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Dish-Stirling Solar Power Plants: Modeling,
Analysis and Control of Receiver Temperature

Yang Li, Student Member, IEEE, San Shing Choi, Senior Member, IEEE, and Chun Yang

Abstract—A simplified adiabatic model of the Stirling engine
is developed for the study of grid-connected dish-Stirling solar-
thermal power plant. The model relates the average values of
the engine state variables and also takes into account engine
losses. As the engine is shown to exhibit nonminimum phase
behavior, an improved temperature control scheme for the engine
heat absorber is developed. By including engine speed, pressure
and solar insolation limits into the analysis, steady-state feasible
operating regime of the solar-thermal power plant is obtained.
Maximum solar energy harness is shown to be achievable through
variable speed operation of the power plant.

Index Terms—Concentrated solar power, dish-Stirling (DS)
system, temperature control.

NOMENCLATURE

Symbol:
A Area (m2).
D Derivative operator d/dφ.
I Solar insolation (W/m2).
M Total mass of working gas in the cylinder (kg).
P Power (W).
Q Heat (J).
R Gas constant [m3 · Pa/(K · kg)] .
T Temperature (K).
V, v Volume (m3).
W Work (J).
gA Mass flow rate (kg/s).
m Mass of the working gas (kg).
p Pressure of the working gas (Pa).
α Initial crank angle (rad).
γ Specific heat ratio.
η Efficiency.
φ Crank angle (rad).
η Efficiency.
ω rotational speed (rad/s).

Subscript:
c Compression space.
cl Clearance.
ck Compression space–cooler interface.
con Concentrator.
e Expansion space.
h Heater or thermal input.
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he Heater–expansion space interface.
k Cooler.
kr Cooler–regenerator interface.
m Mechanical.
r Regenerator.
rec Receiver.
rh Regenerator–heater interface.
sw Swept space.

I. INTRODUCTION

THERE is immense development opportunity for the re-
newable energy sources, in which the dish-Stirling (DS)

solar-thermal generation system is one type. This solar-thermal
power plant uses a parabolic mirror-like reflector dish to
concentrate sunlight to a small area located at the focal point
of the mirrors. High temperature achieved at the focal point is
used as a heat source for a Stirling engine. The Stirling engine
is capable of operating at high efficiency and releases no
emissions, making it highly compatible with the solar thermal
power technology [1], [2].

Unfortunately, the often random and uncontrollable nature
of solar irradiance poses a challenge in the control of the DS
power plant. Careful control system design based on suitably
developed model for the DS power plant is thus called for.
Indeed, an integrated DS system model was proposed in [3]
and its control system was investigated in [4]. A variable-speed
DS scheme was studied for the purpose of achieving maximum
solar power harness in [5], but control of the temperature
of the DS system was not discussed. In fact, the control of
the temperature of the heat absorber is one most important
consideration in the design of the power plant. Towards this
end, a rather empirical temperature control scheme had been
proposed in [6] for a particular type of Stirling engine. While
there are many newer types of Stirling engine being studied
in recent years [7]–[9], most of the reported works focused
on developing suitable models for kinematic type of Stirling
engine using ideal adiabatic analysis and with the inclusion of
various forms of thermal losses [10]–[12]. These high-order
nonlinear models are relatively accurate and are expressed
in the form of boundary-value equations. Unfortunately, the
step-size required to obtain accurate numerical solution of
the equations is often incompatible with that used in the
power system studies. Furthermore, these models consider
internal thermodynamic behaviors which may not need to be
considered in the design of the absorber temperature control
systems. Often the developed models also require detailed
knowledge of the Stirling engine, e.g., engine dimension and
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the characteristics of the working gas, information which is
unlikely to be available during the planning stage of a DS
system.

In this paper, the basic working principle of the DS system
is described in Section II, from which a simplified average-
value model for the engine shall be derived in Section III.
Based on the developed model, the design of a temperature
control scheme for the heat absorber of the DS system will be
described in Section IV. Section V contains an analysis of the
DS system under steady-state operation. Potential of variable
speed operation of the DS system to maximize energy harness
will be discussed. Numerical examples are used in Section VI
to illustrate the main findings of the present investigation.

II. DISH-STIRLING SYSTEM: SOME BASICS

Essentially, three energy conversion processes are involved
in a typical DS system [1]. First, the direct normal irradiance
collected by the dish concentrator is reflected onto a small hol-
low chamber called the receiver. In the receiver, the harnessed
solar energy is in turn converted to thermal energy and then
absorbed by a large number of metallic tubes called absorber.
Second, the Stirling engine converts the absorbed thermal
energy into mechanical energy by compressing and expanding
a working gas, such as hydrogen and helium. Finally, the
Stirling engine drives an electric generator which converts the
mechanical energy into electricity.

The concentrated solar power intercepted by the receiver is
converted into heat, i.e.,

Q̇I = ηconAconI (1)

where Acon is the projection area of the concentrator and I
is the insolation level. ηcon is the overall efficiency of the
concentrator and its value depends on the reflectivity of the
concentrator surface, among other factors. Normally ηcon and
Acon can be considered constant. Note that the symbol Q̇ is
used here to represent thermal power quantity. Only part of Q̇I

shall be absorbed by the Stirling engine. The absorbed power is
denoted as Q̇h which is determined by the dynamic character-
istic of the Stirling engine and is traditionally calculated using
complex high-order nonlinear thermodynamic models, e.g. the
ideal adiabatic model. The balance of the thermal power (Q̇L)
will be lost to the surrounding atmosphere through conduction,
convection and radiation.

