. Th,max is governed
by the thermal characteristics of the material used to construct
the receiver wall and absorber. Hence the area ABCD in
Fig. 1 defines the steady-state feasible operating zone (FOZ)
of the FSDS, in consideration of these constraints. The various
segments of the boundary of the FOZ are:

• A–B, applies due to the maximum mean pressure pmax;
• B–C, dictates by the lower temperature limit Th,low;
• C–D, pertains to the minimum mean pressure pmin;
• D–A, governs by the maximum temperature Th,max.

The boundaries AB and CD can be obtained by letting
pmean = pmax and pmean = pmin respectively in (14), evaluated
over a range of Th.

From Fig. 1, it can be seen that under a given insolation
level, it is possible to regulate Pm by varying the working
temperature Th. Furthermore, on each Pm–Th curve at con-
stant I , there exists an optimal temperature for which the
maximum power is obtained. This maximum power point
tracking (MPPT) locus, as depicted in Fig. 1, can be obtained
by letting ∂Pm/∂Th = 0 in (16) with given value of I . This
characteristics is common for all CSP technologies and can
be used to determine the appropriate working temperature of
a CSP system [14]. Suppose the MPPT locus intersects the
FOZ boundaries DA and CD at points M and N respectively.
In view of the constraints placed on the pmean and Th, the
actual MPPT trajectory would then follow the curve AMNC
in Fig. 1. AM is obtained using (16) for a range of I when
Th = Th,max and NC is formed using (14) for a range of Th
when pmean = pmin, respectively. Note the FOZ and MPPT
locus differ from those obtained in [8] where the FOZ and the
MPPT locus were derived under the constant-temperature and
variable-speed DS operations.
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Fig. 2. (a) Temperature and (b) mean pressure controllers featuring the droop
characteristics and pressure/valve limits. KMPC = 1/(2TvKvKp).

C. A Conventional Approach to Temperature Control

Based on the above analysis, it is clear Pm can be regulated
through the manipulation of the receiver temperature. As an
alternative to MPPT operation, a simpler temperature control
scheme is to follow the locus AFC in Fig. 1. AF embodies a
droop characteristic which allows a slight drop of temperature
setting from Th,max when the insolation I is less than 1 p.u.
[8]. Fig. 2 shows the block diagram of implementing this
temperature control objective through the regulating actions
of the working gas mean pressure controller (MPC) which
has the constant gain KMPC = 1/(2TvKvKp). Accordingly,
the solenoid valve system control command signal c alluded
to earlier is

c = KMPC(p∗mean − pmean). (17)

The dynamics of the inner MPC loop is much faster than
that of the temperature–frequency control, thus pmean can be
considered identical to its set point p∗mean. Whence the steady-
state droop characteristics of the temperature controller shown
in Fig. 2 can be expressed as

pmean = p∗mean = pset − (Th,set − Th)/Dp (18)

where Th,set and pset correspond to the steady-state Th and
pmean at I = 1 p.u. respectively. The temperature–pressure
droop setting is defined as Dp = (Th,max − Th,min)/(pmax −
pmin), where Th,min is the temperature at pmean = pmin.
Substituting (18) into (14), Pm can be expressed as a function
of Th, i.e.,

Pm =

(
Dppset − Th,set

Dp
+
Th
Dp

)
(d10 + d11Th + d12T

2
h )

+ d00 + d01Th + d02T
2
h . (19)

Setting Th,set = pset = 1 p.u. according to the conventional
design approach as in [7] and using (19), the slope of AF is
approximated by evaluating the value of dPm/dTh at Th ≈ 1
p.u.

dPm

dTh

∣∣∣∣
Th=1

=
d10 + d11 + d12

Dp,AF
+ (d11 + 2d12) ≈ 1

Dp,AF
.

(20)
In (20), Dp,AF is droop Dp of AF, and it can be determined

to enhance the dynamic response characteristics of the DS
system under the temperature control mode [8]. In obtaining
(20), one uses the fact that d00, d01, d02 and Dp,AF are much
smaller than 1 and d10 + d11 + d12 ≈ 1. The equation shows
the slope of AF approximately equals the reciprocal of Dp,AF.
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Fig. 3. A simplified frequency response requirement stipulated in grid codes.

When the insolation level is below that corresponding to
point F, the minimum mean pressure limit pmin is reached and
in order to maintain the power balance, Th shall fall rapidly
and the operating point shall move along the minimum mean
pressure line FC. In practice, low insolation level occurrences
often arise e.g., during the starting-up of the DS system in
the early morning and its shutdown in the evening, or during
cloudy days. As a consequence, the inclusion of the FC
provides a smooth transition in the operating temperature as
the isolation level varies at the low levels.