The imbalance between Q̇I (input power) and Q̇L+Q̇h (out-
put power) will cause a temperature change on the absorber
[13]. Mathematically,

Q̇L = KL(Th − Ta) (2)

Kr
dTh
dt

= Q̇I − Q̇L − Q̇h. (3)

In (2) and (3), Th denotes the temperature of the absorber
tubes. Th is considered uniform in the whole space of the
absorber wall and equals to the average temperature of the
working gas in the tubes [4]. Constant Ta is the temperature
of the atmosphere. Kr and KL are two constants whose values
depend on the characteristic of the absorber material [14].
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Fig. 1. Block diagram of DS absorber temperature control scheme.

Substituting (1) and (2) into (3), and in the s-domain
representation, the concentrator–receiver model is

Th(s) =
ηconAconI(s) +KLTa − Q̇h(s)

KL +Krs
. (4)

Unlike other applications of the Stirling engine, the ‘fuel’
supplied to the DS system, i.e., the solar insolation I , is
intermittent. It can be seen from (4) that a change of I will
cause variation in the temperature Th. As controlling Th to
acceptable value is one most important task in the operation
of the DS system, Q̇h must be regulated appropriately. Among
the many types of Stirling engine and methods to control Q̇h

described in [15], only the double-acting kinematic engine
with variable mean pressure control (MPC) scheme is studied
here as it is the most developed and effective configuration in
current applications [1]. The basic MPC concept for tempera-
ture control can be explained using Fig. 1. The three variables,
mean pressure pmean of the working gas, engine speed ωm and
Th, describe the behavior of the Stirling engine. pmean is shown
to be approximately proportional to the total mass M of the
working gas in the cylinders of the Stirling engine [12]. Thus,
by operating a set of valves, pmean can be controlled by either
supplying or dumping the working gas. The MPC system could
therefore be studied using the block diagram shown in Fig. 2
where the approximately linear relationship between pmean
and M is represented by the constant gain Kp. The single-
lag block is used to represent the fast-responding solenoid
valves which regulate the mass flow rate Ṁ according to
the valve command. The proportional controller Gp regulates
pmean. Tuning method for Gp is given in [4]. Noting that for
the solenoid valves, Tv � 1 s, the simplified transfer function
pmean(s)/pref(s) or Gmpc(s) is also shown in Fig. 2.

MPC can be considered as the inner loop of the temperature
control shown in Fig. 1. Hitherto, the design of the temperature
controller has been carried out in an empirical manner as no
suitable model of the Stirling engine has been developed for
this purpose. Thus, unlike the approach of [4] and as shown in
Fig. 2 where only approximate linearized mean pressure model
is used, the present work is to firstly establish the analytical
relationship governing Q̇h and pmean and then utilize the gained
insight to design a superior control system for Th, as shown
in the following sections.

III. DEVELOPED STIRLING ENGINE MODEL

A. Average-Value Adiabatic Model

It is usually convenient to normalize system variables
when developing models for power system studies. Thus, the
following base values will be used: ωm,base = ωm,N , the
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Fig. 2. Block diagram of MPC within the temperature control scheme.

nominal engine speed (rad/s); pbase = pmax, the maximum
pressure limit (Pa); Pbase = Q̇base = Pm,N , the nominal output
power of Stirling engine (W); Tbase = Th,max, the maximum
heater temperature (K); Ibase = Imax, the maximum insolation
(W/m2). Henceforth, analysis will be conducted on per-unit
basis and the symbol “ ¯ ” is appended to denote p.u. values.

Starting from the ideal adiabatic model of the Stirling
engine, the authors have derived a new and simplified model
which includes the transfer functions between the time-average
values of the Stirling engine output power P̄m,adi with mean
pressure p̄mean, and that of the engine absorbed (input) power
¯̇Qh,adi with p̄mean. The detailed derivation is shown in the
Appendix. The developed transfer functions are

Gm(s) =
P̄m,adi(s)

p̄mean(s)
= K̄mω̄m

1

1 + Tse3s
(5)

Gh(s) =
¯̇Qh,adi(s)

p̄mean(s)
= K̄hω̄m

1− Tse1s

1 + Tse2s
(6)

where positive parameters K̄m, K̄h, and Tse1 are as defined
in the Appendix. As shown in the Appendix, these parameters
are functions of the temperature. However, as shall be shown
later, the purpose of the temperature control system is to allow
the temperature to vary in a very narrow band. Therefore such
small temperature variations are considered to have negligible
effect on the performance of the engine. From (6) and the
Appendix, note that the transfer function Gh(s) relating ¯̇Qh,adi
and p̄mean is a first-order nonminimum phase system. Also,
both the gain K̄hω̄m and the time constant Tse1 are functions
of engine speed ω̄m. Tse2 and Tse3 are time constants which
embody the first-order filtering effect when determining the
average values of the variables.Values of Tse2 and Tse3 are
selected to be compatible with the power system phenomenon
studied.

There is still another consideration: the analysis from which
(5) and (6) are derived does not consider most types of thermal
and frictional losses. Thermal efficiency of practical Stirling
engine can be as low as half of that determined based on the
ideal adiabatic analysis [12]. Thus losses have to be considered
and this can be done by modifying the steady-state gain K̄m

and K̄h in (5) and (6), as shown next. This is a new method of
incorporating the losses when developing the Stirling engine
model in grid-related studies.

B. Inclusion of Steady-State Thermal and Frictional Losses

It is clear from (5) and (6) that the steady-state values
of P̄m,adi and ¯̇Qh,adi, denoted herewith as P̄m(0) and ¯̇Qh(0)

respectively, are directly proportional to the product of engine
speed ω̄m and mean pressure p̄mean. In practice, due to thermal
and frictional losses, P̄m(0) and ¯̇Qh(0) will deviate from
that calculated using (5) and (6). Steady-state losses can be
categorized into three groups, based on the manner by which
the losses vary with ω̄m and p̄mean [16]. Table I summarizes the
main characteristics and the proposed expressions in quantify-
ing such losses. Thus, a new set of more accurate expressions
for P̄m(0) and ¯̇Qh(0) can be derived by subtracting the losses
shown in Table I from the steady-state values P̄m,adi(0) and
¯̇Qh,adi(0). Henceforth, the subscript “adi” shall be omitted
from P̄m,adi and ¯̇Qh,adi to signify that the analysis to follow
has included the losses. Thus,

P̄m(0) = P̄m,adi(0)−∆P̄0 −∆P̄1 −∆P̄2

= (K̄m − k11)p̄meanω̄m − k00 − k10p̄mean − k01ω̄m

− k02ω̄
2
m − k12p̄meanω̄

2
m (7)

¯̇Qh(0) = ¯̇Qh,adi(0)−∆ ¯̇Q0 −∆ ¯̇Q1

= (K̄h − k′11)p̄meanω̄m − k′00 − k′10p̄mean − k′01ω̄m. (8)

Thus (7) and (8) show that P̄m(0) and ¯̇Qh(0) are multivari-
ate polynomials (MP) of p̄mean and ω̄m. The coefficients kij
and k′ij can be considered constant. Instead of estimating their
values through thermodynamic and heat transfer analysis, a
convenient approach is to determine the polynomial functions
(7) and (8) which best-fit the engine steady-state performance
maps of P̄m(0) and ¯̇Qh(0) against p̄mean and ω̄m, obtained
from experiments or that provided by the Stirling engine
manufacturers. The general representations of output and input
powers using MP model are thus

P̄m(0) =

1∑
i=0

2∑
j=0

bij p̄
i
meanω̄

j
m (9)

¯̇Qh(0) =

1∑
i=0

1∑
j=0

aij p̄
i
meanω̄

j
m (10)

where bij and aij are the respective dimensionless MP coeffi-
cients. Second-order approximation is considered sufficiently
accurate to represent the effect of losses around the operating
state. By comparing (9) and (10) with (7) and (8) respectively,
two new parameters K̂m and K̂h are defined and they will be
used to replace respectively K̄m and K̄h in (5) and (6) of the
ideal average adiabatic model, respectively

K̂m =

1∑
i=0

2∑
j=0

bij p̄
i−1
meanω̄

j−1
m , K̂h =

1∑
i=0

1∑
j=0

aij p̄
i−1
meanω̄

j−1
m .

(11)
The last row of Table I also shows typical values of the

MP coefficients calculated using the data of a Stirling engine
reported in [17]. The root-mean-square error between the
calculated P̄m(0) and ¯̇Qh(0) and those obtained in [17] for
p̄mean = 0.33 – 1 p.u. is less than 2.5%. This indicates that the
developed steady-state model is sufficiently accurate.

Also, from (9), at the nominal operating point p̄mean =
1 p.u., ω̄m = 1 p.u., and Pm(0) = 1 p.u., thus,
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TABLE I
SUMMARY OF MAJOR THERMAL AND MECHANICAL LOSSES OF THE STIRLING ENGINE [16]

Type Static thermal loss Linear thermal loss Friction effects
Causes of
losses

Conduction; shuttle heat transfer;
convection and radiation

Stack loss; hysteresis loss; imperfect regeneration Mechanical friction; Aerodynamic friction

Characteristics
of the losses

on the temperatures and are inde-
pendent of the speed and pressure

Increase linearly as the speed or pressure increases Second or higher order relationship with the
engine speed, only affect the output power

Proposed
expressions

∆P̄0 = k00
∆ ¯̇Q0 = k′00

∆P̄1 = k10p̄mean + k01ω̄m + k11p̄meanω̄m

∆ ¯̇Q1 = k′10p̄mean + k′01ωm + k′11p̄meanω̄m

∆P̄2 = k02ω̄2
m + k12p̄meanω̄2

m

Typical MP
coefficients

b00 = −k00 = −0.038, b10 = −k10 = −0.072, b01 = −k01 = 0.055, b11 = K̄m − k01 = 1.21, b02 = −k02 = −0.026,
b12 = −k12 = −0.13, a00 = −k′00 = 0.048, a10 = −k′10 = 0.072, a01 = −k′01 = 0.214, a11 = K̄h − k′01 = 2.264

∑1
i=0

∑2
j=0 bij = 1. Dividing P̄m(0) by ¯̇Qh(0) which is

obtained from (10) yields

P̄m(0)
¯̇Qh(0)

= ηse,N = 1/

1∑
i=0

1∑
j=0

aij . (12)

Thus, (12) allows the thermal efficiency ηse,N of the Stirling
engine at the nominal operating state to be more accurately
evaluated as aij are known and the various losses have been
accounted for.