IV. FSDS PRIMARY FREQUENCY CONTROL SCHEME

Primary frequency control is often mandated in grid codes
for generating units, in the form of the unit output power C
system frequency droop curve and unit response time [15],
[16]. In this section, a frequency control scheme is proposed
which will involve the minimal modification of the convention-
al FSDS temperature control scheme shown in Section III-C.

A. Feasible Deloaded Operating Zone

In this study, the purpose of the receiver temperature control
is to regulate Pm so that the FSDS can contribute to frequency
support. Fig. 3 the frequency regulating ability required on
generators, as stipulated in grid codes on frequency regulation
such as in [16]. Within the control band f1 and f2, a droop
characteristics prescribes the requirement in the provision
of the upward and downward reserve powers for frequency
support ancillary service. The corresponding power settings
at f1 and f2 are denoted by Pm,max and Pm,min respectively,
while fN = 1 p.u. is the nominal system frequency. In the
event f > f2 or f < f1, the system is considered under
extreme contingency. This situation is not dealt with in the
present study.

In view of the FOZ in Fig. 1, the maximum power Pm,max
can be set to track the constrained MPPT locus AMNC
at given I . So Pm,max would increase with I and hence,
Pm,max is more appropriately labelled as Pm,max(I). To cater
for the upward reserve as required in Fig. 3, this can be
accommodated by deloading the FSDS. In Fig. 1, the deloaded
operation is governed by the curve EC wherein the deloaded
power Pm,deload(I) is

Pm,deload(I) = (1 − x%)Pm,max(I). (21)

In developing the deloaded curve, x%Pm,max(I) is the
maximum amount of upward reserve power prescribed under
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MPPT

Fig. 4. Power vs. insolation relationship of FSDS system.

the grid code. The corresponding Th at the deloaded operating
points can be obtained using (16) by setting Pm(I, Th) =
Pm,deload at the given I . Operating point E on the deloaded
power curve corresponds to the maximum pressure condition.

Similarly, the minimum power Pm,min(I) used for down-
ward regulation is

Pm,min(I) = (1 − 2x%)Pm,max(I). (22)

Whence the power–frequency droop setting RDS of the control
band in Fig. 3 is

RDS =
fN − f1

(Pm,max − Pm,deload)/Pm,max
=

1 − f1
x%

. (23)

Expressed in a different way, the Pm vs. I relationship for
the various curves shown in Fig. 1 is presented in Fig. 4.
It shows the possible range of power variations at different
insolation levels. The area AMNCBA is that part of FOZ
above the MPPT locus shown in Fig. 1. In Fig. 4, EC and
GC represent the Pm,deload(I) and Pm,min(I) curves respec-
tively. The operating zone AMCA′′A, which is intended for
primary frequency control, has the point A′′ being the value
of Pm,min(I) at the maximum insolation level I = 1 p.u.
However, the area AGA′′A falls outside of the FOZ, due
to the limit pmax = 1 p.u. (line AB). Hence, the required
downward and upward regulation cannot be met when the
insolation level exceeds that corresponding to point G and
E, respectively. So the high-pressure tank pressure limit pmax
is treated as a parameter to be determined during the design
stage of the FSDS. Accordingly and as shown in Fig. 4, pmax
is increased to a higher value p′max. p′max is evaluated for the
operating point A′′ using (15) and (16) with I = 1 p.u. and
Pm = (1− 2x%)Pm,max(I). So the whole deloaded operating
zone AMCA′′A is now feasible and the FSDS can meet the
spinning reserve requirement stipulated as in Fig. 3.

B. Setting the Deloaded Pm–Th Curve

The previous section shows that the feasible deloaded
operating zones is AMCA′′A, within which lies the deloaded
Pm–Th curve A′C. To ensure the operating state of the FSDS
will track the curve A′C as I varies, Th has to be adjusted
accordingly. The commonly used static tracking methods, such
as look-up table, cannot be adopted here without altering the
control structure of Fig. 2. Instead, the preferred method is to
adaptively tune the temperature controller in Fig. 2. From (19)
and for a fixed pset of 1 p.u., it is observed only the parameters
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Fig. 5. Families of Pm–Th curves obtained by varying (a) Th,set; (b) Dp.
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Fig. 6. Proposed primary frequency control loop of FSDS.

Th,set and Dp can affect the shape of the Pm–Th curve. Indeed,
by varying Th,set but maintaining Dp = Dp,AF, a family of
Pm–Th curves can be obtained. This is shown in Fig. 5 (a)
when Th,set varies in 0.1 p.u. steps. The curves are parallel and
to the left of AF and have the same slope Dp,AF as for AF. On
the other hand, by maintaining Th,set = 1 p.u. and increasing
Dp, another family of Pm–Th curves as depicted in Fig. 5 (b)
can be obtained. The new curves can be obtained by rotating
AF about point A to reduce the slope to the specific 1/Dp. In
(18), when pmean = pset = 1 p.u., Th = Th,set. Thus, Th,set is
the temperature at the point of intersection of Pm–Th curve
and the curve AB. The corresponding Pm at the intersection,
denoted as Pm,set, can be obtained by substituting pmean = 1
and Th = Th,set into (14).

In view of the above, a set of Dp and Th,set governs the
deloaded curve A′C at the nominal frequency. A′C will assume
the set-point values (Th,set, Pm,set) when pmean = 1 p.u. In this
study, A′C is approximated by n-segments (A′K1, K1K2, . . . ,
Kn−1C), and each segment is determined by a specific set of
(Dp, Th,set). The values of Dp and Th,set of each segment can
be readily calculated by substituting the values of Pm and Th
corresponding to the two end points of the segment into (19),
and then solving the resulting simultaneous equations.

C. An Adaptive Droop Control Scheme

Comparing Fig. 5 (a) and (b), it can be seen that regulating
Th,set is more effective in realizing the deloaded curve A′C
than by regulating through Dp: it is difficult to regulate Pm

at high I levels through varying Dp, as can be seen from
Fig. 5 (b) the family of curves are clustered at high I . Hence,
an adaptive supplementary control loop to effect the primary
frequency control is proposed as shown in Fig. 6 wherein both
Th,set and Dp are varied in accordance to I . In regulating Th,set,
the parameter Kf shown in Fig. 6 governs the extent of Pm

variation in response to frequency perturbation ∆f , viz.

∆Th ≈ ∆Th,set = Kf∆f. (24)
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Fig. 7. Relationships between droops, Tds1, Tds2, Kds2, and Kf with I: line
A′C is approximated by 3 segments:I ≤ 0.4, 0.4 < I ≤ 0.65, 0.65 < I ≤ 1.

From the definition of droop in (23), thus,

Kf =
∆Th
∆f

=
∆Th
∆Pm

x%

1 − f1
Pm,max ≈ 1

k

x%

1 − f1
Pm,max (25)

where k = dPm/dTh is the slope of the deloaded curve A′C
at the given I . So k can be readily obtained. As k and Pm,max
are both functions of I , Kf is a function of I too, as shown in
Fig. 7. Kf has to be tuned in accordance of I . One possible
way to overcome this rather cumbersome practice is to assume
a constant value for Kf over a given range of I .

V. SMALL-SIGNAL STABILITY ANALYSIS OF FSDS
PRIMARY FREQUENCY CONTROL IN GRID SYSTEM

A. FSDS Primary Frequency Control in Isolated System

An adaptive primary frequency control scheme has been
developed for the FSDS, as shown in Fig. 6. In this section, it
will be shown that valuable insights can be gained by carrying
out small-signal analysis of the adaptive droop control scheme.
Firstly, the transfer function ∆Pm(s)/∆f(s) can be obtained
by linearizing the system model (1), (3)–(7), (9), (10), (17),
(18), and (24) at specific insolation level I , i.e.,

∆Pm(s)

∆f(s)
=

∆Th,set(s)

∆f(s)

∆Pm(s)

∆Th,set(s)
= Kf ·Kds

1 − Tds1s

1 + Tds2s
.

(26)
The detailed derivation of transfer function

∆Pm(s)/∆Th,set(s) is given in the Appendix C. The
steady-state gain of (26) can be expressed in terms of the
power–frequency droop RDS which is given in (23)

KfKds =
∆Pm(s = 0)

∆f(s = 0)
=
Pm,max(I)

RDS
=

1

R′DS
. (27)

As defined in (27), R′DS = RDS/Pm,max(I). R′DS is the
power-frequency droop setting defined in terms of the FSDS
maximum power Pm,max(I) at given I . Unlike a conventional
synchronous generator in which the unit droop setting is a
constant, since Pm,max(I) increases with I , the effective droop
R′DS of the FSDS decreases as I increases. Also as shown in
Appendix C and Fig. 7, the parameters Tds1, Tds2, and Kds in
the transfer function (26) are nonlinear functions of I .