IV. RECEIVER/ABSORBER TEMPERATURE CONTROL

A. Linearized Model for Temperature Controller Design

Convert concentrator–receiver model described by (4) into
its normalized form, viz.

T̄h =
Krec(KconĪ(s)− ¯̇Qh(s)) + T̄a

1 + Trecs
(13)

where Trec = Kr/KL, Kcon = ηconAconImax/Pm,N , and
Krec = Pm,N/(KLTh,max). Fig. 1 shows the two major
disturbances in the temperature control loop are the variations
of Ī and ω̄m, the latter would include the consequence
of a disturbance in the external grid system. Consider a
small deviation from an arbitrary steady-state operating point
p̄mean = p̄0 ∈ [p̄min, p̄max], T̄h = T̄h0 ∈ [T̄h,min, T̄h,max], and
ω̄m0 = 1 p.u.. From (13), variations of T̄h can be expressed
as

∆T̄h(s) =
Krec(Kcon∆Ī(s)−∆ ¯̇Qh)

1 + Trecs
(14)

Using (6) and (11), ∆ ¯̇Qh due to changes of ∆ω̄m and
∆p̄mean can be expressed as

∆ ¯̇Qh =
∂ ¯̇Qh

∂p̄mean
∆p̄mean +

∂ ¯̇Qh

∂ω̄m
∆ω̄m. (15)

where the coefficients are

∂ ¯̇Qh

∂p̄mean
= (a10 + a11)

1− Tse1s

1 + Tse2s
,

∂ ¯̇Qh

∂ω̄m
= a01 + a11p̄0.

Combining Fig. 2, (14), and (15), the linearized model
of the Stirling engine for the receiver/absorber temperature
control is obtained. It is illustrated in Fig. 3 where the relevant
expressions used in deriving the model are also shown.
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B. A New Temperature Control Scheme

In the control of the receiver/absorber temperature in the
Stirling engine, the average temperature on the absorber is
conventionally measured using thermocouple. The pressure
reference setting p̄ref is often calculated based on empirical
static temperature–pressure droop characteristic, such as that
shown in Fig. 4 [6]. With the permanent droop DP as defined
in the figure, thus T̄h is not maintained constant over the
whole range of the insolation level. This is equivalent to the
introduction of a proportional controller with gain 1/DP into
the temperature control system.

From Fig. 3, it can be seen that the plant parameters in
the temperature control loop are independent of T̄h and p̄mean
under constant ω̄m operation. Thus, the temperature controller
can be tuned at an arbitrary operating point of T̄h and p̄mean. It
can be readily shown that the corresponding open-loop transfer
function of the temperature control system is

∆T̄h(s)

∆T̄h,ref(s)
≈ KΣ(1− Tse1s)

DP (1 + TΣs)
. (16)

In arriving at (16), one makes use of the fact that Trec � Tp
and Trec � Tse2, and denotes KΣ = Krec(a10 + a11), TΣ =
Tp + Tse2 + Trec. Apply Hurwitz-Routh Stability Criteria on
the resulting closed-loop transfer function, stable operation of
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the temperature control scheme is guaranteed when

DP > KΣTse1/TΣ. (17)

Due to the nonminimum phase nature of Gh(s) as shown
in (6), however, the change in p̄mean will cause an initial ¯̇Qh

change in a direction opposite to that sought. Thus, T̄h will
require a longer time to reach its new steady state following
a sudden Ī or ω̄m variations. A solution to reduce the settling
time is to increase DP , but it will lead to an increase in
the steady-state error in T̄h and a significant reduction in the
engine efficiency.

To overcome this problem, a transient droop compensation
scheme is now proposed. The new temperature control scheme
is shown in Fig. 5 in which DT denotes the temporary droop
setting and TR is the reset time. From the transfer function of
the proposed temperature controller Gtc(s) shown in Fig. 5, it
can be readily shown that the equivalent droop is temporarily
increased to DP +DT at the initial stage of the transients. The
range of DP for which closed-loop stability is guaranteed is

DP > max
{KΣTse1

TΣ

1

1 + DT

DP

,
KΣ(Tse1 − TR)

TΣ + (1 + DT

DP
)TR

}
. (18)

It can be seen that DP determined from (18) is smaller
than that obtained in (17). The proposed scheme provides lag
compensation and leads to improved system stability.