Next, consider the dynamic characteristics of the FSDS. The
appearance of an RHP zero at s = Tds1 in (26) signifies the
FSDS is a nonminimum phase (NMP) system, a characteristic
which could prolong the response of the FSDS to disturbances
and may even induce instability on the operation of the FSDS.
This observation can be readily demonstrated by considering

− 

Kf Kds

DS Dynamics System Inertia
RT

Δf ΔPm 

1 Tds1s

1 Tds2s

1

2Hs
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1 TRs

− 

Transient Droop Compensation

1/R'DS

Σ 

Fig. 8. FSDS primary frequency control loop in an isolated power system.
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Σ

Σ

Σ
1

2Hs

1
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Fig. 9. Block diagram of the frequency regulation system in grid system.

the primary frequency control loop of Fig. 8. It pertains to
the situation when the FSDS operates in an isolated system.
The FSDS is represented by the transfer function (26) and H
is the inertia constant of the power system. The characteristic
equation of the closed-loop system is

2R′DSHTds2s
2 + (2R′DSH − Tds1)s+ 1 = 0 (28)

For stable operation, the Routh-Hurwitz criterion requires

R′DS > Tds1/(2H) = R′DS,cr (29)

As an illustration, the critical droop R′DS,cr is also shown
plotted against I in Fig. 7. It can be seen that in this instance,
the condition (29) cannot be met when I > 0.28 p.u., i.e., to
the right of the point X in Fig. 7. The example illustrates the
important finding that in general, stability of the power system
will be compromised once the insolation level of the FSDS
exceeds a particular level. This applies when the adaptive
droop is the only mechanism used to effect primary frequency
control.

While the isolated system example is useful in illustrating
the destabilizing impact of the NMP characteristic of the
FSDS, a more complete analysis would be needed for the more
realistic situation of grid-connected FSDS. This is shown in
the next subsection.

B. FSDS Primary Frequency Control in Grid System

When a FSDS power plant is interconnected into a grid
system, the primary frequency control action contributed by
the FSDS can be analyzed in a convenient manner by con-
sidering an equivalent synchronous generator (SG) operates in
parallel with the FSDS power plant. The SG has the permanent
droop setting of RSG whereas its governor-turbine system is
represented simply by a first-order model

Mgt(s) = 1/(Tgts+ 1) (30)

where Tgt is the SG governor-turbine time constant. In the
grid frequency control block diagram shown on Fig. 9, the
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Fig. 10. Nyquist diagrams: (a) ks = 50% at various values of I; (b) I = 1.0.
p.u. at various values of ks.

frequency deviation ∆f is the result of the load change ∆PL.
The combined inertia constant H of the system is calculated
based on the total generating capacity SN,tot = SN,SG +SN,DS
where SN,SG and SN,DS are the generating capacity of the SG
and FSDS respectively. The coefficient ks = SN,DS/SN,tot is
referred to herewith as the the penetration level of the FSDS
solar-thermal generation in the grid system.

From Fig. 9, one can readily carry out a small-signal
analysis when the FSDS is under the droop control mode. The
open-loop transfer function between the frequency deviation
∆f(s) and DS plant power, denoted by ∆PDS instead of ∆Pm,
can be derived

∆f(s)

∆PDS(s)
=
ksRSG

1 − ks

1 + Tgts

1 + 2HRSGs(1 + Tgts)/(1 − ks)
. (31)

Nyquist analysis is the most effective open-loop method
to determine the stability of the power system. One can
construct the Nyquist diagram for various insolation and FSDS
penetration levels. Again based on the parameters given in the
Appendix B, the results are as shown in Fig. 10.

As the number of poles of the open loop system on the RHP
is zero in this instance, therefore based on the Nyquist stability
criterion, the closed-loop system is stable if and only if the
number of clockwise encirclements of the Nyquist contour
around the point −1 + 0j is also zero. In this example,
Fig. 10 (a) indicates that the system becomes unstable if I
is above 0.61 p.u. at penetration level of 50%. On the other
hand, Fig. 10 (b) shows that the system would be unstable
if ks is above 25% when I is at the maximum. The example
demonstrates that high insolation and/or penetration levels tend
to lead to instability. Thus the upper limit ks,max of FSDS
penetration level ks is 25% in this example, if no other control
measures are taken.