C. Feedforward Compensation During Speed Variations

As can be seen from the above analysis, variations in
the engine speed ∆ω̄m would result in absorber temperature
change. During normal operation, ∆ω̄m tends to be small and
the temperature control functions described in Section IV-B
functions well. However, if ∆ω̄m varies greatly during e.g.
severe system disturbance condition, ∆ω̄m needs to be com-
pensated for. This can be achieved by generating a feedforward
signal p̄ff for ∆p̄ref. As reflected by the second term on the
right-hand-side of (15) and using measured ω̄m and p̄mean. p̄ff
is given as

p̄ff =
a01 + a11p̄0

a10 + a11ω̄m0
∆ω̄m ≈

a01 + a11p̄mean

a10 + a11
∆ω̄m. (19)

The feedforward control is also featured in Fig. 5.
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V. RELATIONSHIP BETWEEN STEADY-STATE OUTPUT
POWER, SPEED AND INSOLATION LEVEL

A. Output Power Versus Insolation Under Constant Speed
Operation

In this section, steady-state operation of the DS system
will be examined. The notation “(0)” will be omitted. As T̄h
can be effectively maintained nearly constant by the improved
control scheme described in Section IV, the effect of ∆T̄h on
the engine performance will not be included in the analysis.
Substituting (10) and the expression of DP in Fig. 4 into
(13), the steady-state relationship governing p̄mean, Ī and ω̄m

is obtained

p̄mean = (KconĪ − a01ω̄m − a′00)/(a11ω̄m + a′10) (20)

where a′00 = a00 + (1 − T̄a) − DP /Krec and a′10 = a10 +
DP /Krec. In practice however, p̄mean must be higher than the
minimum pressure p̄min. For constant speed operation, thus
(20) is only applicable above the minimum insolation level
Īmin where Īmin is obtained by substituting p̄min into (20), i.e.,

Īmin = [(a11p̄min + a01)ω̄m + a′10p̄min + a′00]/Kcon. (21)

Also, by substituting (20) into (9), the relationship between
the steady-state output power P̄m, ω̄m, and Ī can be obtained:

P̄m = m1Ī + n1 (22)

where
m1 = Kcon(b10 + b11ω̄m + b12ω̄

2
m)/(a11ω̄m + a′10)

n1 = b00 + b01ω̄m + b02ω̄
2
m −m1(a01ω̄m + a′00)/Kcon.

For constant-speed operation with (say) ω̄m at the nominal
speed of 1 p.u., from (22), P̄m is seen to be linear with respect
to Ī . This is shown in Fig. 6 by the line A–D. If Ī is less than
Īmin, T̄h will rise as the power balance cannot be maintained
by reducing p̄mean any further. T̄h is then not controllable and
may even exceed its maximum set value: the DS system is to
shut down and the output power is zero.

If one ignores losses in the mechanical to electrical energy
conversion process in generator, the linear P̄m – Ī charac-
teristic is similar to DS system output electrical power vs.
insolation relationship derived from the linear interpolation of
the experimental data shown in [18]. The present approach
is, however, advantageous in that it provides a direct means in
deriving the linear relationship (22) based on the proposed MP
model. Hence, the approach is particularly useful during the
feasibility evaluation or planning stage of specific DS power
plant.
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B. Feasible Operating Regime Under Variable Speed Opera-
tion

Equation (20) shows explicitly how steady-state p̄mean, ω̄m

and Ī are related. As shown in (7) and (9), p̄mean and ω̄m are
the two important variables that govern the P̄m. The potential
of controlling P̄m(0) through the manipulation of ω̄m shall
now be examined. Using (7) and (22), a family of typical
P̄m − ω̄m curves at different insolation levels is depicted in
Fig. 7. Note that at each of the constant-I curves, there is a
corresponding maximum P̄m. Also each point on the curve has
the corresponding p̄mean, although p̄mean has not been explicitly
indicated on the figure.

Operation of the DS system is limited by several practical
constraints placed on p̄mean, ω̄m and Ī . These limits define the
feasible operating boundary A–B–C–G–F–A shown on Fig. 7.
The various sectors of the boundary are:
• A–B: applies due to the maximum insolation Ī;
• B–C: dictates by the maximum engine speed ω̄max;
• C–G: pertains to the minimum mean pressure p̄min;
• G–F: governs by the minimum engine speed ω̄min;
• F–A: sets by the maximum mean pressure p̄max.
The boundary ABCGFA prescribes the steady-state feasible

operating regime of the DS system. The boundaries F–A
and C–G, corresponding to the engine operating under the
maximum and minimum mean pressure respectively, can be
derived by setting p̄mean = p̄max and p̄mean = p̄min in (9) for
the speed range ω̄min ≤ ω̄m ≤ ω̄max.

C. Variable speed operation and maximum power harness

Fig. 6 shows that for the constant-speed operation, there
will be a minimum insolation level Īmin below which power
generation is not possible. The reason for this has been
explained in Section V-A. Suppose the engine operates at the
nominal speed ω̄m of 1 p.u. The engine operating state at the
minimum insolation level will then correspond to the point D
in Fig. 7 where Īmin is obtained using (21) and p̄mean = p̄min.
As Ī increases and maintaining ω̄m constant at 1 p.u., the
operating state moves from D toward A where Ī = Īmax.
The constant speed operation is therefore described by the
line D–A. On the other hand, if the DS system is able to
operate at variable speed and by reducing ω̄m to below 1 p.u.,
it is still feasible to operate the DS system in the shaded area

E–D–G–E where the insolation level is lower than Īmin, the
minimum insolation level determined under the constant speed
mode. The corresponding minimum speed ω̄m at point G can
be calculated by substituting P̄m = 0 and p̄mean = p̄min into
(9). Then using (20), the minimum insolation level Ī ′min under
variable-speed operation can be readily shown to be

Ī ′min = [p̄min(a11ω̄min + a′10) + a01ω̄min + a′00]/Kcon (23)

The nominal operating speed of the DS system is often
selected to be at the maximum thermal efficiency point at
maximum insolation. This is because this operating state can
be easily found from the specifications or experimental data
of the Stirling engine. However, Fig. 7 shows that the Stirling
engine is not harnessing the maximum power at the nominal
speed. The theoretical maximum power point (MPP) locus
could be obtained by setting ∂P̄m/∂ω̄m = 0 in (22), but this
locus is a complex nonlinear equation. Instead, an approximate
expression of the MPP locus can be derived by firstly, ignoring
the terms containing the small-value coefficients b00, b01, b02,
and a′10 in (22). The approximate expression of P̄m is

P̄m =
(b10 + b11ω̄m + b12ω̄

2
m)

a11ω̄m
(KconĪ−a01ω̄m−a′10). (24)

At high insolation level, KconĪ � a01ω̄m+a′10. The optimal
speed ω̄m,opt by which maximum power harness occurs can be
obtained by setting ∂P̄m/∂ω̄m|ω̄m=ω̄m,opt = 0, whence

ω̄m,opt ≈
√
b10/b12. (25)

Operation at constant speed ω̄m,opt is represented by the
vertical line to the left of the nominal constant speed operating
line A–D in in Fig. 7. The theoretical MPP locus is also
shown there. In practice, due to the maximum pressure limit
the theoretical MPP is not achievable above the point H. The
achievable maximum power is governed by the curve H–A
when p̄mean = p̄max. As b12 < b10 < 0 and as Ī decreases, the
MPP locus deviates increasingly from the vertical line A–D
as the condition KconĪ � a01ω̄m + a′10 becomes less and less
valid. At insolation level below that corresponding to that at
point H, the straight line H–K can be used to approximate the
MPP locus instead. H–K is of the form

P̄m ≈ c · ω̄m + d. (26)

Equation (26) can be used to advantage in the design of a
speed control strategy to achieve maximum power harness.

The overall P̄m vs Ī MPP curve A–H–K under variable
speed operation is also shown in Fig. 6. Clearly the amount
of energy extracted under MPP depends on the characteristics
of the P̄m− ω̄m curve of the Stirling engine and the selection
of the nominal value of ω̄m. If the nominal speed for the
constant speed operation is much above ω̄m,opt, the variable
speed operation of the DS system can be expected to be able
to extract much more energy than that under constant speed
operation.

VI. ILLUSTRATIVE EXAMPLE

A. System Configuration

Consider a 25-kW DS system connected to a large grid
via a 480-V/22-kV step-up transformer and 20-km distribution
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Fig. 8. Simulink model of DS solar-thermal power plant and grid system.

line. The short-circuit level at the 22-kV connection point
is assumed to be 1 MVA, yielding an equivalent system
impedance of 0.1 + j1 pu on 1-MVA base. The Stirling
engine is connected to a 25-kW induction generator (of 2
pole pairs). A 15.6-kVAr static capacitor bank is connected
at the terminal of the induction generator for reactive power
compensation purpose. The parameters of the DS system are:
ηcon = 0.88, Acon = 87.7 m2, Kr = 200, KL = 14.83,
Ta = 298 K, Kv = 1.0, Tv = 0.02 s, Vsw = 95 cm3,
Vcl = 10 cm3, Vh = 33.08 cm3, θ = 0.89π rad, and
b = 0.2. Nominal parameters: pmax = 20 MPa, pmin = 2 MPa,
Th,max = 1033 K, Imax = 1000 W/m2, Pm,N = 27 kW, and
ωm,N = 190.63 rad/s. These parameters were obtained from
[12] and [19]. The model of the power system, including that
of the DS system, was established in MATLAB/Simulink and
is illustrated in Fig. 8.

B. Comparison of Ideal and Average-Value Adiabatic Models

In this section, the purpose is to show the comparison
between the results obtained using the ideal adiabatic model
with that obtained using the proposed average-value adiabatic
model. The disturbance is an ON-OFF three-cycle three-phase
to ground fault applied at the 22-kV connecting point. As
insolation level is not expected to change significantly over
the fault duration, Ī can be considered constant over the study
period.
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Fig. 9. Comparison between the simulation results using the ideal adiabatic
model and the average-value adiabatic model.

The simulation results based on the ideal and average-value
adiabatic models are shown in Fig. 9. It can be seen that
using the average-value adiabatic model, only the average

values of the input and output powers of the Stirling engine
are evaluated. The high-frequency components (at twice the
power frequency) caused by the engine piston motion are
not represented. The average values reflect accurately the
responses in terms of the output power and temperature.
The corresponding step-size used was 50 µs and required
33.1 s to complete. This step-size is suitable for most type
of power system electromagnetic transient studies. Using the
ideal adiabatic model, however, it required a 2-µs step-size and
the simulation time was much higher at 333.2 s. Thus using
the average-value adiabatic model can speed up the simulation
without greatly compromising the accuracy required in the
study of power system dynamics.