To further examine the limit placed on the FSDS penetration
level, one can use (26), (27), and (31) to obtain the charac-
teristic equation ∆(s) of the power system shown in Fig. 9,

viz.,
∆(s) = a3s

3 + a2s
2 + a1s+ a0 (32)

where

a3 = 2HRSGTgtTds2

a2 = 2HRSG(Tgt + Tds2) − ksTgtTds1(RSG/R
′
DS)

a1 = 2HRSG + Tds2 − ksTds2 + ks(RSG/R
′
DS)(Tgt − Tds1)

a0 = 1 + ks(RSG/R
′
DS − 1).

The maximum FSDS penetration level ks,max for guaranteed
stable operation can be calculated according to the Routh–
Hurwitz analysis. As it can be readily proven that a3 and
a0 are always greater than zero, one needs to only examine
the remaining three necessary and sufficient conditions for
stability: a1 > 0, a2 > 0 and a2a1 − a3a0 > 0 to derive
ks,max. Indeed, it can be shown that ks,max is about 25% when
RDS = 0.1 and when I is maximum. This is in agreement with
the outcome of the Nyquist analysis. On the other hand, if a
more stringent primary frequency control is required, i.e., RDS
reduces, ks,max will correspondingly decrease. For example,
for RDS = 0.05, ks,max drops to about 10%. Also, the above
analysis demonstrates that for a given grid code requirement
on the droop setting RDS, the most onerous primary frequency
control condition corresponds to that when the FSDS operates
under the maximum insolation level.

C. An Enhanced Droop Primary Frequency Control Scheme

Notwithstanding the encouraging outcome using the adap-
tive droop frequency control scheme, consider next the use
of a compensator to provide additional stabilization action
in order to counter-act the destabilizing effect of the NMP
characteristics of the FSDS. Indeed, similar situation has been
encountered in the design of the control system for the hydro-
turbine speed regulation system in [17] where transient droop
compensation has been applied. The compensator structure is
shown in Fig. 8, in which RT denotes the temporary droop
setting and TR is the reset time. Whence with the droop
setting R′DS and the transient droop compensation, the resulting
equivalent transfer function of FSDS frequency controller
becomes

Gc(s) =
1

R′DS

1 + TRs

1 + (1 + RT

R′
DS

)TRs
=

1

R′DS

1 + T1s

1 + T2s
(33)

With the compensation, the droop is increased temporarily
from R′DS to R′DS + RT at the initial stage of the transient.
Using Routh-Hurwitz stability criterion, the range of R′DS for
the stable closed-loop system becomes

R′DS > max

{
Tds1

2H

1

1 + RT

R′
DS

,
Tds1 − TR

2H + (1 + RT

R′
DS

)TR

}
(34)

Compare to the condition (29), the droop determined by
(38) is smaller. This means the stability margin of the power
system has been improved by the compensator. On the setting
of TR and RT , one has to ensure that the break frequency
of the compensator is higher than 1/(2H) but lower than the
original cut-off frequency ωc of the uncompensated system,
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TABLE I
PARAMETRIC VALUES OF PRIMARY FREQUENCY CONTROL

I 0.22–0.4 p.u. 0.4–0.65 p.u. 0.65–1.0 p.u.

Th,set 1.08 0.89 0.81
Dp/Dp,AF 14.7 8.5 3.3

Kf 7 10 12

i.e., 1/ωc < TR < (1 + RT /R
′
DS)TR < 2H . Note as the

input signal of the compensator shown in Fig. 8 is not directly
measurable, the compensator is to be implemented using
the equivalent lag compensator given in (33) and included
in Fig. 9, with T1 < T2. As an illustration of using this
compensator, select TR = 1 s and RT = 3R′DS. With the
compensator in place, Fig. 10(a) shows that for penetration
level ks of up to 50%, the system is inherently stable. Indeed
from Fig. 10(b), ks,max for guaranteed stable operation has
been increased to 79%.

VI. NUMERICAL EXAMPLES

The purpose of this section is to illustrate the performance
of the FSDS when it participates in primary frequency control
of grid systems.