C. Temperature Controller Design

The relevant parameters for the absorber temperature control
design can be calculated using the corresponding equations
in Section IV: Kcon = 2.865, Krec = 1.756, Trec = 13.44 s,
Tp = 0.056 s, Tse1 ≈ 0.11 s at ωm = 1 p.u., and Tse2 = 0.03 s.
The minimum DP calculated from (17) for the conventional
temperature control system is 0.027, and its corresponding
minimum temperature limit Th,min must be less than 1008 K.
In practice, Th,min is selected as 993 K (720 ◦C) using the
droop controller, to guarantee stability of the system. However,
from Bode analysis, the corresponding phase margin is only
8.1◦ and the cut-off frequency (ωc) is 8.4 rad/s. When a large
disturbance occurs, it will require a relatively long time for the
temperature and output power to return to their steady states.

Using the transient droop compensation, in order to enhance
the transient response, the corresponding break frequency of
the compensator is selected to be higher than 1/Trec and lower
than ωc, i.e., 1/ωc < TR < (1 + DT /DP )TR < Trec. By
selecting TR = 0.5 s and DT = DP , the new phase margin
is 37.1◦ which results in a much improved design over the
conventional controller.

This expected improvement could be verified by studying
the performance of the proposed temperature control scheme
under rapid insolation variation condition. Typically, a rate of
change of I of 30 W/(m2·s) is considered high in photovoltaic
system study [20]. Fig. 10 shows the results of a study in
which I has been ramped down and then up at a rate of
100 W/(m2·s) or 0.1 p.u./s. Even at such a rapid change,
the proposed temperature controller with transient droop and
feedforward compensation is able to maintain the absorber
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temperature to within an acceptable range and with negligible
over- and under-shoots.

The proposed design is further tested under the grid-fault
condition considered earlier. The responses of the DS system
based on the conventional droop and the proposed transient
droop reduction controllers are compared in Fig. 11. There
are persistent power oscillations after the fault clearance in
the case of using the conventional droop controller. Similar
phenomenon is also observed in the simulation result shown
in [19]. Such power oscillations are undesirable if large-scale
DS system is incorporated into the power grid. By introducing
the transient droop compensation, the transients in the output
power and temperature excursions are much rapidly subdued.
Further improvement is seen with the addition of the proposed
feedforward compensation.

VII. CONCLUSION

Existing Stirling engine models are unsuitable for use in
grid-related studies and instead, an average adiabatic model
of the engine has been proposed. The proposed model also
takes into account the effects of steady-state thermal losses
and demands much less computation time. The model also
shows the engine exhibits nonminimum phase behavior and
is able to capture those dynamics essential for power system
study.

Based on the developed model, an improved temperature
controller with transient droop reduction and feedforward

compensation has been proposed. This new temperature con-
troller is effective in reducing the temperature excursions
following a disturbance. It also leads to improved damping
in the output power of the DS solar-thermal power plant.

Furthermore, based on the steady-state analysis of the DS
system, feasible operating area of the power plant has also
been obtained. It is shown that to maximize the harness of
the solar energy, it requires the DS system to operate under a
variable speed mode.

APPENDIX
DERIVATION OF THE AVERAGE-VALUE ADIABATIC MODEL

The original ideal adiabatic analysis of Stirling engine can
be found in [12], while a revised model considering the
variation of M and Th was derived in [19]. Relevant equations
needed for deriving the simplified average-value model are:

Mass Flow Equations:

Dmk = mk(Dp/p− DTk/Tk) (27)
Dmr = mr(Dp/p− DTr/Tr) (28)
Dmh = mh(Dp/p− DTh/Th) (29)

gAhe = gArh − Dmh = Dme =
pDve + veDp/γ

RThe
(30)

DM = Dmc + Dmk + Dmr + Dmh + Dme (31)

Heat and Work Equations:

DQh = VhcvDp/R − cp(TrhgArh − ThegAhe) (32)
DW = p(Dvc + Dve) (33)

Volume Equations:

ve = Vd + 0.5Vsw cos (φ− αc − π/2) (34)
Dve = −0.5Vsw sin (φ− αc − π/2) (35)

where Vd = Vcl + 0.5Vsw is the volume of the working space
when the piston is in the oscillation center. Assumptions for
double-acting kinematic engine include (a) Uniform tempera-
ture distribution in the heater head; (b) Variation of the total
mass due to the action of pressure control system in each
cylinder is the same; (c) The variation of temperature of the
working gas does not affect the performance of the engine in
the normal operating conditions. Substituting (29) into (30)
and considering DTh/Th � Dp/p, it can be shown that

gArh ≈ Dme +mhDp/p = Dme + [Vh/(RTh)]Dp (36)

Substituting (36) into (32) and assuming Trh = Th, we have

DQh = −VhDp−cpThDme+(cp/R)(pDve+veDp/γ) (37)

Now consider four cylinders in the double-acting kinematic
configuration. From (37), The total heat absorbed is

DQh,total =

4∑
i=1

DQh,i = −Vh

1©︷ ︸︸ ︷
4∑

i=1

Dpi−cpTh

2©︷ ︸︸ ︷
4∑

i=1

Dme,i

+
cp
R

3©︷ ︸︸ ︷
4∑

i=1

(piDve,i + ve,i
Dpi
γ

) (38)
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where the subscript i = 1− 4 indicates the cylinder number.
The original pressure equation in the ideal adiabatic model

is quite complex. However, from observation of the waveforms
pi, it can be seen that it is quite sinusoidal. Ignore the second
and higher orders components, denote the magnitude and
phase of fundamental component of pi as ∆pi and θ, and
the average value of pi as p̄i. As shown in [12], ∆pi is
proportional to p̄i. Therefore pi can be expressed as

pi ≈ [1 + b cos (φ− αc,i − θ)]p̄i (39)

In (39), b and θ are assumed to be constant and can be
calculated from the dimension and temperature of the working
gas. Typically b is about 0.2 and θ is between π/2 and π.

Differentiating (39) with respect to crank angle φ, thus

Dpi = −b sin (φ− θ1)p̄i + [1 + b cos (φ− θ1)]Dp̄i (40)

where θ1 = θ + αc,i. With (34), (35), (39), and (40), thus

piDve,i = (V1 + Ṽ1,i)p̄i (41)

ve,iDpi = (V2 + Ṽ2,i)p̄i + (V3 + Ṽ3,i)Dp̄i (42)

where V1 = −V2 = −0.25Vswb cos θ and V3 = Vd +
0.25Vswb sin θ. Ṽ1,i, Ṽ2,i, and Ṽ3,i can be expressed as linear
combination of sinφ, cosφ, sin 2φ, and cos 2φ. As the adja-
cent piston has π/2 phase angle difference, it can be shown
that

4∑
i=1

Ṽ1,i =

4∑
i=1

Ṽ2,i =

4∑
i=1

Ṽ3,i = 0 (43)

Thus, using (41)–(43), and assuming p̄i = pmean, one can
evaluate 3© in (38) as

4∑
i=1

(piDve,i + ve,i
Dpi
γ

) =
4R

cp
V1pmean +

4cv
cp
V3Dpmean (44)

Using (40), one can readily obtain 1© in (38) as

4∑
i=1

Dpi = 4Dpmean (45)

and 2© in (38) can be estimated by substituting (27)–(29) into
(31) and ignoring the temperature variation terms, thus

4∑
i=1

Dmc,i +

4∑
i=1

Dme,i =

4

Kp
Dpmean −

4

R
(
Vk
Tk

+
Vr
Tr

+
Vh
Th

)Dpmean (46)

For the double-acting kinematic configuration engine, Kp

can be expressed as [4]

Kp = R/(K
√

1−B2) (47)

where B = Vsw
√
T 2
h + T 2

k /(2ThTkK), K = Vk/Tk+Vr/Tr+
Vh/Th + Vd(Th + Tk)/(ThTk).

Next, using the ideal gas equation, the variation of the
working gas mass in the expansion space is

Dme,i = D
(pive,i
RTe,i

)
=

Dve,i + ve,i(Dpi/pi − DTe,i/Te,i)
RTe,i/pi

≈ (piDve,i + ve,iDpi)/R (48)

In obtaining (48), one makes the assumptions that
DTe,i/Te,i � Dpi/pi, and Te,i is equal to the average
temperature T̄e in the expansion space. Substituting (41) and
(42) into (48) and considering (43), one obtains

4∑
i=1

Dme,i = 4V3Dp̄i/(RT̄e) (49)

Similarly, it can be derived that

4∑
i=1

Dmc,i = 4V4Dp̄i/(RT̄c) (50)

where V4 = Vd + 0.25Vswb cos θ. The ratio of (49) and (50) is

4∑
i=1

Dmc,i

/ 4∑
i=1

Dme,i =
V3T̄e
V4T̄c

≈ Th
Tk

(51)

Solving (46) and (51), 2© of (38) becomes,

4∑
i=1

Dme,i = 4κDpmean (52)

where

κ =
Tk

Th + Tk

[ 1

Kp
− 1

R

(Vk
Tk

+
Vr
Tr

+
Vh
Th

)]
(53)

Substituting (44), (45), and (52) into (38), therefore

DQh,total = 4V1pmean + 4V5Dpmean (54)

where V5 = −cpThκ − Vh + cvV3/R. Substituting (47) and
(53) into the expression of V5 and considering B � 1, thus

V5 ≈ −(Vd + Vh) + 0.25b sin θVsw/(γ − 1) (55)

In (55), as b > 0, sin θ < 0, and γ > 1, thus V5 < 0.
Convert (54) into s-domain representation, thus

Q̇h,total(s)/pmean(s) = Khωm(1− Tse1s) (56)

where Kh = 4V1 and Tse1 = −V5/(V1ωm).
The total absorbed heat by the four cylinders still contains

ripple. To obtain the average value Q̇h,adi(s), a first-order low-
pass filter can be used

Q̇h,adi(s)/Q̇h,total(s) = 1/(1 + Tse2s) (57)

Using (56) and (57) and through normalization, (6) is thus
obtained, where K̄h = Khpmaxωm,N/Pm,N .

Similarly, by evaluating the summation of (33), (5) is
derived, where Km =

√
2b sin (θ − 0.75π)Vsw and K̄m =

Kmpmaxωm,N/Pm,N .
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