A. FSDS Model Validation

In this subsection, the aim is to validate the accuracy of the
developed FSDS model. The nonlinear average-value FSDS
model derived in Section II is firstly compared with that based
on the multi-cylinder adiabatic model of the Stirling engine
given in [11]. This latter model is denoted herewith as the
detailed adiabatic FSDS model and is considered to be the
most accurate DS dynamic simulation model reported in the
literature. The external power system is represented by the
simplified grid model described in Section V-B. The schematic
diagram of the test grid system is shown in Fig. 11. The
parametric values of the relevant parameters of the FSDS and
SG are those used in the examples of the previous sections.
See Appendix B. It is assumed that the penetration level ks
is 20% which is below the highest penetration level ks,max
permissible for stable operation obtained in Section V-B. The
capacities of the SG and DS are SN,SG = 800 MW, and
SN,DS = 200 MW respectively. The initial load is assumed
to be 820 MW. The insolation level is 1.0 p.u. for which
PDS = 0.18 and PSG = 0.64 p.u. on SN,tot of 1000 MW base.
The deloaded curve A′C was approximated by a piecewise
linear curve consisting of three segments A′K1, K1K2, and
K2C as shown in Fig. 1 and corresponding values of the
control parameters Dp, Th,set, and Kf are given in Table I.

At t = 5 s, a load increase ∆PL of 150 MW is applied.
Fig. 12 shows the waveforms obtained using the various
FSDS models. It can be seen that using the developed
average-value nonlinear FSDS model, the most important
and pertinent characteristics of the FSDS under the primary
frequency control regime have been effectively captured and
reproduced. Indeed, Fig. 12 show there is close agreement
between the results obtained using the developed average-
value FSDS model with that based on the detailed adiabatic

SG

PL = 0.82 p.u. 
SCIG

SN,DS

16.5 kV/34.5 kV 
PSG = 0.64 p.u.

Turbine and 

Governor

PDS = 0.18 p.u.

DS 

Excitation System

690 V/34.5 kV 

SN,SG 

SN,tot  =  

1000 MW

Fig. 11. System configuration for simulation validation.

Fig. 12. Comparison of simulation results using different FSDS models.

FSDS model. This is an encouraging outcome because the
step-size used in generating the time-response of the developed
FSDS is compatible with that required for grid frequency
control studies which involve the electromechanical transient.
This is in contrast to the detailed adiabatic DS model which
requires much smaller step-size of the order to 2 µs to simulate
the internal thermodynamic behaviors of the Stirling engine.
In this example, the small step-size results in very high
computational burden and requires some 670 s to complete
the simulation whereas in using the developed average-value
model, the total computation time is only 5.2 s.

The results obtained using the assumed first-order DS model
proposed in [2]–[6] are also included in Fig. 12. It is very
clear the first-order DS model used in these references is
unsuitable for use in the primary frequency control study as
the response of the FSDS is vastly different from that obtained
using the detailed adiabatic model. Additionally, a detailed
electromagnetic transient model established using Simscape
Power Systems (SPS) blockset in MATLAB/Simulink envi-
ronment is incorporated in the study. The SPS model includes
synchronous generator, turbine and governor, generator exci-
tation system, among other power system components. From
Fig. 12, it can be seen that essentially, the results based on the
simplified grid model are in agreement with those obtained us-
ing the SPS model. The initial fast electromagnetic oscillating
transient components obtained based on the SPS model are
due to the presence of short-duration voltage perturbations. In
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frequency control study, voltage variations are not considered
as they do not bear much impact on the subsequent frequency
perturbations, as is borne out in Fig. 12.

In the view of above, the proposed nonlinear average-value
FSDS model and the simplified grid model will be used in the
following numerical examples.

B. Primary Frequency Control Following a Step Load Change

In this case study, the same step load change as described
in Section VI-A is assumed. The results of the simulation are
shown in Figs. 13(a)–(c) for the three scenarios: 1) FSDS does
not participate in primary frequency control; 2) FSDS provides
primary frequency control ancillary service, effected through
the droop control scheme shown in Fig. 9; 3) Same as scenario
2 but with the additional transient droop compensation.

From Fig. 13(b), it can be seen that if no primary frequency
control action is provided by the FSDS, the steady-state
frequency deviation is 0.47 Hz. When the FSDS participates in
the primary frequency control, the FSDS increases its output
power from 0.18 p.u. to about 0.192 p.u. and the system
frequency deviation is correspondingly reduced to 0.43 Hz.

It can be seen from Fig. 13(a) that when the primary
frequency control is brought in, the FSDS decreases its power
at the initial stage of the transient (undershoot) which is
opposite to the increase in the power level at the steady-state.
This is due to the NMP characteristics of FSDS. The initial
relatively large decrease in the power counteracts the inertia
response from the generator-turbine of the SG. After the initial
stage, there is a period of poorly-damped and undesirable
oscillations in the power and receiver temperature. With the
transient droop compensation and selected control parameters,
the power undershoot is greatly reduced and the persistent
oscillations have been removed. Indeed, Fig. 13(b) shows that
the transient droop compensation has raised appreciably the
nadir of the frequency from 49.1 Hz to about 49.4 Hz and
the primary frequency response from the FSDS is essentially
accomplished in about 10 s.

The above cases are repeated but with the FSDS penetration
level ks increased to 50% which is above ks,max of 25% pre-
dicted in the previous section. The outcome of the simulation is
as shown in Figs. 13(d)–(f). It confirms that the power system
is unstable if the transient droop compensator is not used.
The receiver temperature can rise to high value and can be
damaging to the receiver/absorber. With the transient droop
compensator, the system is well-damped and the temperature
is well controlled. The FSDS is seen to carry out the primary
frequency control task satisfactorily.

C. Primary Frequency Control Under Perturbing Insolation

With the same system configuration and control parameters
as in Section IV-A, the impact of insolation variations on the
performance of the primary frequency control of the FSDS
is investigated next. I is assumed to start at 1 p.u. level
and reduces to 0.4 p.u. in a 0.2 p.u. step every 20 s. I
is then restored back to the 1.0 p.u. level in the reverse
manner. The simulation results for ks = 20% and 50% are
shown in Fig. 14. It can be seen that the proposed adaptive

(a) (d)

(b) (e)

(c) (f)

Fig. 13. Primary frequency response to step load change for: (a)–(c) ks =
20%; (d)–(f) ks = 50%.

(a) (d)

(b) (e)

(c) (f)

Fig. 14. Primary frequency response as insolation varies for: (a)–(c) ks =
20%; and (d)–(f) ks = 50%. Legends for the curves are the same as that in
Fig. 13.

supplementary control loop with transient droop compensation
control scheme can provide primary frequency support with
acceptable steady-state and dynamic performance even under
the ks = 50% penetration level condition. As has been stated
before, the controller designed at the maximum insolation
level performs better under lower I levels because the stability
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Fig. 15. Test of robustness of the developed FSDS primary frequency control
scheme by considering system parameter variations of (a) system inertia H
and (b) dead-band setting in the power-frequency droop line.

margin is larger at the lower I levels.

D. Robustness of Proposed Control Scheme

In order to test the robustness of the proposed adaptive
droop primary frequency control scheme, the performance of
the power system under several uncertain parameter conditions
is also investigated. These parameter variations include that of
system inertia H , and the dead-band in the power-frequency
droop line. The simulation results, given in Fig. 15, show that
within the studied parameter variation bands, the developed
control scheme has achieved acceptable performance in the
course of the primary frequency control. As expected, the
larger inertia has resulted in less severe frequency deviations
while the presence of the dead band has led to smaller
perturbations in the system frequency. The robustness of the
frequency controller has also been tested on other system
parameter variations, including the permanent droop RSG of
the SG unit and turbine-generator constant Tgt, and various DS
parameters that affects the equivalent coefficient Kds, Tds1, and
Tds2. In general, the power system performance is seen to be
insignificantly affected by up to 50% of variations of these
parameters.

VII. CONCLUSIONS

By allowing the working temperature of the receiver to
vary, the ability of fixed-speed dish-Stirling system to provide
primary frequency control has been investigated. The conven-
tional frequency-power droop control scheme is supplemented
by an adaptive control loop to cater for the need to adjust the
set-point of the receiver temperature as the insolation level
varies. From the developed model, the FSDS is shown to
exhibit the destabilizing nonminimum phase characteristic. As
a result, the penetration level of the generator has to be limited
to ensure stable operation of the primary frequency control
scheme. The droop controller is also to be tuned under the
most onerous condition of maximum insolation level. Next, it
is established that transient droop compensation can augment
the droop control scheme to allow higher penetration level of
the solar-thermal generation.

The tuning of the transient droop compensator to accom-
modate the uncertain input solar power remains a challenging
task and should be a fruitful area for further work.

APPENDIX A

The heat losses equation of the concentrator/receiver is [18]

QL = ArecU(Th − Ta) +ArecεσB(T 4
h − T 4

a ). (35)

The first and the second terms on the RHS of (35) are
the power losses due to convection/conduction and radiation
respectively. Arec is the area of the receiver aperture, U is
the receiver overall heat-loss coefficient, ε is the emittance of
receiver, and σB is the Stefan-Boltzmann constant. Choosing
the maximum temperature Th,max and nominal engine power
Pm,N as the base values, (35) can be normalized as

Q̄L = Krec1(T̄h − T̄a) +Krec2(T̄ 4
h − T̄ 4

a ) (36)

where coefficients Krec1 and Krec2 are given as

Krec1 =
Th,maxArecU

Pm,N
,Krec2 =

T 4
h,maxArecεσB

Pm,N
.

In the main text, the overbar that represents the per-unit
quantity will be removed for simplicity of notation.

APPENDIX B

The following parameters were obtained from [7], [8], [17].
Each Single 27-kW Dish/Receiver Unit: Arec = 0.0314 m2,

U = 395.3 W/(m2·K), σB = 5.67×10−8 W/(m2·K4), ε = 0.9,
Th,max = 1033 K, Pm,N = 27 kW.

Normalized FSDS Parameters: Kcon = 1.756, Trec =
13.436 s, Krec = 2.865, Krec1 = 0.4751, Krec2 = 0.0677,
a00 = 0.045, a10 = 0.068, a01 = 0.20, a11 = 2.14,
b00 = −0.038, b10 = −0.072, b01 = 0.055, b11 = 1.21,
b02 = −0.026, b12 = −0.13, A = −0.2735, C = 0.8752,
Kh = 2.8274, Km = 1.8505, km0 = −0.715, km1 = 2.906,
km2 = −1.191, d00 = 0.0064, d01 = −0.0261, d02 = 0.0107,
d10 = −0.7214, d11 = 2.9321, d12 = −1.2017, Th,low =
0.5 p.u., Tk = 0.313 p.u., pmax = 1 p.u., p′max = 1.1 p.u.,
pmin = 0.1 p.u., Kv = 1, Tv = 0.02 s, Kp = 1.0 p.u.,
Dp,AF = 0.043, KMPC = 25, T1 = 1 s, T2 = 4 s, x% = 10%,
RDS = 0.1.

Equivalent SG Unit: H = 5.0 s, RSG = 0.05, Tgt = 0.5 s,
f1 = 49.5/50 p.u. For the description of SPS for detailed
SG/grid model, readers may refer to [17], [19].

APPENDIX C

Consider ωm = 1 p.u., by linearizing the model (1), (3)–
(7), (9), (10), (17), (18), and (24) at a specific steady-state
operating point of I = I0, Th = Th0, and pmean = p0, one can
obtain the following small-signal FSDS model.

∆Qh = (a10 +a11)∆pmean + ηh0A∆gA+ ηh0Cp0∆Ṫh (37)

(Trec/Krec)∆Ṫh + (Krec1 + 4Krec2T
3
h0)∆Th = −∆Qh (38)

∆Pm = (d01 + 2d02Th0 + d11p0 + 2d12Th0p0)∆Th

+ (d10 + d11Th0 + d12T
2
h0)∆pmean (39)

∆pmean ≈ ∆p∗mean = −(∆Th,set + ∆Th)/Dp (40)

∆gA

∆p∗mean
=

1

Kp

s

2Tvs(1 + Tvs) + 1
≈ s

2Tvs+ 1
(41)
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where ηh0 is the value of ηh at this steady-state point. Using
(37), (38), (40), and (41) to eliminate Qh, gA, and pmean, the
transfer function between Th and Th,set is obtained, i.e.,

∆Th(s)

∆Th,set(s)
=

v(2Tvs+ 1) + ηh0As

ws(2Tvs+ 1) + z(2Tvs+ 1) + ηh0As
(42)

where

v = a10 + a11, z = Dp(Krec1 + 4Krec2T
3
h0) + v,

w = Dp(Trec/Krec + ηh0Cpset)

Next, substituting (42) and (40) into (39), the transfer func-
tion between Pm and Th,set is derived. Ignoring the second-
order terms, thus

∆Pm(s)/∆Th,set(s) = Kds(1 − Tds1s)/(1 + Tds2s) (43)

where

Tds1 =
2Tvxv + xηh0A− 2Tvzy − ηh0Ay − wy

zy − xv
≈ −wy
zy − xv

,

Tds2 = Dp(Trec/Krec)/(a10 + a11) + 2Tv,

Kds = −y + xv/z, y = (d10 + d11Th0 + d12T
2
h0)/Dp,

x = d01 + 2d02Th0 + d11p0 + 2d12Th0p0 + y.
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